

A Simple Intelligent Agent for Playing
Abalone Game: ABLA

Ender Ozcan and Berk Hulagu
Department of Computer Engineering

Yeditepe University
Istanbul, 34755, Turkey

 Abstract. Forming winning strategies for board games requires good heuristics
and fast search algorithms on game trees. High branching factors and the need for
looking deeper in game trees are overwhelming, even for today’s high
performance PC’s. Therefore, better game-plays are only available with better
algorithms and heuristics for an ordinary player, not with faster machines. Abalone
is a recent two-person strategy game. Initial evaluations point out that the
branching factor is larger than the chess. In this paper, a new heuristic used by a
simple intelligent agent for playing Abalone game, named as ABLA is introduced.
ABLA’s performance is promising as compared to existing computerized Abalone
players.

1 Introduction

Board games have always been a popular research area for a wide range of
communities. It is itself a challenge to write computer programs for game playing that
can challenge human players. Considering the advances in the game playing techniques,
there are still interesting domains in board games for research, such as, Chess and Go.
There are also some scientists studying Xiang qi (Chinese chess) and Shogi (Japanese
chess). Common property of all these games is that each one requires an enormous
space to be searched with a high decision complexity.

One of the first attempts to mechanize chess turned out to be one of the greatest
illusions in the history. The automaton for chess was first constructed in 1769 in Vienna
by Baron Wolfgang von Kempelen and named as The Turk. This automaton was
nothing more than a hidden chess expert in a cabinet. The interesting history of The
Turk can be found in [11] by Standage. Studies led to one of the most popular
competitions between a chess master Gary Kasparov, and “Deep Blue”. Deep Blue has
defeated Gary Kasparov after a game of six series in 1997 ([14]).

The games Xiang qi and Shogi have their differences and similarities with chess
(Matsubara et. al. in [5]). Presumably, the strategies used in Chess can be fine tuned and
used in these games as well, leaving Go to be the main focus of game playing
researchers. In [6] Müller and in [12] Takizawa et. al. provide the most recent
approaches for playing Go and provide some future directions. One of the latest two-

person, zero-sum board games is Abalone. Since 1990, the game is gaining popularity
progressively more. Abalone is a perfect information game similar to Chess and Go.

In this paper, we introduce a new heuristic embedded into an intelligent agent for
playing Abalone game. In the next section, traditional approaches to solve zero-sum
games are overviewed. In section 3, Abalone game is described. In section 4,
components of the intelligent agent are explained and its performance is evaluated.
Finally, conclusions are provided in section 5.

2 Playing a Zero-Sum Game

Board games are generally zero-sum type of games. Zero-sum indicates that a
participant can only gain at the expense of other participant. There are many examples
of such situations other than games, referred as zero-sum “games”. The main reason
even such situations are referred as “games” is that this concept was first introduced in
the game theory.

A two player, turn-taking, zero-sum board game with perfect information can be
formulized as a search problem, requiring the best move (decision) to be determined at a
certain state. At any moment during such a game, one should consider all possible
outcomes of the moves that can be made. To evaluate all possible outcomes, one should
also be able to think for the opponent and attempt to figure out the possible outcomes
due to the opponent’s moves as well. One players gain is others loss.

Most of the state of the art intelligent agents for playing a zero-sum games perform a
search on a tree for the best move. Hence, an intelligent agent for playing such a game
requires a representation scheme for identifying a state of the game, corresponding to
the turn and the arrangement of the board. Game tree in this case is an explicit
representation of all possible plays of the game. Game tree of tic-tac-toe is illustrated in
Figure 1. The root node is the current position of the game and its successors are the
positions that the first player reach in a single move, their successors are the positions
resulting from the opponent’s replies. A successor function, denoted as S, is used to
generate a list of valid moves, given a turn and an arrangement of the board. One of
these valid moves should be selected based on a utility function. Each generated state
might be the end of the game which should also be tested. Terminal (or leaf) nodes are
those representing WIN, LOSS or DRAW. A simple utility function evaluates a WIN by
+1, LOSS by -1 and, DRAW by 0.

Given a zero sum board game with perfect information, starting from the initial state
whole game tree can be built using the successor function. Analyzing the terminal
nodes, a decision can be made among possibilities leading to WIN situation. This
process can be repeated after each move of the opponent, building up towards a winning
strategy. However, in most of the games, constructing whole the game tree is infeasible,
due to the fact that the average number of possible moves for a game state referred as
branching factor, denoted as b and the depth of the terminal nodes are at very deep
levels.

A complete game of checkers has about 1040 non-terminal nodes as provided by
Samuel et. al. in [8]. Based on an average branching factor and average game length
(depth of the terminal nodes), chess produces a game tree complexity of 10123, and
similarly, Go produces 10360 as reported by Allis in [2]. Game tree complexity and
decision complexity of Abalone is still open for research. An intelligent agent has to
make a choice and decide on a move in a reasonable amount of time, limiting the depth
of the game tree, managing both time and memory issues as required.

After limiting the depth of the game tree and having a finite search space, most of the
times it is impossible to claim which nodes are WIN, LOSS and DRAW nodes, but
somehow, the leaf nodes must be evaluated to decide whether they are advantageous or
disadvantageous for a particular player. For each game, there are different types of
elements affecting the games’ state, such as positions of marbles, gaining extra rights
during the game, pieces thrown away by opponent etc. Combining these elements, an
assumption can be made determining “how good the position is for a player”. In other
words, utility function becomes a heuristic function, denoted as eval. Then after
evaluating the leaf nodes, the move leading to the most advantageous state, which will
have the highest evaluation score, is selected. This process can be repeated whenever it
is the agent’s turn.

Figure 1. A part of the search tree for tic-tac-toe starting a new game with X’s turn.

2.1 The MINIMAX Algorithm and Pruning

The first search algorithm that is used on game trees’ is MINIMAX algorithm,
introduced by Shannon in [9]. The algorithm performs a depth first search on the game
tree generated up until a certain depth. Each node contains an additional value called

 X
 X

 X

 X

Turn: X

Turn: O

Turn: X

 X X X
 O

 O

 O O O

 O
 O

 O X

 X X
 X X

 O
 O

 O O
 X
 X

 X

root node

terminal nodes

f(WIN)=+1 f(DRAW)=0 f(LOSS)=-1

successor function

f:utility function

minimax value. Each level of the game tree where the turn belongs to the agent is
marked as MAX level and each level where the turn belongs to the opponent is marked
as MIN level, starting from the root. Minimax values are calculated as follows:

Minimax value of a leaf node is set by the evaluation function. All the rest of the
internal nodes receive a backed up minimax value via the unfolding recursion.

Alpha-Beta Pruning is introduced by Edwards et. al. in [3], improving on MINIMAX
algorithm. It is a technique that prunes the nodes that are impossible to reach from the
current position of the board by ignoring branches on the game tree having no further
contribution on the outcome. The tree construction and search process overlaps,
reducing the computation time required.

Slagle et. al. in [10] showed that the number of terminal nodes examined by alpha-
beta algorithm must be at least b |d/2| + b |d/2|, but bd in the worst case, where d is the
bounded depth. However, Knuth et. al. in [4] proved that the terminal nodes can be
arranged, so that the worst case will be b|d/2| + b|d/2| –1. However, to manage the
terminals, the whole search tree is needed to be constructed, as mentioned earlier which
is not preferable and infeasible anyway in most of the games.

3 Abalone

Two-player, strategy game Abalone was invented in 1990 by Laurent Levi and Michel
Lalet. In the official web site ([13]), Abalone is introduced as “never alone” game, since
the prefix “ab” means “never”. Hence, it is suggested that its own name summarizes the
main strategy required: “winning against loneliness”. The concept of the game is based
on the popular Japanese Sumo wrestling.

Figure 2. Initial game position of Abalone.

=

∈

∈

nodeMINaisNifnvalueminimax
nodeMAXaisNifnvalueminimax

nodeleafaisNifNeval
Nvalueminimax

NSn

NSn

)}(_{min
)}(_{max

)(
)(_

)(

)(

The board is a hexagonal field representing the Sumo arena. There are 4 interlaced
different size hexagons, where the most exterior hexagon has 5 circular locations at each
side. In the middle there is a single location. As a total, there are 61 circular board
locations. Each player has fourteen marbles that can rest in these locations. Initial game
position for players is illustrated in Figure 2. Each color (black-white, or black-gray)
represents a Sumo-fighter.

3.1 Rules of the Game

Starting from the initial configuration, each player takes a turn. During a turn, a player
can shift one, two, or three marbles together in any of the six directions, provided that
there is an adjacent space, i.e., in line or broadside. Furthermore, whenever a player has
a numerical superiority in a line (three to two, three to one, or two to one), during a turn
the player is allowed to push the opposing marbles with an inline move as demonstrated
in Figure 3, even off the board. No broadside pushes are allowed. The objective of the
game is to push six opposing marbles off the edges of the board.

Figure 3. Examples showing legal and illegal moves: (a) Sequence of gray marbles that
has arrow on them is allowed to push the set of black marbles in front of them. (b) None
of the set of marbles may push the opposite side’s marbles

Rules are very simple, but numerous strategic moving, pushing and defending
possibilities make the game complex. Note that, there are some variants of this game
that we do not consider in this paper.

3.2 Winning Strategies

To reach the objective, pushing six marbles of the opponent off the board and at the
same time protecting one’s own marbles from being pushed off, some strategies have
already been suggested. Following strategies are collected from various forums of
Abalone communities ([13], [17]), reported as winning strategies:

(a) (b)

o The amount of “2 or 3 in a row” marbles makes one’s army’s defense and offence
powerful.

o Creating a hexagon of marbles among the opponents’ marbles, allows one’s army to
push or provide defense in all directions.

o Moving a marble to a location where there will be no teammate neighbour is not a
good strategy.

o Forcing the opponent to keep its marbles at the edges of the board provides
potential scores at any time.

o Pushing an opponent’s marble off the board might not be advantageous at all times.
If such a move yields defense gaps or decreases player’s attack power, it is better
not to push off.

o Make defense as tight as possible which might provide attack power in the long run,
if the opponent gets careless about its defense.

o Divide and conquer; breaking the opponent’s army into two weakens the opponent’s
power. It is easier to deal with two weak armies, reducing the opponent’s offensive
ability.

The arguments mainly points out two important elements of playing Abalone well:

1. Keep the marbles around the middle of the board and force the opponent to
move towards the edges.

2. Keep the marbles together as much as it is possible, to increase both offensive
and defensive power.

4 Abalone Player – ABLA

There are two major Abalone programs that are widely used by human players. One of
them is developed by Random Software ([13]), and the other is developed by Tino
Werner at the Institute for Theoretical Computer Science, in the University of
Technology Graz, named as ABA-PRO ([14]). Aichholzer et. al. provide technical
details in [1].

We have also implemented a simple intelligent agent for playing Abalone game,
named as Abalone Player – ABLA. ABLA utilizes a minimax algorithm and alpha-beta
pruning, introducing a new heuristic function. MS Visual Studio IDE is used as a
programming environment with DirectX API support. Figure 2 and Figure 3 are
example screen shots from ABLA.

4.1 Heuristics used in ABLA

Many Abalone players suggest that placing the marbles as close as to the center of the
game board and distracting opponents’ marbles from center is the key to winning a
game. By capturing the center, a player achieves two sub-goals:

1. Player’s marbles can not be pushed off the board.
2. Player forces its opponent to make a decision between two disadvantageous

choices:
a. Dividing the army into two, making the army more vulnarable to attacks,

and reducing the neighborhood bonus due to the second part of the
heuristics

b. Staying at the edges of the board, hence marbles may be thrown away by
the opponent, or at the best the game might end with a draw

As a result, heuristics of ABLA consists of two main parts, supporting most of the
winning strategies explained in Section 3.2:

1. Evaluate closeness to center: Sum of the Manhattan distances of marbles
belonging to each player to the center of the board is computed respectively, and
their difference is calculated, denoted as f1(s) for a given board state s. Manhattan
distance for a marble’s location to the center on the hexagonal field corresponds
to the minimum number of moves required for a marble to get to the center.

2. Evaluate adjacency: Sum of the count of neighboring teammates for marbles is
computed respectively for each player, and their difference is calculated, denoted
as f2(s) for a given board state s.

First evaluation function serves as a mechanism to achieve the sub-goals mentioned
earlier. When the number of allied neighbors for each marble increases, the offensive
power of a team increases. The second evaluation function serves keeps the marbles as
close as it can be, therefore, increasing their both attack and defense attributes. Both
functions, at the same time provide a resistance against being pushed off the board.
Overall evaluation function is a weighted linear function combining both features as
follows:

4.1 Performance of ABLA

ABLA is tested against other Abalone programs that are found on the Internet: Random
Soft and ABA–PRO (shareware version). Note that ABA-PRO uses a single feature in
its evaluation function that computes centers of mass for each player measures distances
of all marbles to their team’s center of mass. For this reason, some initial experiments
are performed to understand the contribution of adjacency evaluation. Combined
heuristic utilizes eval function with w1 = –1, w2= 1, where as single heuristic utilizes
eval function with w1 = –1, and w2= 0. During all the games gray starts the game first.

A tournament is arranged between four different ABLAs. Two ABLAs utilize both
heuristics and 4-ply game tree. The other two ABLAs utilize the very same heuristics,
but 3-ply game tree. Result of each game in the tournament is provided in Table 1. The
overall result is summarized in Table 2, verifying that the combined heuristic is better
than the single one. Considering the games 3 and 6, even if combined’s ply is less than
its opponent, ABLA, still, does not lose if it starts the game first and it is able to force
the game to a draw at the least. As expected 4-ply player is better than 3-ply player.

)()()(2211 sfwsfwseval +=

Table 1. Results of the games between different ABLAs utilizing combined and single
heuristic, and 3-ply and 4-ply game trees.

Game
No.

Gray
Player

Difficulty
Level

Black Player Difficulty
Level

Score Winner

1 Combined 4-ply Single 4-ply 3 – 3 Draw

2 Single 4-ply Combined 4-ply 0 – 1 Draw

3 Single 3-ply Combined 4-ply 2 – 6 Combined

4 Single 4-ply Combined 3-ply 6 – 2 Single

5 Combined 4-ply Single 3-ply 6 – 1 Combined

6 Combined 3-ply Single 4-ply 1 – 0 Draw

Table 2. Final scores of each player utilizing combined vs. single heuristics and 3-ply
vs. 4-ply search trees.

Agent Name No. of Games Win Loss Draw Final Score

4-ply 4 3 0 1 +12 (18-6)

3-ply 4 0 3 1 -12 (18-6)

Combined 6 2 1 3 +7 (19-12)

Single 6 1 2 3 -7 (12-19)

ABA–PRO supports a variety of difficulty levels, from beginner (denoted as B) to
champion. Werner states that, it has never been beaten in the champion level. On the
internet ([14]), only the shareware version is available and a game ends after a certain
number of turns, depending on the chosen level. The hardest level provided by the
shareware version of ABA-PRO is the Apprentice level, denoted as A. Random Soft
supports several levels; low, medium and high, among which only medium level,
denoted as M could be tested. ABLA is fixed to utilize 4-ply a game tree. Then several
games are arranged against ABA–PRO with difficulty levels A and B. Similarly, ABLA
competed against Random Soft. Additionally more games are arranged by assigning the
first and second turns to each program.

Table 3. ABLA versus other programs utilizing different difficulty levels.

Game

No.

Grey Team Difficulty

Level

Black Team Difficulty

Level

Score Result

1 Random Soft M ABLA 4-ply 0 – 0 Draw

2 ABLA 4-ply Random Soft M 6 – 1 ABLA

3 ABA – PRO B ABLA 4-ply 0 – 0 Draw

4 ABLA 4-ply ABA – PRO B 6 – 3 ABLA

5 ABA – PRO A ABLA 4-ply 0 – 0 Draw

6 ABLA 4-ply ABA – PRO A 3 – 1 Draw

 Table 3 indicates that ABLA could not be beaten even once against its
opponents. The draws are due to the repeating, cyclic movements of both players.

5 Conclusions

Playing board games against a computer makes the man test his mind, wisdom, and
tactical abilities. By writing computer programs that challenge human opponents, we
can see our deficiencies during a play and create new strategies that might have never
been thought before.

There are many intelligent opponents, created for chess, checkers, GO, etc. to train
human opponents, but there is lack of computer opponents for Abalone, which is less
known, being a new game. A simple intelligent agent named as “Abalone Player-
ABLA” is implemented using traditional approaches with a new heuristic function.
ABLA is a challenging opponent for human players who can not find others to play or
need to train themselves alone. Its heuristic seems to be better than the existing versions
of Abalone programs, as summarized in the previous section. Therefore, its difficulty
level using a 4-ply game tree can be considered medium-high. With its speed and
combined heuristic, ABLA provides everything that a human Abalone player would
require.

As a future work, numerous features can be added and other approaches can be
tested, providing a faster player, such as, utilization of a database of openings and
endings, fine tuning of weights in the evaluation function, iterative deepening alpha-
beta search, embedding machine learning schemes, etc. Game tree complexity of
Abalone seems to be worse than the chess with 60 possible moves on average, at a
typical position as reported in [1]. Note that analyses of complexities related to Abalone
game are still open for research.

References

1. O. Aichholzer, F. Aurenhammer, and T. Werner, Algorithmic fun – Abalone,
Institute for Theoretical Computer Science, Graz University of Technology, Austria.
(2002)
2. L. V. Allis, Searching for Solutions in Games and Artificial Intelligence, Ph.D.
thesis, University of Limburg, Maastricht. (1994)

3. D. Edwards, and T. Hart, i963. The alpha-beta heuristic, Tech. Rep. 30, MIT AI
Memo, Computer Science Dept., MIT, Cambridge, Mass., Oct. Originally published as
the Tree Prune Algorithm. (1961)
4. D. E. Knuth, and R. W. Moore, An analysis of alpha beta pruning, Artificial
Intelligence, Vol. 6 (4) pp. 293-326. (1975)
5. H. Matsubara, H. Iida, and R. Grimbergen, Chess, Shogi, Go, natural developments
in game research, ICCA J. 19 (2), pp. 103-112. (1996)
6. M. Müller, Computer Go, Artificial Intelligence, 134 (1-2), 145-179. (2002)
7. J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, Reading, MA. (1984)
8. A.L. Samuel, Some studies in machine learning using the game of checkers, IBM
Journal of Research and Development, vol 3, nr. 3, pp.210-229. (1959)
9. C. E. Shannon, Programming a computer to play Chess, Philosophical Magazine,
Ser.7, Vol. 41, No. 314. (1950)
10. J. R. Slagle, J. E. Dixon, Experiments With Some Programs That Search Game
Trees, J. ACM 16(2): 189-207. (1969)
11. T. Standage, The Turk: The Life and Times of the Famous Eighteenth-Century
Chess-Playing Machine, Walker & Co. (2002)
12. T. Takizawa and R. Grimbergen, Review: Computer Shogi Through 2000, Lecture
Notes in Computer Science, vol. 2063, pp. 433-443. (2001)
13. Abalone Official Site: http://uk.abalonegames.com/
14. ABA – PRO, http://www.cis.tugraz.at/igi/oaich/abalone.html
15. IBM’s official Website for Deep Blue “http://www.research.ibm.com/deepblue/
16. Random Software, http://www.randomly.com.
17. Thomas Fenner, Mind Sports Olympiad, Abalone, Champion of the World (2001),
Web Site: http://www.tfenner.com/abalone.html

