An Apprenticeship Learning Hyper-Heuristic for
Vehicle Routing in HyFlex

Shahriar Asta*, Ender Ozcan®
ASAP Research Group
School of Computer Science
University of Nottingham
Nottingham NG8 1BB, UK
*sba@cs.nott.ac.uk, fexo@cs.nott.ac.uk

Abstract—Apprenticeship learning occurs via observations
while an expert is in action. A hyper-heuristic is a search
method or a learning mechanism that controls a set of low
level heuristics or combines different heuristic components to
generate heuristics for solving a given computationally hard
problem. In this study, we investigate into a novel apprenticeship-
learning-based approach which is used to automatically generate
a hyper-heuristic for vehicle routing. This approach itself can be
considered as a hyper-heuristic which operates in a train and test
fashion. A state-of-the-art hyper-heuristic is chosen as an expert
which is the winner of a previous hyper-heuristic competition.
Trained on small vehicle routing instances, the learning approach
yields various classifiers, each capturing different actions that the
expert hyper-heuristic performs during the search process. Those
classifiers are then used to produce a hyper-heuristic which is
potentially capable of generalizing the actions of the expert hyper-
heuristic while solving the unseen instances. The experimental
results on vehicle routing using the Hyper-heuristic Flexible
(HyFlex) framework shows that the apprenticeship-learning-
based hyper-heuristic delivers an outstanding performance when
compared to the expert and some other previously proposed
hyper-heuristics.

I. INTRODUCTION

Hyper-heuristics are automated search methodologies that
take the search process one level higher to the space of
heuristics rather than dealing with solutions directly. A hyper-
heuristic as a high level method combines some low level
and often simpler heuristics (move operators) or heuristic
components to solve a given problem. There is a growing
number of studies into hyper-heuristics since the initial ideas
have emerged in 1960s [1], [2], [3].

Hyper-heuristics can be classified into two groups: selec-
tion and generation hyper-heuristic [4]. The former selects a
heuristic from a set of existing low level heuristics at each step
of the search process. The latter, generates new heuristics from
certain components. Depending on the feedback mechanism
they employ, hyper-heuristics can be categorized into three
groups: on-line learning, off-line learning and no learning (us-
ing no feedback). If a hyper-heuristic uses feedback to improve
its performance while performing the search, it is an on-line
learning hyper-heuristic. An off-line learning hyper-heuristic
gets feedback, often using a set of training problem instances
and learns prior to solving an unseen problem instance. More
on hyper-heuristics can be found in [5].

In this paper, we describe a novel generation hyper-
heuristic which automatically builds a generalized selection

hyper-heuristic after a single training phase for solving a given
class of instances. We use a machine learning approach based
on apprenticeship learning [6] to classify the actions of an
expert algorithm for heuristic selection and move acceptance
based on each visited search state. The vehicle routing problem
(VRP) is a well known combinatorial optimization problem
that has been studied since 1959 [7]. Many different solution
techniques have been proposed for many variants of this
problem [8], [9], [10], [11]. The proposed approach is initially
tested on the VRP domain consisting of two problem instance
classes; Solomon and Gehring-Homberger using the HyFlex
framework which is a software platform implemented with the
main goal to support the hyper-heuristic research. The training
phase takes a small duration of time on a selected problem
instance as a representative of each instance class.

The paper is organized as follows. Section II provides an
overview of some selected studies related to our work. An
introduction to the framework and the VRP problem domain
is given in Sections III and IV. This is followed by a detailed
account of the apprenticeship learning framework proposed
in this work in Section V. Experimental design and the
results achieved through these experiments are covered in
Sections VI and VII. Finally, conclusive remarks are provided
in Section VIIL

II. RELATED WORK

Machine learning has been a crucial component in the
design of effective hyper-heuristics. In a previous work, [12],
apprenticeship learning (AL) technique was used to generalize
hyper-heuristics in the Bin-Packing domain. The AL method
has a wide range of applications in control and robotics and
is heavily based on Inverse Reinforcement Learning (IRL).
Although we do not follow an IRL approach in our framework,
our study is mainly inspired from the work in [6]. The main
idea is to create an algorithm which learns what course of
action to take, by simply watching a couple of other algorithms
which perform well in various problem domains. That is,
the algorithm learns the behaviour of an expert algorithm
by constructing a dataset via recording its actions at each
state of the search process. The classifier produced from this
dataset is used to predict the best action at a given search
state while dealing with an unseen problem instance. The AL-
based approach in [12] was trained on small problem instances
and was capable of generalizing the extracted knowledge to
larger problem instances. The major drawback of the approach

proposed in [12] was that the definition of the search state
was problem dependent. In this paper, although we test our
approach on VRP, we provide a general problem domain
independent state definition and investigate into whether an
AL hyper-heuristic is able to perform similar (or better) than
the expert algorithm on a given problem domain. Furthermore,
we investigate various hyper-heuristic components from which
expert knowledge can be extracted. This, in consequence,
leads to an extensive modification to the approach which was
proposed in [12].

There are some similar studies in which some sort of
machine learning and/or expert intervention has been employed
during the search. Perhaps the most relevant of these ap-
proaches is Interactive Evolutionary Algorithms (IEA) [13]
where the human expert intervenes in the search process.
Interactive models are proposed by IEA’s, in which collab-
oration between a specific evolutionary algorithm and human
prevents the search from getting stuck in local optima [14].
In general, Interactive Evolutionary Algorithms (IEA) [13]
have been method of choice in many experiments such as
Evolutionary Robotics [15] and Computer Graphics [16].

Considering this study, a very similar approach has been
considered in [17]. In [17] search states of a training schedul-
ing problem are formulated as multi-labelled feature vectors.
Based on these features, a classifier is trained and constructed
which performs the heuristic selection tasks. Various classi-
fying approaches, including the one which is used in this
study, have been tested and their classification accuracies are
compared to each other using a 10 fold validation approach.
This work is different than ours in that it uses domain
dependent feature design. Moreover, only heuristic selection
task has been considered and move acceptance approaches are
not included in the learning process. Also, the notion of expert
is not used in [17]. This is natural since the study intends to
find a heuristic subset which performs well under the hyper-
heuristic approach for which the classifiers were trained. This
is while our approach pursues an entirely different goal which
is capturing the essential strategies which are employed by
expert algorithm on different domains. Nevertheless, the work
is extremely valuable since it provides us with performance
capabilities of various classifiers, a knowledge which will
be required in our future work regarding the apprenticeship
learning framework.

The automated design of search methodologies that can
solve computationally difficult problems is challenging. Ge-
netic Programming (GP) is one of the commonly used gener-
ation hyper-heuristics [18]. Some problem domains for which
GP is used to construct either a heuristic or component of
a solution method include job shop scheduling [19], 0/1
knapsack [20] and strip packing [21]. Drake et al. [22] used
grammatical evolution to generate components of a variable
neighbourhood search approach for solving VRP. A recent
work in [23] provided an evolutionary approach based on gene
expression programming to generate selection hyper-heuristic
components for cross domain search. The approach uses a long
training time. Also, it seems that the training is performed
for each instance and thus the generated hyper-heuristic is not
generalizable to unseen problem instances. Parameter tuning
for each domain has been deemed necessary in [23] which
lengthens the “training” time even further. Our method is

Selection Hyper-heuristic

Select a heuristic (k;) based on a
selection strategy and apply it to a
given solution (s;).

v 1

hys; Domain Barrier Sk

{

Problem Domain

Accept or reject the new solution
(sx) based on an acceptance
mechanism.

o Problem representation

Fitness function
List of solutions
e Andmore...

Fig. 1. A selection hyper-heuristic framework. The domain barrier restricts
the information available to a high level hyper-heuristic.

different in that a considerably short training time is employed.
Also, our proposed framework builds a generalized selection
hyper-heuristic which is applicable to other unseen problem
instances.

III. HYFLEX AND FIRST CROSS-DOMAIN HEURISTIC
SEARCH CHALLENGE (CHESC 2011)

Hyper-heuristics Flexible Framework (HyFlex) [24] is an
interface to support rapid development and comparison of
various hyper/meta-heuristics across various problem domains.
The HyFlex platform promotes the reusability of hyper-
heuristic components. In this platform, hyper-heuristics are
separated from the problem domain via a domain barrier [25]
to promote the design and development of domain-independent
automated search algorithms. Hence, only the information
which is not specific to a domain, such as the number of
heuristics and objective value of a solution, is allowed to pass
through the domain barrier up to the hyper-heuristic level from
the problem domain level (Figure 1). On the other hand, pieces
of domain specific information, such as, representation and
objective function are kept hidden from the high level search
algorithm. The separation of domain from the hyper-heuristic
level in the prescribed manner is considered to be necessary to
increase the level of generality of hyper-heuristics, since this
way the same approach can be applied to a problem even from
another domain without requiring any change.

HyFlex v1.0, implemented in Java respecting the interface
definition, was the platform of choice at a recent competition
referred to as the Cross-domain Heuristic Search Challenge
(CHeSC 2011) !. The CHeSC 2011 competition aimed at de-
termining the state-of-the-art selection hyper-heuristic judged
by the median performance of the competing algorithms across
thirty problem instances, five from each problem domain.
Formula 1 scoring system was used to score the competing
hyper-heuristics based on their median results over 31 runs
for each instance. The top eight algorithms receive the scores
of 10,8,6,5,4, 3,2 or 1, respectively, depending on their rank
on a specific instance. Remaining algorithms receive a score
of 0. These scores are then accumulated to produce the overall
score of each algorithm on all problem instances. The number
of competitors during the final round of the competition was

Thttp://www.asap.cs.nott.ac.uk/external/chesc2011/

20. Moreover, a wide range of problem domains is covered
in CHeSC 2011. Consequently, the results achieved in the
competition along with the HyFlex v1.0 platform and the
competing hyper-heuristics currently serve as a benchmark to
compare the performance of novel selection hyper-heuristics.

The CHeSC 2011 problem domains include Boolean Sat-
isfiability (SAT), One Dimensional Bin Packing (BP), Permu-
tation Flow Shop (FS), Personnel Scheduling (PS), Travelling
Salesman Problem (TSP) and Vehicle Routing Problem (VRP).
Each domain provides a set of low level heuristics which
are classified as mutation (MU), hill climbing (HC), ruin
and re-create and crossover (XO) heuristics (operators). Each
low level heuristic, depending on it’s nature (i.e. whether it
is a mutational or a hill climbing operator) comes with an
adjustable parameter. For instance, in mutational operators, the
Intensity of Mutation (IoM) determines the extent of changes
that the selected mutation operator yields on a solution. A
high mutation intensity indicates wider range of new values
that the solution can take, relevant to its current value. Lower
values suggest a more conservative approach where changes
are less influential. As for the Depth of Search of hill climbing
operators, this value relates to the number of steps completed
by the hill climbing heuristic. Higher values indicate that
hill climbing approach searches more neighbourhoods for
improvement. The top three selection hyper-heuristics that
generalize well across the CHeSC 2011 problem domains are
AdapHH [26], VNS-TW [27] and ML [28].

The winning algorithm of CHeSC 2011, Adaptive Hyper-
Heuristic (AdapHH) is a multi-phase learning hyper-heuristic
[26]. AdapHH adaptively determines the subset of low-level
heuristics to apply at each phase. The duration with which
each heuristic is applied is also dynamically determined during
the search. The algorithm accepts only improving solutions
in the absence of which the algorithm refuses to accept
worsening solutions until no improvements are observed within
an adaptively adjusted number of iterations. The parameters of
each low-level heuristic are dynamically modified via a rein-
forcement learning method. This is while low-level heuristics
are selected based on a quality index measure. This measure
uses few weighted performance metrics to compute the quality
index for each heuristic. Among these metrics are the number
of new best solutions explored, the total improvement and
worsening during the run and also the current phase and finally
the remaining execution time. A heuristic with a quality index
less than the average of the quality indexes of all the heuristics
is excluded from the selection process in the corresponding
phase. Using a Tabu style memory, the number of phases in
which the heuristic is consecutively excluded is maintained.
Whenever this number exceeds a threshold the heuristic gets
excluded permanently. AdapHH also employs a relay hy-
bridization with which effective pairs of heuristics which are
applied consecutively are identified. AdapHH algorithm ranked
first in Max-SAT, BP and TSP domains. It also ranked fifth
and tenth in VRP and PS domains, respectively.

IV. VEHICLE ROUTING PROBLEM

The Vehicle Routing Problem (VRP) is a combinatorial op-
timization problem with the main goal of addressing customer
requirements using a fleet of vehicles [7]. The major challenge
is to meet customer demands by using as few vehicles as

TABLE 1. VRP INSTANCES CURRENTLY AVAILABLE IN HYFLEX
FRAMEWROK. THE LETTERS R,C AND RC IN INSTANCE NAMES REFER TO
THE MANNER WITH WHICH CUSTOMER LOCATIONS ARE DETERMINED. R:

RANDOM, C CLUSTERED, RC MIXTURE OF RANDOM AND CLUSTERED.

Instance name no. vehicles vehicle capacity
0 Solomon/RC/RC207 25 1000
1 Solomon/R/R101 25 200
2 Solomon/RC/RC103 25 200
3 Solomon/R/R201 25 1000
4 Solomon/R/R106 25 200
5 Homberger/C/C1-10-1 250 200
6 Homberger/RC/RC2-10-1 250 1000
7 Homberger/R/R1-10-1 250 200
8 Homberger/C/C1-10-8 250 200
9 Homberger/RC/RC1-10-5 250 200

possible while satisfying constraints such as vehicle capacity.
There are many studies on different types of VRPs [8], [9],
[10], [11]. In this paper, we deal with the VRP and use two
classes of instances available in the HyFlex framework. These
instances come with an extra constraint, namely, the time
window constraint. To satisfy the time window constraint, the
delivery of services to a customer must occur within a time
window. Only then the produced solution would be considered
valid.

Each vehicle starts and ends its journey from/to an initial
location (the depot). The locations visited by the vehicle
throughout its journey constitute the route which together with
the number of vehicles used is subject to minimization efforts.
Thus, the objective function can be described as:

f=cxV+d (1)

where V' and d are the number of vehicles and the distance
respectively. The variable c is the weight which is associated to
the importance of the number of vehicles against the travelled
distance. The initial value for ¢ is set to be 1000.

Various VRP instances are available in the HyFlex frame-
work, all of which are taken either from Solomon dataset or
the Gehring-Homberger libraries. These instances (enlisted in
Table I) are distinguished by few distinctive problem instance
features such as number of vehicles and their capacities.
The instances also differ in the way customer locations are
determined. The locations are determined uniformly at random
(R) or by grouping them into clusters (C) or using a mixture
of both methods (RC) while generating the instances.

Ten low level heuristics are implemented for the VRP
domain in HyFlex. These heuristics can be grouped into four
categories: Mutational (MU), crossover (XO), Ruin and Recre-
ate (RR) and Hill Climbing (HC). The number of heuristics in
each group is 3, 2, 2 and 3 respectively. Further documentation
about the low level heuristics as well as the problem domain
implementation can be found in [24].

V. THE PROPOSED APPROACH

The AL approach presented here has two phases. During
the first phase, say training, the expert algorithm is run on a
given instance for a limited amount of time. While searching,
for each search state the actions of the expert algorithm are
recorded. There are several actions of the expert algorithm

that we are interested in. For a given search state, we are
investigating the following actions:

e The index of the heuristic which is selected.

e The value for the parameter Depth of Search (DoS),
given the chosen heuristic is a hill climber.

e The value for the parameter Intensity of Mutation
(IoM), given the chosen heuristic is a mutational
heuristic.

e For each heuristic index, the condition under which
the solution generated by the heuristic is accepted.

A dataset for each action is constructed. For example, if
there are 10 heuristics within the given problem domain, we
will have 13 datasets. One dataset is used for the heuristic
prediction task, one dataset for DoS and another one for
IoM parameter value estimation. Moreover, for each heuristic
provided in the given domain, a dataset is constructed which
contains conditions under which the solution generated by that
heuristic is accepted. These conditions are:

e Worsening Accepted (WA): the quality of the solution
accepted by the expert algorithm is lower than that of
the current solution in the memory.

e Equal Accepted (EA): The new solution offers no
change in the current objective function value. Never-
theless it is accepted by the expert.

While selection hyper-heuristics accept all improving
moves, their acceptance methods differ in the way they handle
non-improving solutions from each heuristic. Depending on
their policy, for a specific type of heuristic they sometimes
accept a worsening solution while rejecting similar cases for
some other heuristics. Capturing the acceptance mechanism of
an expert algorithm for each heuristic separately is thus crucial
in learning the overall behaviour of an expert algorithm.

In this study we represent each state of the search by a
feature vector. This feature vector which defines the search
state, can be used to determine the best course of action upon
the reception of necessary feedback from the search space.
The feedback available to a hyper-heuristic in the HyFlex
framework is limited to the objective function value obtained
after applying a selected heuristic. This is a consequent of
having the domain barrier between the problem domain and the
hyper-heuristic (Fig.1). Although the objective function value
alone may not be very much useful when discerning between
various states, the recent history of achieved objective function
values might help us to produce a good level of discrimination
between states.

Given that, 6; = f; — fi_1 where f; and f;_, are objective
function values achieved in iterations ¢ and ¢ — 1 respectively,
the value d; describes the change in the objective function
value at iteration/time ¢. Consequently, for all the datasets, a
state is defined as ¢¢ = {hprevious; 0t; 0t—1,- - ,0¢—n } Where
Rprevious 1s the index of the heuristic which was called before
the last heuristic selection. Except the first feature in the state
vector, all features are normalized by the maximum § value
achieved during the search.

In the first dataset, the action which the state feature vector
refers to is a; € h = {hg,---,h;} where h is the set of

all available low level heuristics with a cardinality of k. The
action defined for the second and third datasets are the values
for DoS and IoM parameters (in case the action is hill climbing
or mutation respectively) chosen by the expert algorithm. In the
remaining datasets, each describing the acceptance method for
a heuristic index, the action is defined as a; € h = {FA, W A}
where EA and WA are described above.

Having determined the necessary state/action definitions,
we can now use our expert algorithm to extract features
and their corresponding actions for each search state. During
training, we run the expert algorithm (7.) once, on a single
instance. While running, expert features, ¢7, are extracted for
each state of the search (¢). This state is then inserted into
various datasets which are being built and labelled according
to the action which each dataset is representing (next heuristic
index, DoS and IoM value and acceptance conditions of the
state). Moreover, the data entries for all the datasets are
collected only if the expert algorithm accepts the solution
provided by the heuristic it has selected. At the end of each run,
for an expert algorithm 7. we will have |h|+ 3 demonstration
datasets (Eq.2).

Dhet = {(¢!,ar)|m.} ar€h

DL = {(¢}, ar)|me} ar €[0,1]

DM = {(¢t,ar)|me} ay €10, 1]

D, "™ ={(¢!,a)|me} ar € {EA,WA} for k=0---|h]|
2

The actions in datasets Dhe“ and th are nominal while
the actions in datasets DD"S and DI"M are real numbers
between O and 1. For all the datasets w1th nominal actions,
we employ a C4.5 algorithm to construct a decision tree
for each dataset. The C4.5 algorithm [29] is a supervised
learning algorithm which constructs the decision tree based
on information entropy. While constructing the tree, at each
node, the C4.5 algorithm decides on the feature which most
effectively divides the training sample into one class or another.
For DP°% and DM linear regression is used to predict the
real values of the depth of search and intensity of mutation
[30].

The procedure above creates an automated machine which
will be referred to as the Apprenticeship Learning-based
Hyper-Heuristic (ALHH) or m, throughout the text. The
ALHH, thus, consists of |h|+ 3 classifiers where each of these
classifiers are assigned to a different task. These tasks include
Heuristic selection, DoS/IoM parameter value prediction and
decision making for each heuristic on whether to acceptance
or reject the recently produced solution. After constructing the
classifiers, the classifier trained for heuristic selection is cross-
validated on the training dataset to determine the accuracy
of it’s classifying abilities. This is estimated by counting the
number of instances which are classified incorrectly. This
number, when normalized by the total number of training
instances, results in an error rate e.

The second phase consists of applying what has been
learned during the training to unseen instances. When applied
to an unseen problem instance, for a given search state, the

heuristic prediction decision tree is consulted only with a
probability equal to 1 — e. Otherwise, a random heuristic
is selected. Either way, regardless of the heuristic selection
mechanism, the acceptance decision tree corresponding to
the selected heuristic is consulted to determine whether the
newly produced solution should be accepted or not. Also,
prior to the acceptance checking, and in case the selected
heuristic is hill climbing/mutational, the DoS/IoM regression
machine is consulted to determine the value for the parameter
DoS/IoM. This procedure continues until the maximum time
allowed (7,42) is reached. It is worth mentioning that, except
the heuristic selection classifier, the accuracy rate of cross-
validation of all other classifiers are above 90%. In contrast
to these classifiers, the accuracy rate achieved after cross-
validating the heuristics selection classifier is around 65%.

Note that, few iterations (10) of random heuristic selection
combined with IE acceptance criteria is run prior to the main
search cycle to avoid infinite values for J. Also, as was done
during the training, during the search phase, all § feature values
in each search state are normalized by dividing the value to
the maximum ¢ value which has been achieved so far during
the search.

The framework described above is different from the work
in [12] in that the state definition is formulated as problem
domain independent. Also, the actions of an expert hyper-
heuristic are of different natures. While heuristic selection
procedure decides on a heuristic index, the move acceptance
component of the expert decides on whether to accept or to
reject the new solution provided by this heuristic. Moreover,
this decision varies for different types of heuristics. Thus, in
contrast to the work in [12] where a single dataset sufficed
to describe all the actions of a single expert, here, different
datasets are built for different actions that an expert is capable
of executing. Also, due to the experimental nature of this study,
and in contrast to the work in [12], only one expert (instead
of multiple experts) is employed. This allows us to purely
investigate the capabilities of AL scheme.

VI. EXPERIMENTAL RESULTS
A. Experimental Design

The experiments are performed on an Intel i7 Windows
7 machine (3.6 GHz) with 16 GB RAM. This computer was
given 438 seconds (corresponding to 600 nominal seconds on
the competition machine) as the maximum time allowed per
instance for each run by the benchmarking tool provided by
the CHeSC 2011 organizers. The training is performed on a
single instance of each class of instances once, using one tenth
of the time allocated to each run by the benchmarking tool. The
learned/generated selection hyper-heuristic is applied on that
instance during the remaining time to complete the run plus
another 30 runs on the same instance. This generated hyper-
heuristic is also run 31 times on all other instances. This is to
ensure that any comparison to other CHeSC 2011 competitors
is fair.

In order to investigate the feasibility of employing ap-
prenticeship learning method of [12] in a hyper-heuristic
framework, in this study, we use only one expert. The expert
algorithm employed in our study is the AdapHH algorithm, the
winning algorithm of the CHeSC 2011 competition. A brief

description of this approach is given in Section III. Throughout
this paper we will refer to this algorithm using terms such as
the expert, AdapHH or 7., interchangeably.

During our experiment, rather than extending our previ-
ous work [12] to a cross-domain level, we are interested
in seeing if the AL approach is able to (at least) mimic
a given expert hyper-heuristic on a single problem domain.
This initial study gives us further insights and illustrates the
challenges that lie ahead of transferring our framework to a
cross-domain level which is the next step in our research.
Therefore, ALHH is once trained on a single instance of each
problem class (Solomon/Gehring-Homberger) and applied on
all the instances of the same class. To be precise, the arbitrarily
chosen instances of 0 and 5 are used for training the ALHH
on Solomon and Gehring-Homberger instance classes, respec-
tively. Once the algorithm has been trained on instance 0 of
the Solomon class, it is applied on instances 0 — 4. A similar
approach has been followed for the instances belonging to the
Gehring-Homberger instances.

Applying the algorithm on the instance on which the train-
ing was performed would have an extra confirmatory role as
to how successful the training has been. The stochastic nature
of the expert algorithm renders such a decision plausible.
Moreover, the training is only continued for a fraction of
the time (10% of T),q.) allocated to a single run on the
selected instance. Hence, the training time is chosen to be
substantially shorter than the maximum allowed time to avoid
the dataset to grow large (which consequently would slow the
ALHH down). Also, many adaptive algorithms tend to favour
some heuristics/parameter values after having been adapted to
the problem instance. A long training time would then create
an increasingly unbalanced dataset with some actions over-
represented.

VII. RESULTS

The results of this experiment is shown in Table II. On
both problem classes, ALHH (7,) follows the expert algorithm
(AdapHH or 7,.) closely in terms of performance. For a
number of instances the apprentice algorithm even manages to
outperform the expert algorithm in terms of the average and/or
the best performance. This is interesting since applying appren-
ticeship learning on problems in the field of robotics almost
never results in an apprentice agent (robot) which outperforms
its human instructor. In robotics, the expertise of the human
demonstrator does not include the trial and errors which the
expert has gone through while learning the task. In our case
however, the data collected during the training session also
includes these trial and errors made by the expert. From such
a perspective, this achievement is expected to some extent.
However, this is achieved despite working on datasets which
include failures of the expert as well as its successes. The claim
that the expert algorithm (AdapHH) has had wrong decisions
is valid for there are other algorithms which performed better
than AdapHH on the VRP domain (AdapHH ranked fifth in the
VRP domain). This is one of the main reasons why the VRP
domain has been chosen for this study. Nevertheless, ALHH
outperforming its expert, AdapHH, only confirms the success
of the learning mechanism. Moreover, the better performance
is observed on instances other than the ones ALHH is trained
on. This indicates the ability of the proposed ALHH framework

TABLE II.

THE PERFORMANCE OF ALHH ON EACH CHESC 2011 INSTANCE IN THE VRP DOMAIN OVER 31 RUNS. ;& AND 0 ARE THE MEAN AND

STANDARD DEVIATION OF OBJECTIVE FUNCTION VALUES. COMPARING ALHH TO ADAPHH, THE BOLD ENTRIES CORRESPOND TO THE ALGORITHM WITH
A BETTER AVERAGE PERFORMANCE AND UNDERLINED ITALIC ENTRIES REFER TO THE ALGORITHM WHICH PRODUCES THE BEST (MIN) RESULT. ENTRIES
WITH A ’-’ VALUE REPRESENT NON-COMPETITION INSTANCES.

Solomon Instances

Homberger Instances

0 I 2 3 7 5 6 7 3 9
m 50034 206569 133880 53210 14293.0 | 146791.0 628094 1616385 1531643 1473605
AdapHH (r.) min 42302 20651.6 132969 52755 142707 | 1440409 58521.6 160074.4 1465847 145139.3
e median 51257 206554 13349.9 53208 14291.1 | 1469067 619858 1615963 1530837 147550.3
o 161.7 42 183.8 245 13.9 1369.0 4609.4 982.0 1841.3 1047.6
m 49546 207928 132667 53652 141138 | 147017.6 601019 1614915 1531322 14741490
A) min 41788 206533 123002 53052 13277.0 | 1440377 58352.6 160084.5 149227.1 1454783
pprentice (Tg) | dian 51564 206612 133655 53667 142940 | 1469880 60163.0 161529.8 1530002 147480.9
- 3942 340.9 310.9 294 4813 1780.5 790.0 842.7 1663.1 956.8
P-Hunter [31] min E 20650.8 122630 - - 1436639 611393 E B 146472.9
- median - 20650.8 12290.0 - - 1469444 647178 - - 148659.0
AdOrLS [(32] m 52817 212910 136050 65644 142808 | 1553055 773027 1631777 1580419 1494477
- o 334.614 48256 45164 55477 31954 | 615424 3384.83 2100.09 2460.71 1500.9

in generalizing the actions of the expert to unseen problems
of different sizes, a promising sign encouraging us to research
on cross-domain capabilities of the proposed framework.

The success of the apprenticeship learning approach in cap-
turing the strategies used by the expert is further demonstrated
in Fig.2. In most cases the performances of both algorithms
are very close. This claim is verified through applying the
Wilcoxon signed rank test which determines how close the
performance of the two algorithms on 31 runs of each instance
are. The results of this test is shown in Table III. On 3 out
of 5 Solomon instances the performance of the two algorithms
have no statistically significant difference. This is also the case
on 4 out of 5 Homberger instances. On 2 Solomon instances
AdapHH performs significantly better than ALHH. On the
other hand, on one Homberger instance ALHH outperforms the
expert in a statistically significance manner. On equal number
of instances (3 out of 5 instances) on each problem class,
ALHH performs either slightly or significantly better than the
expert algorithm. In the overall, ALHH performs similar to
the expert algorithm on most of instances regardless of the
problem class in a satisfying fashion. This also indicates that
transferring the apprenticeship learning framework to a cross
domain level would be straightforward, a claim which is yet
to be verified in our future works.

When the performance of ALHH is compared to the
competing algorithms of the CHeSC 2011 competitions, it is
interestingly ranked first with a score of 30 (Fig.3, Table II).
This shows that on majority of instances, the apprentice hyper-
heuristic maintained a good performance, even better than the
expert algorithm which ranked fifth on this domain. This is
despite the fact that, on 3 instances, the median performance
of ALHH (based on which ranking is done in the CHeSC 2011
competition) is worse than the P-Hunter[31] algorithm which
was ranked first in this domain. While P-Hunter secures the
first rank on instances 1 and 2, it fails to perform in a similar
fashion on other instances. It is well outperformed on instances
6 and 9 by ALHH (and some other competing algorithms).
This comparison shows that the apprentice algorithm has a
stable behaviour regarding various instances of the problem
domains it is exposed to.

The ALHH is also compared to another approach which is
proposed recently (Table II). The approach in [32], proposes an
algorithm which is based on Iterated Local Search (ILS). Out
of three variants proposed by the authors in [32], the variant

named AdOr-ILS is shown to have a superior performance
on 9 out of 10 VRP instances in HyFlex. Thus, AdOr-ILS
is chosen for further comparison in which it is outperformed
substantially by the ALHH on all the instances.

Finally, regarding the hyper-heuristic proposed in [23], it
makes use of a long training time as well as an extensive tuning
process. This is in contrast to ALHH in which the training
time is very short and considered (for a fair comparison) while
evaluating the performance of the algorithm. Thus, comparing
ALHH (and those approaches in Table II) to the method in [23]
would not be fair and therefore this performance comparison
has been discarded.

TABLE III. AVERAGE PERFORMANCE COMPARISON OF ALHH (74) TO
ADAPHH (7¢) ON TWO PROBLEM CLASSES IN THE VRP DOMAIN.
WILCOXON SIGNED RANK TEST IS PERFORMED AS A STATISTICAL TEST
ON THE OBJECTIVE FUNCTION VALUES OBTAINED OVER 31 RUNS FROM
BOTH ALGORITHMS. > (>) DENOTES THAT ALHH (74) PERFORMS
SLIGHTLY (SIGNIFICANTLY) BETTER THAN THE COMPARED ALGORITHM
(WITHIN A CONFIDENCE INTERVAL OF 95%), WHILE < (<) INDICATES
VICE VERSA. THE LAST COLUMN SHOWS THE NUMBER OF INSTANCES FOR
WHICH THE ALGORITHM ON EACH SIDE OF ”’/” HAS PERFORMED BETTER
(EITHER SLIGHTLY OR SIGNIFICANTLY).

Instances TglTe

Solomon 0 1 2 3 4
> < > < > 32

Homberger 5 6 7 8 9
< > > > < | 32

VIII. CONCLUSIONS

In this study, an apprenticeship learning based method is
investigated for automatically designing a search methodology.
The proposed approach observes various actions of a state-of-
the-art hyper-heuristic as an expert for vehicle routing using
the HyFlex framework. Various classifiers are constructed rep-
resenting different components of a selection hyper-heuristic,
such as, the acceptance method for each low level heuristic
and heuristic selection method. The automated search method
which builds the selection hyper-heuristic via classifiers is
itself a generation hyper-heuristic.

At the end, the generated hyper-heuristic turns out to be
indeed capable of successfully generalizing the actions of
the expert while solving the unseen problem instances. It
outperforms not only the expert, but also some other previously
proposed selection hyper-heuristics in many occasions on the

— x10
2000 =, =3 216 *
5000
214
4800
212
4600
24
4400
; 2.08
4200 N i —— —_—
AdapHH (z,) ALHH (r) AdapHH () ALRH (%)
(a) (b)
x10* —
1.4 5400 ;

1.35 | E
—_— —_— 5350 i -
13 E 3

5300

1 o
AdapHH (r) ALHH (x) AdapHH () ALFH (x)

(C))

(e) ()
s 10* x10°
s 1.64
7.5 1.63
7 1.62 E :
6.5 El - 1.61 : E|
6 - = o o
AdapHH (=) ALFH () 18— g gapHH @) ALHH()
(&) (h)
x10°
1.5 —
1.49 N
1.48 ‘ :
1.47 E E
1.46 *
1.45| ;; & &
] (@)}

Fig. 2. Comparison of ALHH (74) with the expert algorithm (AdapHH) on
the instances of the VRP domain.

HyFlex VRP instances. Achieving such promising results,
exceedingly encourages us to extend our work and take it to a
cross-domain level, where potentially training consists of few
instances from each problem domain and testing is performed
on all available instances in HyFlex.

REFERENCES

[1] W. B. Crowston, F. Glover, G. L. Thompson, and J. D. Trawick,
“Probabilistic and parametric learning combinations of local job shop
scheduling rules,” ONR Research memorandum, GSIA, Carnegie Mellon
University, Pittsburgh, no. 117, 1963.

35

30 -

25 -

20 -

15 -

10 -

5,

0 =
S s 2 I T owI W w T
EENE::%&::%&:.EE&Q:":
D5 5EERZOEEF2723
T ET S99 Zc2 b g
E. < < Y [T <
I & 2 - o

Fig. 3. Ranking of ALHH among CHeSC 2011 competitors. Algorithms with
a score of 0 are not displayed here.

[2]

[3]

[4]

(3]

(6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

H. Fisher and G. L. Thompson, “Probabilistic learning combinations of
local job-shop scheduling rules,” in Industrial Scheduling. Prentice-
Hall, 1963, pp. 225-251.

P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to
scheduling a sales summit,” in Selected Papers of the Third International
Conference on the Practice And Theory of Automated Timetabling,
PATAT 2000, ser. Lecture Notes in Computer Science. Konstanz,
Germany: Springer, August 2000, pp. 176-190.

E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Wood-
ward, Handbook of Metaheuristics, ser. International Series in Op-
erations Research & Management Science. Springer, 2009, ch. A
Classification of Hyper-heuristic Approaches, pp. 449-468.

E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan,
and R. Qu, “Hyper-heuristics: a survey of the state of the art,” J
Oper Res Soc, vol. 64, no. 12, pp. 1695-1724, Dec 2013. [Online].
Available: http://dx.doi.org/10.1057/jors.2013.71

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, ser. ICML "04. New York, NY,
USA: ACM, 2004, pp. 1-8.

G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management Science, vol. 6, no. 1, pp. 80-91, 1959.

P. Toth and D. Vigo, Eds., The Vehicle Routing Problem. Society for
Industrial and Applied Mathematics, 2002.

B. Golden, S. Raghavan, and E. Wasil, Eds., The Vehicle Routing
Problem: Latest Advances and New Challenges, ser. Operations Re-
search/Computer Science Interfaces. Springer US, 2008, vol. 43.

V. Pillac, M. Gendreau, C. Gueret, and A. L. Medaglia, “A review of
dynamic vehicle routing problems,” European Journal of Operational
Research, vol. 225, no. 1, pp. 1 — 11, 2013.

C. Lin, K. Choy, G. Ho, S. Chung, and H. Lam, “Survey of green
vehicle routing problem: Past and future trends,” Expert Systems with
Applications, vol. 41, no. 4, Part 1, pp. 1118 — 1138, 2014.

S. Asta, E. Ozcan, A. J. Parkes, and A. c. Etaner-Uyar, “Generalizing
hyper-heuristics via apprenticeship learning,” in Proceedings of the 13th
European Conference on Evolutionary Computation in Combinatorial
Optimization, ser. EvoCOP’13. Berlin, Heidelberg: Springer-Verlag,
2013, pp. 169-178.

H. Takagi, “Interactive evolutionary computation: fusion of the capa-
bilities of ec optimization and human evaluation,” Proceedings of the
IEEE, vol. 89, no. 9, pp. 1275-1296, Sep 2001.

S. E. Celis, G. S. Hornby, and J. C. Bongard, “Avoiding local optima
with user demonstrations and low-level control,” in IEEE Congress on
Evolutionary Computation, 2013, pp. 3403-3410.

J. C. Bongard and G. S. Hornby, “Combining fitness-based search and
user modeling in evolutionary robotics,” in GECCO, 2013, pp. 159-166.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

K. Sims, “Artificial evolution for computer graphics,” SIGGRAPH
Comput. Graph., vol. 25, no. 4, pp. 319-328, Jul. 1991.

F. Thabtah and P. Cowling, “Mining the data from a hyperheuristic
approach using associative classification,” Expert Systems with Appli-
cations, vol. 34, no. 2, pp. 1093 — 1101, 2008.

E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. Woodward, “Exploring hyper-heuristic methodologies with genetic
programming,” in Computational Intelligence, ser. Intelligent Systems
Reference Library, C. L. Mumford and L. C. Jain, Eds. Springer Berlin
Heidelberg, 2009, vol. 1, pp. 177-201.

C. D. Geiger, R. Uzsoy, and H. Aytug, “Rapid modeling and discovery
of priority dispatching rules: An autonomous learning approach,” J. of
Scheduling, vol. 9, no. 1, pp. 7-34, Feb. 2006.

R. Kumar, A. H. Joshi, K. K. Banka, and P. I. Rockett, “Evolution
of hyperheuristics for the biobjective 0/1 knapsack problem by mul-
tiobjective genetic programming,” in Proceedings of the 10th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO
’08. New York, NY, USA: ACM, 2008, pp. 1227-1234.

E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, “A genetic
programming hyper-heuristic approach for evolving 2-d strip packing
heuristics,” Trans. Evol. Comp, vol. 14, no. 6, pp. 942-958, Dec. 2010.

J. H. Drake, N. Kililis, and E. Ozcan, “Generation of vns components
with grammatical evolution for vehicle routing,” in Proceedings of the
16th European Conference on Genetic Programming, ser. EuroGP’13.
Berlin, Heidelberg: Springer-Verlag, 2013, pp. 25-36.

N. Sabar, M. Ayob, G. Kendall, and R. Qu, “The automatic design of
hyper-heuristic framework with gene expression programming for com-
binatorial optimization problems,” IEEE Transactions on Evolutionary
Computation, vol. PP, no. 99, 2014.

G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J. Walker,
M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S. Petrovic, and
E. Burke, “Hyflex: A benchmark framework for cross-domain heuristic
search,” in European Conference on Evolutionary Computation in
Combinatorial Optimisation, EvoCOP ’12., ser. LNCS, J.-K. Hao and
M. Middendorf, Eds., vol. 7245. Heidelberg: Springer, 2012, pp. 136—
147.

P. Cowling, G. Kendall, and L. Han, “An investigation of a hyper-
heuristic genetic algorithm applied to a trainer scheduling problem,” in
Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002
Congress on, vol. 2, 2002, pp. 1185-1190.

M. Misir, K. Verbeeck, P. De Causmaecker, and G. V. Berghe, “An
intelligent hyper-heuristic framework for chesc 2011,” in Learning and
Intelligent Optimization. Springer, 2012, pp. 461-466.

P.-C. Hsiao, T.-C. Chiang, and L.-C. Fu, “A vns-based hyper-heuristic
with adaptive computational budget of local search,” in Evolutionary
Computation (CEC), 2012 IEEE Congress on, 2012, pp. 1-8.

M. Larose, “A hyper-heuristic for the chesc 2011,” in LIONG6, 2011.

J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

E. Alpaydin, Introduction to Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press, 2004.

C. Chan, F. Xue, W. Ip, and C. Cheung, “A hyper-heuristic inspired by
pearl hunting,” in Learning and Intelligent Optimization, ser. Lecture
Notes in Computer Science, Y. Hamadi and M. Schoenauer, Eds.
Springer Berlin Heidelberg, 2012, pp. 349-353.

J. D. Walker, G. Ochoa, M. Gendreau, and E. K. Burke, “Vehicle routing
and adaptive iterated local search within the hyflex hyper-heuristic
framework,” in LION, 2012, pp. 265-276.

