
Memetic Algorithms for Timetabling

Alpay Alkan
aalkan@rams.com.tr

Ender Özcan*
Yeditepe University

Department of Computer Engineering,
34755 Kayisdagi - Istanbul/Turkey

eozcan@cse.yeditepe.edu.tr

Abstract- Course timetabling problems are real world
constraint optimization problems that are often coped
with in educational institutions, such as universities or
high schools. In this paper, we present a variety of new
operators that can be also applied in evolutionary
algorithms for other timetabling problems, such as,
exam timetabling. Operators include violation
directed mutations, crossovers, and a successful
violation directed hierarchical hill climbing method.
Tests are performed on a small portion of a real data
and results are promising.

1 Introduction

Timetabling problems are NP hard problems (Even 1976).
University course timetabling problems are a subclass of
course timetabling problems that require feasible
assignment of each offered course to a slot of a discrete
timetable and some other resources such as classrooms,
satisfying a set of constraints. Many different approaches,
including Evolutionary Algorithms (EAs), Tabu Search,
Simulated Annealing, and their hybrids are developed for
solving many different types of timetabling problems
(Abramson 1991-Erben et. al. 1995, Herz 1992,
Monfroglio 1988-Paechter et. al. 1998, Ross et. al. 1994,
Schaerf 1996, Werra 1985). Due to the lack of interest in
a common standard on specifying a timetabling problem
instance, benchmarking is almost impossible. Some
researchers, such as, Ross et. al., produced syntactic data
for their experiments (1994). Early studies in standard
data format for timetabling yield a language named SSTL
(Kingston 2001). These syntactic benchmarks and the use
of SSTL has not been spawned further as expected,
possibly because, most of the studies in the area initiated
due to some practical need, making the researchers to
prefer and test the real data that they have. XML based
data format for representing timetabling problem
instances, named TTML is under development, requiring
attention to allow researchers, furthermore applications,
such as web services to exchange data (Ozcan 2002). In
our experiments we used a portion of real data from our
earlier studies, named YU_FEA_2002F (Ozcan et. al.
2002).*

Our previous experiments in course timetabling using
Genetic Algorithms (GAs) illustrated that the individuals
tend to become similar, causing premature convergence

* Corresponding author

unavoidable. There are a variety of approaches to solve
this problem and maintain population diversity. Crowding
(De Jong 1975), using heuristics during initial population
generation, hypermutation (Cobb 1990), using a diploid
representation (Smith 1992) and dividing the population
explicitly into subpopulations like in parallel GAs (Petey
et. al. 1987) are some of them.

In this paper, we introduce a set of new operators for
successful timetabling using memetic algorithms (MAs).
In order to maintain the population diversity, several
techniques mentioned above are also tested. In section 2,
university course timetabling, including the common
constraint types, is introduced. In section 3, components
of the memetic algorithm for timetabling problems are
described. In section 4, a tool, named as TEDI (Time
Tabling Tool for Educational Institutions) utilizing EA
Algorithms will be introduced and in section 5,
experimental results follow. Finally, in section 6
conclusions are presented.

2 University Course Timetabling Problem

University course timetabling problems (UCTPs) are
constraint optimization problems that can be represented
by a 3-tuple (V, D, C). V is a finite set of course meetings
in a department, faculty or university, V={v1, v2, …, vN},
D={d1, …, di, …, dN}, is a finite set of domains of
variables, for example, let G={t1, t2, …, tM} represent a
set of start times for a course meetings, then a possible
domain of each variable can be di⊆G and C is a set of
constraints to be satisfied, C={c1, c2, …, cL}. Domain of a
variable can be a product of sets, each representing a
different resource. For example, di⊆GxS can be a domain
of a variable, where S represents the set of classrooms. In
this paper, resources other than time will be ignored.
UCTP can be described as a search for finding the best
assignment (vi, tj) for each variable vi∈V, such that, all the
constraints are satisfied. The assignment implies that the
course meeting of vi starts at tj if there are other resources
they are allocated for vi and starting from that time. Note
that the size of the search space is immense, NM.

2.1 Types of Constraints
In general six different constraint types can be identified
for UCTPs: exclusions, presets, edge constraints,
ordering constraints, event-spread constraints and
attribute constraints. Exclusions represent the excluded
members of resources for the variables. For example,
“Data Structures should not be scheduled on Tuesdays”,

or “C Programming should not be scheduled in the
afternoons”. Presets represent the predetermined
assignments for some variables. For example, “Digital
Electronics is scheduled on Fridays at 14:00-17:00”. Edge
constraints represent a pair of course meetings that should
be scheduled without a clash. Assuming a single timeslot
assignment for each course meeting, an edge constraint
might require a pair of course meetings vi and vk to be
assigned to (vi, tj) and (vk, tl), respectively, such that, tj≠tl.
This is the most commonly used constraint. Discarding
the rest of the constraints, if only the edge constraints are
supported, then timetabling problem reduces to graph
coloring problem (Leighton 1979). Ordering, also known
as juxtaposition constraints represent an ordering between
course meetings. For example, “File Structures and
Database Systems should start at the same time”, or
“Problem solving session of Theory of Algorithms should
be scheduled an hour after the course meeting”. Event-
spread constraints deal with the way how the course
meetings are spread out in time. For example, “All
semester courses should be distributed evenly in the
weekly schedule”. Attribute constraints represent
restrictions that apply between the attributes of a course
meeting and/or the attributes of its assignment. For
example, assuming an attribute for a course is the total
number of students taking the course, and an attribute for
a classroom is its capacity, a possible constraint would be
“Total number of students taking a course should not
exceed the capacity of the classroom”. Attribute
constraints are ignored, since only T is assumed as a
domain of a variable.

3 A Memetic Algorithm for Solving UCTPs

Genetic Algorithms (GAs) were introduced by J. Holland
(Holland 1975), and have been used to solve many
difficult problems (Goldberg 1989). Usefulness of hill
climbing and local search operators in population based
algorithms is emphasized by many researchers such as
Moscato and Raddcliffe et.al. (1992, 1994). Memetic
Algorithms (MAs) are used for solving timetabling
problems by combining GAs and local search techniques.

Ross et al. (1994) introduces a set of violation directed
mutation operators based on selecting a gene to mutate
and an allele to mutate to, for GA approaches. Their tests
show that random selection of a gene, then selecting the
allele by using a tournament selection performs the best.
These operators are not tested in MAs. Furthermore, we
introduce a totally different set of violation directed
mutation operators as well as a similar set of operators in
this paper. Burke et al. (1996) applies a light or a heavy
mutation, randomly selecting one, followed by a hill
climbing method. Our hill climbing operator is a new one.

Source of the data, representing the variables, or the
number of rows and columns in a discrete timetable does
not change the nature of the problem. Hence, although a
university course timetabling data is used in the
experiments, the operators explained below can be

applied in evolutionary algorithms for similar timetabling
problems, such as high school timetabling, or exam
timetabling. Crossover and mutation operators are
referenced using notation OP#id, where OP indicates the
operator and #id is its unique id.

3.1 Representation
The direct representation is used, consisting of course
section meetings as a variable set, that are grouped with
respect to courses, terms and then departments,
hierarchically (Figure 1). Each gene denotes the start time
of meetings of a course section. A course might require
more than one meeting.

3.2 Constraints
Edge-constraints include:
• No course section meetings should overlap in a term,

denoted as TED
• No course section meetings should overlap belonging

to an instructor, denoted as IED
Event-spread constraints include:
• Different meetings of a course section should be

scheduled on different days, denoted as CES.
• Courses in a term should be scheduled consecutively

as a block with at most one hour break between them,
excluding the lunch break, denoted as TES.

• Courses of an instructor should be scheduled
consecutively as a block with at most one hour split
between them, excluding the lunch break, denoted as
IES.
As an exclude, 5th time slot in each day should be

allocated as a lunch break.

Figure 1. Individual representation

Some of the course section meeting schedules is
predetermined. PRE denotes the preset constraints.
Instructor requests about their schedules are also used as
constraints, identifying some favored and undesirable

Dept. 1 Dept. D

Courses Offered by FEA

Dept. 2

Term 1 Term R Term 5

Course Section Meetings

MATH241 ICS211ES223

2 2 32 1

3 2 5 3 1 4 3 1 4 6

Gene

Instructor 1 Instructor K

timeslots, representing exclusions, denoted as EXC.
Timetable consists of 9 consecutive 1-hour time slots per
day, having 10 minutes allocated as a break between
courses, starting at 9:00am for 5 days. Fifth time slot
should be arranged as a lunch break in all the term
schedules, if possible.

The definition of the constraint set can be extended to
include the different types of constraints to be satisfied.
Assume that the constraint set C has K different types of
constraints, and let jβ denote the set of jth type of

constraint, then

1
j

j K

C β
≤ ≤

= ∪ (Eq. 1)

3.3 Fitness Function
An optimum timetable is the one satisfying all the
constraints. Let pj represent the penalty associated with
the constraint i∈C belonging to the constraint type j and
gi(T) represent the number violations in the timetable T
due to the constraint i and wj represent a weight applied to
pj:

{ }
() ()

j

j j i
j i i

f T w p g T
β∀ ∀ ∈

= ∑ (Eq. 2)

Penalty values of the constraints belonging to the same
type are also the same. MA attempts to satisfy constraints
with higher penalties with respect to lower ones and/or
constraints that cause more violations. Unless it is
mentioned wj is set to 1.

3.4 Initialization and Allele Assignment
Domains of each course section are generated using PRE
and EXC constraints. Considering this set and CES
constraints, an allele is produced randomly for each gene.
Hence, all the individuals produced during the evolution
satisfy PRE, EXC and CES constraints.

After a random initialization, population is passed
through a hill climbing method. An additional method is
implemented to provide some type of guidance for the
search, and penalty values are adjusted by a factor of wj:

()
{ }

()
j

i
i

j

g y
w y population

f y
β∀ ∈= ∀ ∈
∑

∑
 (Eq. 3)

This set of weights is calculated using the initial
population to adjust the penalty values for once.

3.5 Mutation
Traditional mutation perturbs a gene, by using a random
allele assignment as explained in the above section with a
low mutation probability (MUT4). Additional mutation
operators are also tested that can be considered as
violation directed. MUT2 selects a term, based on ranking
using the number of violations for each term, then applies
MUT4 operator, as if the chromosome is the term block
chosen. MUT3 operates in the same way as MUT2 with a
minor difference that is the mutation is forced to take

place for once. Another mutation operator selects a term
and then selects a gene to mutate and randomly perturbs
the allele using ranking during each selection, denoted as
MUT1.

3.6 Crossover Operators
Different crossovers are used in GA based on traditional
one point crossover (1PTX6) and uniform crossover
(UX4). No clash constraints are applied within a block of
genes that is terms and instructors. New crossover
operators are developed working at the block levels.
1PTX6 and UX4 operators are extended to work as if
each term is a gene (1PTX7, UX5). Another set of less
disruptive crossover operators are created to work in two
steps:
• Select a term, based on a strategy
• Apply crossover only inside that term
The strategy is chosen to be ranking, giving higher chance
for a term with a worse contribution to the overall fitness
to be imposed to a crossover.

1PTX6 and UX4 are combined with a ranking strategy
to produce offspring. Selected parents’ violations are
added up on term basis and using this information ranking
is applied to select a term for crossover, favoring a term
with a worse fitness contribution. Then, one of the
operators; 1PTX6 and UX4, is applied on the term
selected as if it is the chromosome. New operators are
named as 1PTX3, UX1, respectively. Another operator
selects a term on two individuals using ranking strategy
and replaces the whole term, denoted as UX2. Note that
any other selection strategy can be applied to select a term
for crossover other than ranking, such as tournament
selection. The most successful choice for the selection
strategy is beyond the scope of this paper. Figure 2
illustrates the operation of 1PTX7 and 1PTX3 crossover
operators. Note that any grouping defined over course
section meetings can be chosen as a block for a crossover.
For example, another set of crossover operators can be
generated, that might be applied as if the instructor blocks
are genes using the above ideas.

Figure 2. Offspring generated by applying (a) 1PTX7 on
parents at a random term, (b) 1PTX3 on a term selected
randomly by ranking .

Term 1 Term R Term 5

(a)

(b)

Parents

Crossover
Points

3.7 Violation Directed Hierarchical Hill Climbing
Timetabling problems are multi-criteria optimization
problems. While reducing the violations due to a
constraint, overall fitness of an individual can be worsen.
Remembering that hill climbing should move an
individual to a local optimum, requiring computation of
fitness at each step, applying a hill climbing seems to be
computationally expensive in timetabling problems. Yet,
if the total computation time reduces and/or the quality of
solution increases, a hill climbing approach can be
preferable. The idea behind our hill climbing approach is
to create a hill climbing method for each type of
constraint and combine them under a single hill climbing
method, denoted as AHC. Starting from a high resolution,
as long as the fitness improves, AHC stays at that level,
otherwise, AHC lowers the resolution, restricting the aim.
There are 3 hierarchical levels of resolution, consisting of
3 improvement strategies:
• Select a constraint type based hill climbing method,

using a selection method, giving a higher chance to an
operator of the related constraint type causing more
violations.
1. Invoke the selected operator to get rid of all the

violations arouse due to the related type of
constraints, producing a new individual.

2. If this attempt does not make any improvement
on the old one, ignore the new individual.
Depending on the constraint type, a selected
block of genes, possibly causing more violations
among the other blocks, are attempted to be
corrected.

3. If this attempt also fails to produce a better
individual, then using the old one, a selected
single gene in a block of genes, possibly causing
more violations, is attempted to be corrected.

• If the fitness of an individual improves in any case,
AHC is reapplied on this individual.
Four constraint based hill climbing methods are

developed for each constraint type; TED_HC, IED_HC,
TES_HC and IES_HC. In a single step of TED_HC and
IED_HC, overlapping course section meetings due to the
violation of the constraint type in question, in the
timetable produced by the individual are considered and a
randomly selected meeting is rescheduled to a random
empty time slot. In a single step of TES_HC and
IES_HC, course meeting assignments in each single day
in the timetable view of the constraint type in question,
produced by the individual are pushed from morning
towards evening and from evening towards morning, if
there are empty slots in between the course meetings,
where lunch break is an attractor slot.

3.8 Replacement
As a replacement strategy, an elitist operator is used,
allowing the worst of the population to be replaced by the
best of parents and offspring (EREP). Replacement is not

allowed if the individuals to be replaced have duplicates
in the population.

Crowding is applied to allow dissimilar but fit
individuals to be replaced in the population by limiting
the number of alleles that are same in two individuals. Let
similarity rate denote the ratio of the number of same
alleles at the same loci and the length of a chromosome.

Steady state (SS) approach requires two offspring to be
produced, where as trans-generational (TG) approach
requires creation of an offspring pool and replacement
occurs among the old generation and the offspring. Both
of these approaches are implemented in MA (SSMA,
TGMA) for timetabling.

4 TEDI

Experiments are done using TEDI, which is a tool for
generating optimum timetables for educational institutions
using Evolutionary Algorithms. Figure 3 shows the
workflow diagram of TEDI. All GA parameters and
constraints are entered into the system using the
corresponding GUI. Then TEDI is invoked for finding the
optimum timetable with the given input. As a default
Genetic Algorithm spawns to find a solution. Hill
climbing can be enabled to start a Memetic Algorithm.
TEDI extracts constraints, algorithm parameters and
curriculum courses offered by each department from the
database and start its execution using the selected
algorithm.

TEDI allows users to enter the following parameters:
the size of the population, initialization scheme, type and
related parameters of mutation, crossover, selection and
termination method, and penalty for an unsatisfied
constraint.

As an output TEDI generates two types of timetable
views: Term View and Instructor View. By selecting a
department’s term or an instructor, related timetable can
be visualized.

TEDI keeps all the information entered and the all the
results generated in its database. This tool is intended to
be developed further to enable web access using CGI.

5 Experiments

All the tests are performed using a part of a real data,
obtained from Yeditepe University (YU), Faculty of
Engineering and Architecture (FEA), during the
registrations in 2002/2003 Fall semester, denoted as
YU_FEA_2002F_p. Initial experiments are performed for
finding the best set of MA operators. First, best mutation
and crossover operators are identified, and then
experiments are performed for finding the best
replacement strategy.

Input

MA
Parameters

Constraints

 MA

Courses
Offered

 Term 1

Department D
Mon Tue Wed Thu Fri Sat

Mon Tue Wed Thu Fri Sat

Department 1
Mon Tue Wed Thu Fri Sat

Mon Tue Wed Thu Fri Sat

Term 1

Term R1

Term RD

View #1

TEDI

Figure 3. Workflow diagram of TEDI

5.1 Experimental Data
YU_FEA_2002F_p consists of two departments (ICS,
EE) in FEA, where there are 151 offered courses,
summing up to 233 course meetings to be assigned to a
timetable slot in 9 ICS terms and 8 EE terms.

Define ρ, average occupancy for τ, as follows:

| |() η
τρ τ = (Eq. 4),

where η is the total number of course meeting hours, τ is
the set of terms or instructors. ρ is used as a measure of
how many slots of the timetable will be filled for each
term and instructor, choosing τ as a set of terms and
instructors, respectively. YU_FEA_2002F_p has a
ρ(Terms)=24 and ρ(Instructors)=9. The total number of
constraints sums up to, approximately, 3,000.

5.2 Timetable
A discrete timetable is used as a domain for variables;
course meetings. Each day of the week is divided into
nine, fifty minute time slots as shown in Figure 4. There
will be ten minute breaks in between the lectures.

 Mon Tue Wed Thu Fri
09:00-09:50 (1,1) (2,1) (3,1) (4,1) (5,1)
10:00-10:50 (1,2) (2,2) (3,2) (4,2) (5,2)
11:00-11:50 (1,3) (2,3) (3,3) (4,3) (5,3)
12:00-12:50 (1,4) (2,4) (3,4) (4,4) (5,4)
13:00-13:50 (1,5) (2,5) (3,5) (4,5) (5,5)
14:00-14:50 (1,6) (2,6) (3,6) (4,6) (5,6)
15:00-15:50 (1,7) (2,7) (3,7) (4,7) (5,7)
16:00-16:50 (1,8) (2,8) (3,8) (4,8) (5,8)
17:00-17:50 (1,9) (2,9) (3,9) (4,9) (5,9)

Figure 4. Division of a week into time slots

5.3 Results
Each experiment is performed for 50 runs using

random initialization. Runs are terminated whenever the
expected best fitness of 0 is achieved (best result), or the
number of generations exceeds 10,000. Notice that none
of the constraints are identified as hard or soft, since the
aim is to minimize the number of violations and the
number of evaluations.

In the tables, summarizing the experimental results, α
is the number of the best runs out of 50 in which 0 fitness
value is reached, γ represents the average number of
generations averaged over successful runs, φ represents
the average number of violations in the final generations
of all runs and σ is the standard deviation of related
quantities. (X,M) denotes the operator id of a crossover
and a mutation pair, respectively.

Table 1 summarizes the experimental results obtained
applying EREP as a replacement strategy using steady
state memetic algorithm (SSMA) and different crossover
and mutation operator pairs.

The best crossover and mutation pair turns out to be
(UX4, MUT2) and (UX5, MUT2) for the Memetic
Algorithm. When the average number of generations is
compared for the runs having best results, (UX5, MUT2)
seems to be the best choice. The top seven pairs (TOP7),
marked as bold in Table 1, having a success over the
mean are tested again without using the hill climbing
method. In none of the runs, a solution is found and the
resulting population had approximately 38 violations on
the average. Doubling the maximum number of
generations for TOP7 did not help much, though (UX4,
MUT2) turned out to be the best pair having 33 best
results out of 50.

Further experiments are performed to see the effect of
several approaches used for maintaining diversified
populations. TOP7 list is also tested using crowding for
various similarity rates, and crossover rates, yielding no
improvement. Using weights during initialization also did
not help much, but an adaptive approach could be
investigated by recalculating the weights during
generational translations, but it is left for further study
due to the high cost of computation for the time being.

All of the above experiments are performed using a
SSMA. In order to compare it with a trans-generational

memetic algorithm (TGMA), TOP7 experiments are
repeated.

(X,M) α (γ σ) (φ σ)

(1,1) 7 5,780 1,929 4.80 3.36

(1,2) 12 7,003 1,960 2.50 2.16

(1,3) 12 5,444 1,779 5.06 4.61

(1,4) 9 7,602 1,519 2.96 2.48

(2,1) 11 7,107 - 4.68 -

(2,2) 8 6,685 - 3.32 -

(2,3) 13 6,641 - 4.04 -

(2,4) 7 4,834 - 2.92 -

(3,1) 8 5,871 - 5.40 -

(3,2) 13 6,814 - 1.98 -

(3,3) 13 5,750 - 5.98 -

(3,4) 9 6,053 - 2.60 -

(4,1) 21 6,829 - 2.82 -

(4,2) 25 7,436 - 1.04 -

(4,3) 22 7,215 - 2.34 -

(4,4) 22 6,622 - 1.14 -

(5,1) 16 4,705 - 3.00 -

(5,2) 25 4,522 - 1.12 -

(5,3) 14 4,095 - 3.06 -

(5,4) 18 4,618 - 1.24 -

(6,1) 11 5,366 - 3.70 -

(6,2) 17 5,479 - 2.14 -

(6,3) 14 5,400 - 3.60 -

(6,4) 15 5,586 - 2.24 -

(7,1) 14 5,020 - 4.26 -

(7,2) 19 6,098 - 1.74 -

(7,3) 15 4,570 - 3.59 -

(7,4) 17 4,769 - 1.86 -

Table 1. Test results obtained after running SSMA using
different crossover (X) and mutation (M) operators.

Trans-generational memetic algorithm yields a better
result supporting the success of (UX4, MUT2) as shown
in Table 2, possibly because the number of evaluations

allowed are more than SSMA. Further tests should be
performed for a better comparison.

(X,M) α (γ σ) (φ σ)

(4,1) 38 1,190 - 1.22 -

(4,2) 41 946 - 0.24 -

(4,3) 37 1,530 - 1.03 -

(4,4) 39 1,441 - 0.40 -

(5,2) 39 1,477 - 0.32 -

(5,4) 39 1,538 - 0.36 -

(7,2) 37 2,387 - 0.38 -

Table 2. Test results obtained after running TGMA using
different crossover (X) and mutation (M) operators.

6 Conclusions

There are many researchers studying a variety of real
world timetabling problems. Evolutionary Algorithms are
very common approaches for tackling such problems.
Varieties of violation directed and block oriented
mutation and crossover operators to be utilized in Genetic
Algorithms and a new violation directed hierarchical hill
climbing operator to be utilized in Memetic Algorithms
for timetabling are presented. Experimental results
confirm that the best crossover operator is the traditional
uniform crossover operator and the best mutation operator
is the violation directed operator that is applied onto a
block rather than the whole individual. The rest of the
crossover and mutation operators are also comparable
with the best. These operators are promising and will be
tested further using different sets of data.

Experiments carried out using TEDI demonstrated that
genetic search combined with hill climbing achieves the
best performance. Using a hierarchy of resolution levels,
provides means to correct conflicts once and for all, or for
a group of events or for a single event, considering a
randomly selected constraint type based on ranking the
number of violations that arouse due to the constraint
types. In our experiments, trans-generational MA yields
better results than the steady state MA. The best method
to keep a diversified population seems to be disallowing
the same individuals to join the population during the
replacement.

As a test bed, a real world data defined for a university
course timetabling problem is used. It is important to
emphasize that, these operators discussed in this paper
can be used also in EAs for solving other type of
timetabling problems and/or other type of constraint
satisfaction problems, such as high school course
timetabling, final exam timetabling, nurse rostering or
classroom assignment.

As a future work, different combinations of hill
climbing methods at different resolution levels can be
investigated. Furthermore, adaptive strategies, possibly
considering the violations due to different constraint
types, can be developed favoring the appropriate genetic
operators during evolution.

Bibliography

Abramson, D., (1991) “Constructing School Timetables
Using Simulated Annealing: Sequential and Parallel
Algorithms”, Management Science, 37(1):98-113.
Abramson, D., Dang, H. and Krisnamoorthy, M., (1999)
“Simulated Annealing Cooling Schedules for the School
Timetabling Problem”, Asia-Pacific Journal of
Operational Research, 16,pp. 1-22.
Burke, E., Elliman, D., and Weare, R., (1994) “A Genetic
Algorithm Based Timetabling System”, Proc. of the 2nd
East-West Int. Conf. on Computer Technologies in
Education, pp. 35-40.
Burke, E., Newall, J.P., and Weare, R.F., (1996) “A
Memetic Algorithm for University Exam Timetabling”,
Lecture Notes in Computer Science, 1153:241-250,
Springer.
Cobb, H.G., (1990) “An investigation into the use of
hypermutation as an adaptive operator in Genetic
Algorithms Having Continuous, Time-dependent
Nonstationary Environment”, NRL Memorandum Report
6760.
Colorni, A., Dorigo, M., and Maniezzo, V., (1992) “A
genetic algorithm to solve the timetable problem”. Tech.
rep. 90-060 revised, Politecnico di Milano, Italy.
Cladeira, JP, Rosa, AC, (1997) “School Timetabling
using Genetic Search”, PATAT 97, pp. 115-122.
De Jong, K.A., (1975) An Analysis of the Behavior of a
Class of GeneticAdaptive Systems, PhD Thesis,
University of Michigan, Ann Arbour, MI.
Erben, W., Keppler, J., (1995) “A Genetic Algorithm
Solving a Weekly Course-Timetabling Problem”, Proc. of
the First Int. Conf. on the Practice and Theory of
Automated Timetabling (ICPTAT), pp. 21-32, Napier
University, Edinburgh.
Even, S., Itai, A., and Shamir, A., (1976) “On the
Complexity of Timetable and Multicommodity Flow
Problems”, SIAM J. Comput., 5(4):691-703.
Goldberg, D. E., (1989) Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading (MA).
Hertz, A., (1992) “Finding a feasible course schedule
using a tabu search”, Discrete Applied Mathematics, 35,
255-270.
Holland, J. H., (1975) Adaptation in Natural and Artificial
Systems, Univ. Mich. Press.
Kingston, J.H., (2001) “Modeling timetabling problems
with STTL”, Springer Lecture Notes in Computer
Science, 2079:309.
Leighton, F.T., (1979) “A graph coloring algorithm for
large scheduling problems”, Journal of Reasearch of the
National Bureau of Standards, 84:489-506.

Monfroglio, A., (1988) “Timetabling Through a
Deductive Database: A Case Study”, Data & Knowledge
Engineering, 3:1-27.
Moscato, P. ,and Norman, M. G.. (1992) “A Memetic
Approach for the Traveling Salesman Problem
Implementation of a Computational Ecology for
Combinatorial Optimization on Message-Passing
Systems”, Parallel Computing and Transputer
Applications, pp. 177-186.
Ozcan E. (2003) “Towards an XML based standard for
Timetabling Problems: TTML”, The 1st Multidisciplinary
International Conference on Scheduling : Theory and
Applications, pp.566-569.
Ozcan E., and Alkan, A., (2002) “Solving Time Tabling
Problem using Genetic Algorithms”, Proceedings of the
4th International Conference on the Practice and Theory
of Automated Timetabling, pp.104-107.
Paechter, B., Rankin, R., C., Cumming, A. and Fogarty,
T., C, (1998) “Timetabling the Classes of an Entire
University with an Evolutionary Algorithm“, Proceedings
of Parallel Problem Solving from Nature (PPSN V), pp.
865-874.
Pettey, C.S., Leuze, M. R., and Grefenstette, J. J., (1987)
“A Parallel Genetic Algorithm”, Proc. of the Second Intl.
Conf. for Genetic Algorithms, pp. 155-161.
Radcliffe, N. J., and Surry, P.D., (1994) “Formal memetic
algorithms”, Evolutionary Computing: AISB Workshop,
Springer Verlag, LNCS 865, pp. 1-16.
Ross, P., Corne, D., and Fang, H-L., (1994) “Improving
Evolutionary Timetabling with Delta Evaluation and
Directed Mutation”, Proceedings of PPSN III, pp. 556-
565.
Ross, P., Corne, D., and Fang, H-L., (1994) “Fast
Practical Evolutionary Timetabling”, Proceedings of
AISBWorkshop on Evolutionary Computation.
Schaerf, A., (1996) “Tabu Search Techniques for Large
High-School Timetabling Problems”, Proc. of the
Fourteenth National Conference on AI, pp. 363-368,
August.
Smith, R.E., and Goldberg, D. E.. (1992) “Diploidy and
dominance in artificial genetic search”, Complex
Systems, 6(3):251-285.
Werra, D. De, (1985) “An introduction to timetabling”,
European Journal of Operations Research, 19:151-162.

