
1

Lecture 9

The Basics of JavaScript

Boriana Koleva

Room: C54

Email: bnk@cs.nott.ac.uk

Overview

 Overview of JavaScript

 Object Orientation

 Syntactic Characteristics

 Primitives, Operations and Expressions

 Math, Number, String and Date objects

 Screen Output

 Control Statements, Arrays and Functions

Origins of JavaScript

 Originally developed by Netscape, as
LiveScript

 Became a joint venture of Netscape and Sun
in 1995, renamed JavaScript

 Now standardized by the European Computer
Manufacturers Association as ECMA-262

 An HTML-embedded scripting language

 We’ll call collections of JavaScript code
scripts, not programs

JavaScript and Java

 JavaScript and Java are only related

through syntax

 JavaScript is dynamically typed

 JavaScript’s support for objects is very

different

 JavaScript is interpreted

• Source code is embedded inside HTML

doc, there is no compilation

Uses of JavaScript

 Transfer of some load from server to client

 User interactions through forms

• Events easily detected with JavaScript

• E.g. validate user input

 The Document Object Model makes it
possible to create dynamic HTML documents
with JavaScript

JavaScript Execution

 JavaScript scripts are executed entirely
by the browser

 Once downloaded there is no exchange
of information with the server

• NB JavaScript programs can issue
HTTP requests and load other pages

 JavaScript scripts do not require the
Java VM to be loaded

 Thus JavaScript scripts tend to be fast

2

Object Orientation

 JavaScript is NOT an object-oriented
programming language
• Rather object-based

 Does not support class-based inheritance
• Cannot support polymorphism

 JavaScript objects are collections of properties,
which are like the members of classes in Java
• Data and method properties

 JavaScript has primitives for simple types

 The root object in JavaScript is Object – all
objects are derived from Object

Embedding in HTML docs

 Either directly, as in
<script type = “text/javascript”>

-- JavaScript script –

</script>

 Or indirectly, as a file specified in the
src attribute of <script>, as in

<script type = “text/javascript”

src = “myScript.js”>

</script>

Syntactic Characteristics

 Identifier form: begin with a letter or underscore, followed by
any number of letters, underscores, and digits
• Case sensitive

 25 reserved words, plus future reserved words

 Comments: both // and /* … */

 Scripts are usually hidden from browsers that do not include
JavaScript interpreters by putting them in special comments

<!--

-- JavaScript script –

//-->

 Semicolons can be a problem
• They are “somewhat” optional

• Problem: When the end of the line can be the end of a
statement – JavaScript puts a semicolon there

Primitives

 All primitive values have one of the five types:
Number, String, Boolean, Undefined, or Null

 Number, String, and Boolean have wrapper objects

 In the cases of Number and String, primitive values
and objects are coerced back and forth so that
primitive values can be treated essentially as if they
were objects

Primitives

 All numeric values are stored in double-

precision floating point

 String literals are delimited by either ' or "

 Boolean values are true and false

 The only Null value is null

 The only Undefined value is undefined

Declaring Variables

 JavaScript is dynamically typed – any variable

can be used for anything (primitive value or

reference to any object)

 The interpreter determines the type of a

particular occurrence of a variable

 Variables can be either implicitly or explicitly

declared

var sum = 0,

today = "Monday",

flag = false;

3

Numeric Operators Math and Number Objects

 The Math Object provides floor, round,
max, min, trig functions, etc.

• e.g., Math.cos(x)

 The Number Object has some useful
properties

String Object

 The number of characters in a string is stored
in the length property
var str = “George”;

var len = str.length;

 Common methods:

Date Object

 Create one with the Date constructor (no params)

var today = new Date();

 Local time methods of Date:

• toLocaleString – returns a string of the date

• getDate – returns the day of the month

• getMonth – returns the month of the year (0 – 11)

• getDay – returns the day of the week (0 – 6)

• getFullYear – returns the year

• getTime – returns the number of milliseconds since
January 1, 1970

• getHours – returns the hour (0 – 23)

• getMinutes – returns the minutes (0 – 59)

• getMilliseconds – returns the millisecond (0 – 999)

Screen Output

 JavaScript models the HTML document with the Document object

 The model for the browser display window is the Window object

• The Window object has two properties, document and window,
which refer to the Document and Window objects, respectively

 The Document object has a method, write, which dynamically
creates content

• The parameter is a string, often concatenated from parts, some of
which are variables

document.write("Answer: “, result, "
");

• The parameter is sent to the browser, so it can be anything that
can appear in an HTML document (any HTML tags)

Screen Output

 The Window object has three methods for

creating dialog boxes

1. Alert
alert(“The sum is:” + sum + ”\n");

• Parameter is plain text, not HTML

• Opens a dialog box which displays the

parameter string and an OK button

• It waits for the user to press the OK button

4

Screen Output

2. Confirm

var question = confirm("Do you want

to continue this download?");

• Opens a dialog box and displays the

parameter and two buttons, OK and Cancel

• Returns a Boolean value, depending on

which button was pressed (it waits for one)

Screen Output

3. Prompt

prompt("What is your name?", “ ");

• Opens a dialog box and displays its string parameter,

along with a text box and two buttons, OK and Cancel

• The second parameter is for a default response if the

user presses OK without typing a response in the text

box (waits for OK)

http://www.cs.nott.ac.uk/~bnk/WPS/roots.html

Conditionals

 Selection statements – “if” and “if…else“
if (a > b)

document.write(“a is greater than b
”);

else {

a = b;

document.write(“a was not greater than b, now

they are equal
”);

}

 The switch statement

http://www.cs.nott.ac.uk/~bnk/WPS/borders.html

Loops

 while (control_expression)

statement or compound stmt

 for (init; control; increment)

statement or cmpnd stmt

• init can have declarations, but the scope of

such variables is the whole script

• http://www.cs.nott.ac.uk/~bnk/WPS/date.html

 do statement or compound

while (control_expression)

Arrays

 Array elements can be primitive values or
references to other objects

 Array objects can be created in two ways, with
new, or by assigning an array literal
var myList = new Array(24, "bread", true);

var myList2 = new Array(24);

var myList3 = [24, "bread", true];

 Length is dynamic - the length property stores
the length
• length property is writeable
myList.length = 150;

http://www.cs.nott.ac.uk/~bnk/WPS/insert_names.html

Functions

function function_name([formal_parameters]) {

-- body –

}

 Return value is the parameter of return

• If there is no return or if return has no
parameter, undefined is returned

 We place all function definitions in the head of
the HTML document

• Calls to functions appear in the document body

 Variables explicitly declared in a function are
local

http://www.cs.nott.ac.uk/~bnk/WPS/roots.html
http://www.cs.nott.ac.uk/~bnk/WPS/borders.html
http://www.cs.nott.ac.uk/~bnk/WPS/date.html
http://www.cs.nott.ac.uk/~bnk/WPS/insert_names.html

5

Functions – parameters

 Parameters are passed by value, but when a
reference variable is passed, the semantics
are pass-by-reference

 There is no type checking of parameters, nor
is the number of parameters checked

• excess actual parameters are ignored, excess
formal parameters are set to undefined

 All parameters are sent through a property
array, arguments, which has the length
property

http://www.cs.nott.ac.uk/~bnk/WPS/parameters.html

Summary

 Overview of JavaScript

 Object Orientation

 Syntactic Characteristics

 Primitives, Operations and Expressions

 Math, Number, String and Date objects

 Screen Output

 Control Statements, Arrays and

Functions

http://www.cs.nott.ac.uk/~bnk/WPS/parameters.html

