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Abstract- Course timetabling problems are real world 
constraint optimization problems that are often coped 
with in educational institutions, such as universities or 
high schools. In this paper, we present a variety of new 
operators that can be also applied in evolutionary 
algorithms for other timetabling problems, such as, 
exam timetabling. Operators include violation 
directed mutations, crossovers, and a successful 
violation directed hierarchical hill climbing method. 
Tests are performed on a small portion of a real data 
and results are promising. 

1 Introduction 

Timetabling problems are NP hard problems (Even 1976). 
University course timetabling problems are a subclass of 
course timetabling problems that require feasible 
assignment of each offered course to a slot of a discrete 
timetable and some other resources such as classrooms, 
satisfying a set of constraints. Many different approaches, 
including Evolutionary Algorithms (EAs), Tabu Search, 
Simulated Annealing, and their hybrids are developed for 
solving many different types of timetabling problems 
(Abramson 1991-Erben et. al. 1995, Herz 1992, 
Monfroglio 1988-Paechter et. al. 1998, Ross et. al. 1994, 
Schaerf 1996, Werra 1985). Due to the lack of interest in 
a common standard on specifying a timetabling problem 
instance, benchmarking is almost impossible. Some 
researchers, such as, Ross et. al., produced syntactic data 
for their experiments (1994). Early studies in standard 
data format for timetabling yield a language named SSTL 
(Kingston 2001). These syntactic benchmarks and the use 
of  SSTL has not been spawned further as expected, 
possibly because, most of the studies in the area initiated 
due to some practical need, making the researchers to 
prefer and test the real data that they have. XML based 
data format for representing timetabling problem 
instances, named TTML is under development, requiring 
attention to allow researchers, furthermore applications, 
such as web services to exchange data  (Ozcan 2002). In 
our experiments we used a portion of real data from our 
earlier studies, named YU_FEA_2002F (Ozcan et. al. 
2002).* 

Our previous experiments in course timetabling using 
Genetic Algorithms (GAs) illustrated that the individuals 
tend to become similar, causing premature convergence 
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unavoidable. There are a variety of approaches to solve 
this problem and maintain population diversity. Crowding 
(De Jong 1975), using heuristics during initial population 
generation, hypermutation (Cobb 1990), using a diploid 
representation (Smith 1992) and dividing the population 
explicitly into subpopulations like in parallel GAs (Petey 
et. al. 1987) are some of them. 

In this paper, we introduce a set of new operators for 
successful timetabling using memetic algorithms (MAs). 
In order to maintain the population diversity, several 
techniques mentioned above are also tested. In section 2, 
university course timetabling, including the common 
constraint types, is introduced. In section 3, components 
of the memetic algorithm for timetabling problems are 
described. In section 4, a tool, named as TEDI (Time 
Tabling Tool for Educational Institutions) utilizing EA 
Algorithms will be introduced and in section 5, 
experimental results follow. Finally, in section 6 
conclusions are presented. 

2 University Course Timetabling Problem 

University course timetabling problems (UCTPs) are 
constraint optimization problems that can be represented 
by a 3-tuple (V, D, C). V is a finite set of course meetings 
in a department, faculty or university, V={v1, v2, …, vN}, 
D={d1, …, di, …, dN},  is a finite set of domains of 
variables, for example, let G={t1, t2, …, tM} represent a 
set of start times  for a course meetings, then a possible 
domain of each variable can be di⊆G and C is a set of 
constraints to be satisfied, C={c1, c2, …, cL}. Domain of a 
variable can be a product of sets, each representing a 
different resource. For example, di⊆GxS can be a domain 
of a variable, where S represents the set of classrooms. In 
this paper, resources other than time will be ignored. 
UCTP can be described as a search for finding the best 
assignment (vi, tj) for each variable vi∈V, such that, all the 
constraints are satisfied. The assignment implies that the 
course meeting of vi starts at  tj if there are other resources 
they are allocated for vi and starting from that time. Note 
that the size of the search space is immense, NM.  

2.1 Types of Constraints 
In general six different constraint types can be identified 
for UCTPs: exclusions, presets, edge constraints, 
ordering constraints, event-spread constraints and 
attribute constraints. Exclusions represent the excluded 
members of resources for the variables. For example, 
“Data Structures should not be scheduled on Tuesdays”, 



or “C Programming should not be scheduled in the 
afternoons”. Presets represent the predetermined 
assignments for some variables. For example, “Digital 
Electronics is scheduled on Fridays at 14:00-17:00”. Edge 
constraints represent a pair of course meetings that should 
be scheduled without a clash. Assuming a single timeslot 
assignment for each course meeting, an edge constraint 
might require a pair of course meetings vi and vk to be 
assigned to (vi, tj) and (vk, tl), respectively, such that, tj≠tl. 
This is the most commonly used constraint. Discarding 
the rest of the constraints, if only the edge constraints are 
supported, then timetabling problem reduces to graph 
coloring problem (Leighton 1979). Ordering, also known 
as juxtaposition constraints represent an ordering between 
course meetings. For example, “File Structures and 
Database Systems should start at the same time”, or 
“Problem solving session of Theory of Algorithms should 
be scheduled an hour after the course meeting”. Event-
spread constraints deal with the way how the course 
meetings are spread out in time. For example, “All 
semester courses should be distributed evenly in the 
weekly schedule”. Attribute constraints represent 
restrictions that apply between the attributes of a course 
meeting and/or the attributes of its assignment. For 
example, assuming an attribute for a course is the total 
number of students taking the course, and an attribute for 
a classroom is its capacity, a possible constraint would be 
“Total number of students taking a course should not 
exceed the capacity of the classroom”. Attribute 
constraints are ignored, since only T is assumed as a 
domain of a variable. 

3 A Memetic Algorithm for Solving UCTPs 

Genetic Algorithms (GAs) were introduced by J. Holland 
(Holland 1975), and have been used to solve many 
difficult problems (Goldberg 1989). Usefulness of hill 
climbing and local search operators in population based 
algorithms is emphasized by many researchers such as 
Moscato and Raddcliffe et.al. (1992, 1994). Memetic 
Algorithms (MAs) are used for solving timetabling 
problems by combining GAs and local search techniques.  

Ross et al. (1994) introduces a set of violation directed 
mutation operators based on selecting a gene to mutate 
and an allele to mutate to, for GA approaches. Their tests 
show that random selection of a gene, then selecting the 
allele by using a tournament selection performs the best. 
These operators are not tested in MAs. Furthermore, we 
introduce a totally different set of violation directed 
mutation operators as well as a similar set of operators in 
this paper. Burke et al. (1996) applies a light or a heavy 
mutation, randomly selecting one, followed by a hill 
climbing method. Our hill climbing operator is a new one. 

Source of the data, representing the variables, or the 
number of rows and columns in a discrete timetable does 
not change the nature of the problem. Hence, although a 
university course timetabling data is used in the 
experiments, the operators explained below can be 

applied in evolutionary algorithms for similar timetabling 
problems, such as high school timetabling, or exam 
timetabling. Crossover and mutation operators are 
referenced using notation OP#id, where OP indicates the 
operator and #id is its unique id. 

3.1 Representation 
The direct representation is used, consisting of course 
section meetings as a variable set, that are grouped with 
respect to courses, terms and then departments, 
hierarchically (Figure 1). Each gene denotes the start time 
of meetings of a course section. A course might require 
more than one meeting. 

3.2 Constraints 
Edge-constraints include: 
• No course section meetings should overlap in a term, 

denoted as TED 
• No course section meetings should overlap belonging 

to an instructor, denoted as IED 
Event-spread constraints include: 
• Different meetings of a course section should be 

scheduled on different days, denoted as CES. 
• Courses in a term should be scheduled consecutively 

as a block with at most one hour break between them, 
excluding the lunch break, denoted as TES. 

• Courses of an instructor should be scheduled 
consecutively as a block with at most one hour split 
between them, excluding the lunch break, denoted as 
IES. 
As an exclude, 5th time slot in each day should be 

allocated as a lunch break. 

 
Figure 1. Individual representation 

Some of the course section meeting schedules is 
predetermined. PRE denotes the preset constraints. 
Instructor requests about their schedules are also used as 
constraints, identifying some favored and undesirable 
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timeslots, representing exclusions, denoted as EXC. 
Timetable consists of 9 consecutive 1-hour time slots per 
day, having 10 minutes allocated as a break between 
courses, starting at 9:00am for 5 days. Fifth time slot 
should be arranged as a lunch break in all the term 
schedules, if possible.  

The definition of the constraint set can be extended to 
include the different types of constraints to be satisfied. 
Assume that the constraint set C has K different types of 
constraints, and let jβ denote the set of jth type of 

constraint, then  

1
j

j K

C β
≤ ≤

= ∪  (Eq. 1) 

3.3 Fitness Function 
An optimum timetable is the one satisfying all the 
constraints. Let pj represent the penalty associated with 
the constraint i∈C belonging to the constraint type j and 
gi(T) represent the number violations in the timetable T 
due to the constraint i and wj represent a weight applied to 
pj: 
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Penalty values of the constraints belonging to the same 
type are also the same. MA attempts to satisfy constraints 
with higher penalties with respect to lower ones and/or 
constraints that cause more violations. Unless it is 
mentioned wj is set to 1. 

3.4 Initialization and Allele Assignment 
Domains of each course section are generated using PRE 
and EXC constraints. Considering this set and CES 
constraints, an allele is produced randomly for each gene. 
Hence, all the individuals produced during the evolution 
satisfy PRE, EXC and CES constraints.  

After a random initialization, population is passed 
through a hill climbing method. An additional method is 
implemented to provide some type of guidance for the 
search, and penalty values are adjusted by a factor of wj: 
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This set of weights is calculated using the initial 
population to adjust the penalty values for once.  

3.5 Mutation 
Traditional mutation perturbs a gene, by using a random 
allele assignment as explained in the above section with a 
low mutation probability (MUT4). Additional mutation 
operators are also tested that can be considered as 
violation directed. MUT2 selects a term, based on ranking 
using the number of violations for each term, then applies 
MUT4 operator, as if the chromosome is the term block 
chosen. MUT3 operates in the same way as MUT2 with a 
minor difference that is the mutation is forced to take 

place for once. Another mutation operator selects a term 
and then selects a gene to mutate and randomly perturbs 
the allele using ranking during each selection, denoted as 
MUT1. 

3.6 Crossover Operators 
Different crossovers are used in GA based on traditional 
one point crossover (1PTX6) and uniform crossover 
(UX4). No clash constraints are applied within a block of 
genes that is terms and instructors. New crossover 
operators are developed working at the block levels. 
1PTX6 and UX4 operators are extended to work as if 
each term is a gene (1PTX7, UX5). Another set of less 
disruptive crossover operators are created to work in two 
steps: 
• Select a term, based on a strategy 
• Apply crossover only inside that term 
The strategy is chosen to be ranking, giving higher chance 
for a term with a worse contribution to the overall fitness 
to be imposed to a crossover.  

1PTX6 and UX4 are combined with a ranking strategy 
to produce offspring. Selected parents’ violations are 
added up on term basis and using this information ranking 
is applied to select a term for crossover, favoring a term 
with a worse fitness contribution. Then, one of the 
operators; 1PTX6 and UX4, is applied on the term 
selected as if it is the chromosome. New operators are 
named as 1PTX3, UX1, respectively. Another operator 
selects a term on two individuals using ranking strategy 
and replaces the whole term, denoted as UX2. Note that 
any other selection strategy can be applied to select a term 
for crossover other than ranking, such as tournament 
selection. The most successful choice for the selection 
strategy is beyond the scope of this paper. Figure 2 
illustrates the operation of 1PTX7 and 1PTX3 crossover 
operators. Note that any grouping defined over course 
section meetings can be chosen as a block for a crossover. 
For example, another set of crossover operators can be 
generated, that might be applied as if the instructor blocks 
are genes using the above ideas.  

 
Figure 2. Offspring generated by applying (a) 1PTX7 on 
parents at a random term, (b) 1PTX3 on a term selected 
randomly by ranking . 
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3.7 Violation Directed Hierarchical Hill Climbing 
Timetabling problems are multi-criteria optimization 
problems. While reducing the violations due to a 
constraint, overall fitness of an individual can be worsen. 
Remembering that hill climbing should move an 
individual to a local optimum, requiring computation of 
fitness at each step, applying a hill climbing seems to be 
computationally expensive in timetabling problems. Yet, 
if the total computation time reduces and/or the quality of 
solution increases, a hill climbing approach can be 
preferable. The idea behind our hill climbing approach is 
to create a hill climbing method for each type of 
constraint and combine them under a single hill climbing 
method, denoted as AHC. Starting from a high resolution, 
as long as the fitness improves, AHC stays at that level, 
otherwise, AHC lowers the resolution, restricting the aim. 
There are 3 hierarchical levels of resolution, consisting of 
3 improvement strategies: 
• Select a constraint type based hill climbing method, 

using a selection method, giving a higher chance to an 
operator of the related constraint type causing more 
violations.  
1. Invoke the selected operator to get rid of all the 

violations arouse due to the related type of 
constraints, producing a new individual.  

2. If this attempt does not make any improvement 
on the old one, ignore the new individual. 
Depending on the constraint type, a selected 
block of genes, possibly causing more violations 
among the other blocks, are attempted to be 
corrected.  

3. If this attempt also fails to produce a better 
individual, then using the old one, a selected 
single gene in a block of genes, possibly causing 
more violations, is attempted to be corrected. 

• If the fitness of an individual improves in any case, 
AHC is reapplied on this individual.  
Four constraint based hill climbing methods are 

developed for each constraint type; TED_HC, IED_HC, 
TES_HC and IES_HC. In a single step of TED_HC and 
IED_HC, overlapping course section meetings due to the 
violation of the constraint type in question, in the 
timetable produced by the individual are considered and a 
randomly selected meeting is rescheduled to a random 
empty time slot. In a single step of  TES_HC and 
IES_HC, course meeting assignments in each single day 
in the timetable view of the constraint type in question, 
produced by the individual are pushed from morning 
towards evening and from evening towards morning, if 
there are empty slots in between the course meetings, 
where lunch break is an attractor slot. 

3.8 Replacement 
As a replacement strategy, an elitist operator is used, 
allowing the worst of the population to be replaced by the 
best of parents and offspring (EREP). Replacement is not 

allowed if the individuals to be replaced have duplicates 
in the population. 

Crowding is applied to allow dissimilar but fit 
individuals to be replaced in the population by limiting 
the number of alleles that are same in two individuals. Let 
similarity rate denote the ratio of the number of same 
alleles at the same loci and the length of a chromosome. 

Steady state (SS) approach requires two offspring to be 
produced, where as trans-generational (TG) approach 
requires creation of an offspring pool and replacement 
occurs among the old generation and the offspring. Both 
of these approaches are implemented in MA (SSMA, 
TGMA) for timetabling. 

4 TEDI 

Experiments are done using TEDI, which is a tool for 
generating optimum timetables for educational institutions 
using Evolutionary Algorithms. Figure 3 shows the 
workflow diagram of TEDI. All GA parameters and 
constraints are entered into the system using the 
corresponding GUI. Then TEDI is invoked for finding the 
optimum timetable with the given input. As a default 
Genetic Algorithm spawns to find a solution. Hill 
climbing can be enabled to start a Memetic Algorithm. 
TEDI extracts constraints, algorithm parameters and 
curriculum courses offered by each department from the 
database and start its execution using the selected 
algorithm.  

TEDI allows users to enter the following parameters: 
the size of the population, initialization scheme, type and 
related parameters of mutation, crossover, selection and 
termination method, and penalty for an unsatisfied 
constraint. 

As an output TEDI generates two types of timetable 
views: Term View and Instructor View. By selecting a 
department’s term or an instructor, related timetable can 
be visualized.  

TEDI keeps all the information entered and the all the 
results generated in its database. This tool is intended to 
be developed further to enable web access using CGI. 

5 Experiments 

All the tests are performed using a part of a real data, 
obtained from Yeditepe University (YU), Faculty of 
Engineering and Architecture (FEA), during the 
registrations in 2002/2003 Fall semester, denoted as 
YU_FEA_2002F_p. Initial experiments are performed for 
finding the best set of MA operators. First, best mutation 
and crossover operators are identified, and then 
experiments are performed for finding the best 
replacement strategy.  
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Figure 3. Workflow diagram of TEDI 

5.1 Experimental Data 
YU_FEA_2002F_p consists of two departments (ICS, 
EE) in FEA, where there are 151 offered courses, 
summing up to 233 course meetings to be assigned to a 
timetable slot in 9 ICS terms and 8 EE terms.  

Define ρ, average  occupancy for τ, as follows: 

| |( ) η
τρ τ =  (Eq. 4), 

where η is the total number of course meeting hours, τ is 
the set of terms or instructors. ρ is used as a measure of 
how many slots of the timetable will be filled for each 
term and instructor, choosing τ  as a set of terms and 
instructors, respectively. YU_FEA_2002F_p has a 
ρ(Terms)=24 and ρ(Instructors)=9. The total number of 
constraints sums up to, approximately, 3,000.  

5.2 Timetable 
A discrete timetable is used as a domain for variables; 
course meetings. Each day of the week is divided into 
nine, fifty minute time slots as shown in Figure 4. There 
will be ten minute breaks in between the lectures.  

 

 Mon Tue Wed Thu Fri 
09:00-09:50 (1,1) (2,1) (3,1) (4,1) (5,1)
10:00-10:50 (1,2) (2,2) (3,2) (4,2) (5,2)
11:00-11:50 (1,3) (2,3) (3,3) (4,3) (5,3)
12:00-12:50 (1,4) (2,4) (3,4) (4,4) (5,4)
13:00-13:50 (1,5) (2,5) (3,5) (4,5) (5,5)
14:00-14:50 (1,6) (2,6) (3,6) (4,6) (5,6)
15:00-15:50 (1,7) (2,7) (3,7) (4,7) (5,7)
16:00-16:50 (1,8) (2,8) (3,8) (4,8) (5,8)
17:00-17:50 (1,9) (2,9) (3,9) (4,9) (5,9)

Figure 4. Division of a week into time slots 

5.3 Results 
Each experiment is performed for 50 runs using 

random initialization. Runs are terminated whenever the 
expected best fitness of 0 is achieved (best result), or the 
number of generations exceeds 10,000. Notice that none 
of the constraints are identified as hard or soft, since the 
aim is to minimize the number of violations and the 
number of evaluations.  

In the tables, summarizing the experimental results, α 
is the number of the best runs out of 50 in which 0 fitness 
value is reached, γ represents the average number of 
generations averaged over successful runs, φ represents 
the average number of violations in the final generations 
of all runs and σ is the standard deviation of related 
quantities. (X,M) denotes the operator id of a crossover 
and a mutation pair, respectively.  

Table 1 summarizes the experimental results obtained 
applying EREP as a replacement strategy using steady 
state memetic algorithm (SSMA) and different crossover 
and mutation operator pairs.  

The best crossover and mutation pair turns out to be 
(UX4, MUT2) and (UX5, MUT2) for the Memetic 
Algorithm.  When the average number of generations is 
compared for the runs having best results, (UX5, MUT2) 
seems to be the best choice. The top seven pairs (TOP7), 
marked as bold in Table 1, having a success over the 
mean are tested again without using the hill climbing 
method. In none of the runs, a solution is found and the 
resulting population had approximately 38 violations on 
the average.  Doubling the maximum number of 
generations for TOP7 did not help much, though (UX4, 
MUT2) turned out to be the best pair having 33 best 
results out of 50. 

Further experiments are performed to see the effect of 
several approaches used for maintaining diversified 
populations. TOP7 list is also tested using crowding for 
various similarity rates, and crossover rates, yielding no 
improvement. Using weights during initialization also did 
not help much, but an adaptive approach could be 
investigated by recalculating the weights during 
generational translations, but it is left for further study 
due to the high cost of computation for the time being. 

All of the above experiments are performed using a 
SSMA. In order to compare it with a trans-generational 



memetic algorithm (TGMA), TOP7 experiments are 
repeated. 

 

(X,M) α (γ σ) (φ σ) 

(1,1) 7 5,780 1,929 4.80 3.36 

(1,2) 12 7,003 1,960 2.50 2.16 

(1,3) 12 5,444 1,779 5.06 4.61 

(1,4) 9 7,602 1,519 2.96 2.48 

(2,1) 11 7,107 - 4.68 - 

(2,2) 8 6,685 - 3.32 - 

(2,3) 13 6,641 - 4.04 - 

(2,4) 7 4,834 - 2.92 - 

(3,1) 8 5,871 - 5.40 - 

(3,2) 13 6,814 - 1.98 - 

(3,3) 13 5,750 - 5.98 - 

(3,4) 9 6,053 - 2.60 - 

(4,1) 21 6,829 - 2.82 - 

(4,2) 25 7,436 - 1.04 - 

(4,3) 22 7,215 - 2.34 - 

(4,4) 22 6,622 - 1.14 - 

(5,1) 16 4,705 - 3.00 - 

(5,2) 25 4,522 - 1.12 - 

(5,3) 14 4,095 - 3.06 - 

(5,4) 18 4,618 - 1.24 - 

(6,1) 11 5,366 - 3.70 - 

(6,2) 17 5,479 - 2.14 - 

(6,3) 14 5,400 - 3.60 - 

(6,4) 15 5,586 - 2.24 - 

(7,1) 14 5,020 - 4.26 - 

(7,2) 19 6,098 - 1.74 - 

(7,3) 15 4,570 - 3.59 - 

(7,4) 17 4,769 - 1.86 - 

Table 1. Test results obtained after running SSMA using 
different crossover (X) and mutation (M) operators. 

Trans-generational memetic algorithm yields a better 
result supporting the success of (UX4, MUT2) as shown 
in Table 2, possibly because the number of evaluations 

allowed are more than SSMA. Further tests should be 
performed for a better comparison. 
 

(X,M) α (γ σ) (φ σ) 

(4,1) 38 1,190 - 1.22 - 

(4,2) 41 946 - 0.24 - 

(4,3) 37 1,530 - 1.03 - 

(4,4) 39 1,441 - 0.40 - 

(5,2) 39 1,477 - 0.32 - 

(5,4) 39 1,538 - 0.36 - 

(7,2) 37 2,387 - 0.38 - 

Table 2. Test results obtained after running TGMA using 
different crossover (X) and mutation (M) operators. 

6 Conclusions 

There are many researchers studying a variety of real 
world timetabling problems. Evolutionary Algorithms are 
very common approaches for tackling such problems. 
Varieties of violation directed and block oriented 
mutation and crossover operators to be utilized in Genetic 
Algorithms and a new violation directed hierarchical hill 
climbing operator to be utilized in Memetic Algorithms 
for timetabling are presented. Experimental results 
confirm that the best crossover operator is the traditional 
uniform crossover operator and the best mutation operator 
is the violation directed operator that is applied onto a 
block rather than the whole individual. The rest of the 
crossover and mutation operators are also comparable 
with the best. These operators are promising and will be 
tested further using different sets of data.  

Experiments carried out using TEDI demonstrated that 
genetic search combined with hill climbing achieves the 
best performance. Using a hierarchy of resolution levels, 
provides means to correct conflicts once and for all, or for 
a group of events or for a single event, considering a 
randomly selected constraint type based on ranking the 
number of violations that arouse due to the constraint 
types. In our experiments, trans-generational MA yields 
better results than the steady state MA. The best method 
to keep a diversified population seems to be disallowing 
the same individuals to join the population during the 
replacement.  

As a test bed, a real world data defined for a university 
course timetabling problem is used. It is important to 
emphasize that, these operators discussed in this paper 
can be used also in EAs for solving other type of 
timetabling problems and/or other type of constraint 
satisfaction problems, such as  high school course 
timetabling, final exam timetabling, nurse rostering or 
classroom assignment.  



As a future work, different combinations of hill 
climbing methods at different resolution levels can be 
investigated. Furthermore, adaptive strategies, possibly 
considering the violations due to different constraint 
types, can be developed favoring the appropriate genetic 
operators during evolution. 
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