
Genetic Algorithms for Parallel Code Optimization

Ender Özcan
Dept. of Computer Engineering

Yeditepe University
Kayışdağı, İstanbul, Turkey

Email: eozcan@cse.yeditepe.edu.tr

Esin Onbaşıoğlu
Dept. of Computer Engineering

Yeditepe University
Kayışdağı, İstanbul, Turkey

Email: esin@cse.yeditepe.edu.tr

Abstract- Determining the optimum data distribution,
degree of parallelism and the communication structure on
Distributed Memory machines for a given algorithm is not a
straightforward task. Assuming that a parallel algorithm
consists of consecutive stages, a Genetic Algorithm is
proposed to find the best number of processors and the best
data distribution method to be used for each stage of the
parallel algorithm. Steady state genetic algorithm is compared
with transgenerational genetic algorithm using different
crossover operators. Performance is evaluated in terms of the
total execution time of the program including communication
and computation times. A computation intensive, a
communication intensive and a mixed implementation are
utilized in the experiments. The performance of GA provides
satisfactory results for these illustrative examples.

I. INTRODUCTION

Data distribution and processor allocation are two
important factors that affect the performance of programs
written for distributed memory parallel architectures.
Distribution of the data among the processors affects the
communication time. On the other hand, the number of
processors used at each step of the parallel code (degree
of parallelism) affects both the computation time and the
communication time.

Different approaches have been used to solve the
problem of optimizing data distribution in parallel
programs [1]-[12]. These projects use a variety of
optimization methods. There are also research works that
present notation for communication-free distribution of
arrays [13], [14].

The problem of finding optimal mappings of arrays for
parallel computers is shown to be NP-complete [15]. As a
discrete problem, even if a restricted set of data
decomposition patterns is used, the nonlinear nature of the
problem does not change, especially when combined with
selecting the degrees of parallelism for each program
stage and attempting to minimize the overall execution
time. In this study, Genetic Algorithms (GA) is used to
analyze the problem of determining the data distribution
and the degree of parallelism for each stage of a parallel
code in order to minimize the total execution time.

II. PERFORMANCE CHARACTERIZATION OF PARALLEL
ALGORITHMS

A. Levels
A serial algorithm may be composed of a sequence of

stages (denoted as levels), where each stage is either a
single loop or a group of nested loops (Figure 1(a)). An

example program segment is given in Figure 6, where
there are five levels. The entire sequence of levels may
also be enclosed by an iterative loop (Figure 1(b)). A
general case is given in Figure 1(c), where some
consecutive loops are enclosed by iterative loops, which
again with adjacent loops may be enclosed by other
iterative loops and so on, like a tree structure. Here, to
simplify the case, it is assumed that programs are in the
form of Figure 1(a) and Figure 1(b), and programs that
have structure as in Figure 1(c) are reduced to the form in
Figure 1(b) by combining L2, L3, L4 as a single level.

 [L1 [L1 [L1
 [L2 [L2 [L2
 [L3 [L3 [L3
 [L4 [L4 [L4
 [L5 [L5 [L5

 (a) (b) (c)

Figure 1. (a) sequence of levels, (b) sequence of levels enclosed
by an iterative loop, (c) sequence of loops with a general structure

When the programs are parallelized, each level is
assumed to have a different degree of parallelism that is,
each level may be executed using a different number of
processors. Levels requiring short computation may be
parallelized on a few processors but those having long
computations may require the use of many processors.
Also, due to the distribution of the data among the
processors, when the code is parallelized, communication
may be required before the execution of each level.
Although increasing the number of processors decreases
the computation time of a level, it may cause extra
communication between the levels.

B. Performance Evaluation
Performance of a serial algorithm can be expressed in

terms of the problem size, but the performance of a
parallel algorithm, in addition to the problem size,
depends on the number of available processors, the
distribution of the data among the processors, and the
methods used for transferring data between processors.

At some stage l of a parallel code, execution time (texec)
can be expressed as the sum of the computation and
communication times

l l l
exec comp commt t t= + Equation 1.,

where l

compt denotes the computation time, and l
commt

denotes the communication time at stage l.
Computation time can be formulated as

/l l
comp seq lt t p= Equation 2.,

where l

seqt is the predicted computation time of stage l of
the sequential algorithm on a single processor, and pl is
the number of processors used in the parallel code for
stage l.

Communication time depends on the number of
processors pl and the communication structure cl used for
the transfer of data at that stage. l

commt consists of two
terms, a term that increases with the size of data to be
transferred, represented by f1, and an overhead,
represented by f2,

1 2(,) (,)l
comm l l l l lt f c p d f c p= + Equation 3.,

where dl is the data size per processor. Note that both f1
and f2 are in the form (a pl + b), where a and b are
constants that depend on the communication structure.

The total execution time (T) of the program is the sum
of the execution times of all stages in the program

1

L
l
exec

l
T t

=

= ∑ Equation 4.,

where L is the total number of stages (denoted as levels)
in the code.

In order to determine the execution time of a parallel
program at compile-time, machine characterization and
performance prediction method given in [16] is used. In
this method, computation and communication
characteristics of the machine are measured and
formulated. In order to calculate the total execution time
of a parallel program, its program parameters (i.e.
computation time, data size) are substituted in the
formulas.

C. Data Decomposition and Alignment
In most of the parallel algorithms, arrays of one or

higher dimensions are used. In this study, arrays are
assumed to be distributed to the processors in the form of
blocks. Block decompositions of 1 and 2-dimensional
arrays on four processors are illustrated in Figure 2 and
Figure 3, respectively. It is assumed that all scalar values
are replicated on all processors.

Figure 2. Possible decomposition patterns for a 1D array on 4
processors

Figure 3. Possible decomposition patterns for a 2D array on 4
processors

Arrays are distributed to the processors according to
one of the decomposition patterns, presented in Figure 2
and Figure 3. Due to the computational requirements,
arrays existing at a level, may be distributed to processors
using the same or different decomposition patterns.
Considering all the arrangements of decomposition
patterns for all the arrays at a level, some of them may not
be feasible. Feasible arrangements of decomposition
patterns of arrays at a level are referred as alignment.

As an example, possible alignments for the third level
of the code in Figure 7 are demonstrated in Table I. The
arrangement, (Horizontal, Vertical, Horizontal), for arrays
c, I and b is not a feasible arrangement, as it can not
satisfy the computational requirements. Hence, it is not
accepted as an alignment.

TABLE I. ALLIGNMENTS FOR THE THIRD LEVEL OF THE CODE
IN FIGURE 7

Array Alignment 1 Alignment 2 Alignment 3

c Horizontal Vertical Rectangular
I Horizontal Vertical Rectangular
b Horizontal Vertical Rectangular

(a) Horizontal

(c) Replicated (d) Rectangle

(b) Vertical

(a) Horizontal (b) Replicated (c) Rectangle

D. Communication Structures
In distributed memory architectures using message-

passing, generally, data is transferred among the
processors in a structured way. Different communication
structures have been defined for data exchange between
processors [17], [18]. In this study, multiphase (MU), shift
(SH), broadcast (BR), scatter (SC) and gather (GA)
structures have been utilized (Figure 4).

Figure 4. Five types of communication structures used in the
study

Performance of the communication structures can be
characterized in terms of f1 and f2, as shown in Table II.
For all structures, f1 and f2 depend on the number of
processors, except for SH, where f1 and f2 are constant.

The machine parameters M, N, R and Q are measured
running benchmarks on the parallel machine, as explained
in [16]. The hardware platform used in this study consists
of 16 Pentium 4, 2GHz processors connected by
100Mbit/s interconnection network.

TABLE II. MACHINE PARAMETERS FOR THE COMMUNICATION
STRUCTURES

c 1(,)l lf c p

2(,)l lf c p

MU M1 pl + N1 R1 pl + Q1
BR M3 pl + N3 R3 pl + Q3
SC M4 pl + N4 R4 pl + Q4
GA M5 pl + N5 R5 pl + Q5
SH N2 Q2

Once the data distribution and the number of processors

at each level are determined, communication structures to
be inserted between levels can be selected. For each level,
feasible communication structures, that are valid for all
arrays at that level, are identified considering the

references to the same arrays in the upper and lower levels
of the code. Then, a common feasible communication
structure is selected. In this work, instead of selecting the
communication structure randomly, the one that produces
the minimum transfer time is selected.

In order to minimize the program execution time, the
best number of processors for each level of the code and
the best alignment for the arrays that are referred to at
each level of the code must be determined. A parallel code
might consist of many levels. Furthermore, for each level
there might be different possibilities for alignment, degree
of parallelism and communication structure. For this
reason, the problem of finding the optimal parallel code
configuration becomes highly complex.

III. GENETIC ALGORITHMS FOR PARALLEL CODE
OPTIMIZATION

Genetic Algorithms have been used for solving many
difficult problems [19] that were introduced by J. Holland
in 1975 [20]. Given a parallel code, consisting of L levels
and a distributed memory parallel machine with P
processors, parallel code optimization (PCO) can be stated
as finding the best mapping of P processors and D
alignments of data decomposition patterns at each level,
reducing the total expected execution time of the
algorithm. The search space ranges up to (PD)L, assuming
the best communication structure for the level. Although
not considered in here, the size of a level and selecting the
levels to combine may also be used as other optimization
parameters.

Machine parameters are obtained by Benchmarking as
explained in [16] and fed into the GA Solver for execution
time optimization as shown in Figure 5. The Alignment
Parser parses the given sequential code to be parallelized,
in a C like language. It determines all possible array
alignments in the code and generates the related data
decomposition patterns at all levels, handing them over to
the GA solver. Finally, GA solver produces the best
assignment of alignments and number of processors at
each level.

Figure 5. Flowchart showing how parallel code optimization
problem is solved by GA

(a) Multiphase (b) Broadcast

(c) Scatter (d) Gather

(e) Shift

Sequential
Code

Alignment
Parser

GA
Solver

Bechmarking

A. GA Components
Each individual is a list of alleles, where each locus

represents a level in the given code. Alleles consist of two
parts: number of processors to be used at a level and the
data alignment. Figure 6 demonstrates an example
individual, having 5 levels.

Figure 6. An example individual representing a candidate solution
for a PCO problem with 5 levels

Two types of Genetic Algorithms are implemented as a
solver: steady state genetic algorithms (SSGA) and
transgenerational genetic algorithms (TGGA). Population
size is chosen to be proportional to the length of an
individual. Fitness function indicates the total execution
time as shown in Equation 4.

The best communication structure is chosen at each
level among all possibilities. This step can be considered
as a hill climbing step. This process can be applied, since
the contribution of the communication structure to the
total execution time at each level is independent.

SSGA and TGGA both utilize linear ranking strategy
for selecting parents and elitist replacement strategies. In
SSGA, two worst individuals in the population are deleted
and both offspring are injected in their places. In TGGA,
the best of the offspring combined with the previous
population forms the next generation.

SSGA visits two new states at each generation, while
the number of states that TGGA visits is two times the
individual length, determining the number of evaluations.

Different crossover operators are tested: traditional one
point crossover (1PTX), two-point crossover (2PTX) and
uniform crossover (UX). Traditional mutation is used,
randomly perturbing an allele, assigning a random value
to the number of processors and the decomposition
pattern.

Runs are terminated, whenever the expected fitness is
reached or the maximum number of generations is
exceeded.

IV. EXPERIMENTAL DATA

Experiments are performed using three data sets
produced from two different algorithms.

A. Hessenberg Reduction
In the first and second data sets, the parallel algorithm

in [21] for reducing matrices to Hessenberg form is used.

One iteration of the Hessenberg reduction is represented
as follows:

A = (I – V Z VT)T A (I – V Z VT),

where A, Z, V are NxN matrices. Its parallel
implementation has 5 levels as shown in Figure 7.

Levels 1, 2, 4 and 5 perform matrix multiplication
operation where the execution time increases with N3, and
level 3 consists of a subtraction operation where the
execution time increases with N2.

for (i=0; i<N; ++i) /* Level 1 */
 for (j=0; j<N; ++j) {
 a[i][j]=0;
 for (k=0; k<N; ++k)

a[i][j]=a[i][j]+V[i][k]*Z[k][j];
 /* VZ */
 }
 for (i=0; i<N; ++i) /* Level 2 */
 for (j=0; j<N; ++j) {
 b[i][j]=0;
 for (k=0; k<N; ++k)

b[i][j]=b[i][j]+a[i][k]*V[j][k];
 /* VZV^T */
 }
 for (i=0; i<N; ++i) /* Level 3 */
 for (j=0; j<N; ++j)
 c[i][j]=I[i][j]-b[i][j];
 /* I- VZV^T */
 for (i=0; i<N; ++i) /* Level 4 */
 for (j=0; j<N; ++j) {
 d[i][j]=0;
 for (k=0; k<N; ++k)

d[i][j]=d[i][j]+c[k][i]*A[k][j];
 /* (I- VZV^T)^T A */
 }
 for (i=0; i<N; ++i) /* Level 5 */
 for (j=0; j<N; ++j){
 e[i][j]=0;
 for (k=0; k<N; ++k)
 e[i][j]=e[i][j]+d[i][k]*c[k][j];
 /* (I- VZV^T)^T A (I- VZV^T) */
 }

Figure 7. Implementation of Hessenberg reduction

Hessenberg reduction is chosen due to its simple
nature. At each level there are three possible alignments
and three choices for the number of processors (1, 4 and
16). In order to be able to test GA using a known result,
all 95 possible combinations of alignments and the number
of processors are computed to determine the optimum
configuration.

When the problem size N is chosen as 1024, the
problem is communication intensive; therefore the best

4 2 4 1 4 5 1 1 1 1

1 2 3 4 5

4 processors and 5th alignment
should be used at level 3

fitness is achieved when the algorithm is run on one
processor regardless of the decomposition pattern.

However when N is chosen as 10240, the problem
becomes computation intensive and the best fitness is
observed utilizing 16 processors at each level, as marked
in Figure 8. Note that there are two optimal
configurations having the best fitness.

Above data sets are used during the initial experiments,
denoted as H1 and H2, with N=1024 and N=10240,
respectively. Considering the size of the search space and
the number of optimal points having the same fitness
value in the search space, H1 is a simpler problem than
H2 to solve.

Figure 8. Part of the fitness landscape for H2, N=10240,
considering {4, 16} as possible number of processors and {1, 2}
as possible alignment ids, where arrow points out the best fitness.

B. Dongarra’s Benchmark
The third data set consists of 11 loops selected from the

test loops prepared by J. Dongarra for parallelizing
compilers, found at site:

 http://www.netlib.org/benchmark/parallel
This problem involves 12 matrices of sizes n1 and n2, and
vectors of size n2. Matrix addition, matrix multiplication,
vector-matrix multiplication, assignment, etc. operations
are executed on different matrices and vectors (Table III).

In this case, for all levels, fitness increases with n1xn2,
except for level 1 where fitness increases with n1

3. When
n1 and n2 are chosen as 10240, level 1 becomes
computation intensive, and therefore it can be estimated
that it will have the best time for 16 processors. Level 2
also has the same arrays as level 1, therefore to minimize
the communication time, 16 processors may be feasible.
Operations in the other levels are not computation
intensive and they have a different set of arrays than
levels 1 and 2. Therefore, it is expected that 1 processor
may be the best choice for these levels.

TABLE III. DETAILS FOR SELECTED LOOPS FROM DONGARRA’S
BENCHMARK SET.

l Arrays Array Operations
1 X2, Y2, Z2 Matrix Multiplication
2 X2, Y2, Z2 Assignment, 2D-Array

Multiplication
3 A2, B2, C2 2D-Array Addition
4 A2, B2, C2, S 2D-Array Addition, Scalar

Multiplication
5 A2, B2, C2, D1 1D and 2D-Array Multiplication

and Addition
6 A2, B2, C2, D2 2D-Array Addition
7 A2, B2, C2, D2,

A1
1D and 2D-Array Multiplication
and Addition

8 A2, B2, C2, D2,
E2, F2, A1, B1

1D and 2D-Array Multiplication
and Addition

9 A2, B2, C2, D2,
E2, F2

2D-Array Addition and
Subtraction

10 A2, B2, D2, A1 1D and 2D-Array Multiplication
and Addition

11 A2, B2, D2, A1 1D and 2D-Array Multiplication
and Addition

V. EXPERIMENTAL RESULTS

Runs are performed on an Intel Pentium 4, 1.7GHz
machine. Each experiment is repeated for 100 times.
Success rate, µ, is the ratio of the number of runs
returning the optimal solution to the total number of runs.
Initial experiments are performed to test crossover
operators and different types of GAs using Hessenberg
reduction, yielding the experimental results, summarized
in Table IV. Runs are terminated for H1 and H2, as
explained in Section III. A. Since the expected fitness is
not known for D1, a run is terminated whenever the
maximum number of generations is exceeded.

TABLE IV. TEST RESULTS FOR H1 AND H2 USING DIFFERENT
GA TYPES AND CROSSOVER (XOVER) OPERATORS, WHERE µ
DENOTES SUCCESS RATE, ρ DENOTES AVERAGE NUMBER OF
GENERATIONS PER RUN, σ DENOTES STANDARD DEVIATION.

Data GA

Type
Xover µ (ρ σ)

H1 SSGA 1PTX 1.00 68.40 94.20
H1 SSGA 2PTX 1.00 69.49 97.31
H1 SSGA UX 1.00 65.23 91.51
H1 TGGA 1PTX 1.00 17.13 18.51
H1 TGGA 2PTX 1.00 17.44 18.87
H1 TGGA UX 1.00 17.44 18.96
H2 SSGA 1PTX 0.81 4908.99 7865.88
H2 SSGA 2PTX 0.84 4737.81 7287.54
H2 SSGA UX 0.82 4694.87 7470.72
H2 TGGA 1PTX 0.79 898.02 1506.45
H2 TGGA 2PTX 0.81 816,31 1460,61
H2 TGGA UX 0.80 956.62 1527.07

11
11

1
11

12
2

11
22

1
12

11
2

12
21

1

12
22

2

21
12

1

21
21

2

22
11

1

22
12

2

22
22

1
4

4
4

4
4

4
4

4
16

 1
6

4
4

16
 1

6
4

4
16

 4
 4

 1
6

4
16

 1
6

4
4

4
16

 1
6

16
 1

6

16
 4

 4
 1

6
4

16
 4

 1
6

4
16

16
 1

6
4

4
4

16
 1

6
4

16
 1

6
16

 1
6

16
 1

6
4

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000 Fitness

Alignment
at each level

No.of processors
at each level

GA solves H1 much faster than H2, as expected. The
solutions are found for H1 and H2 in tens of generations
and in seconds as shown in Figure 8.

0

500000

1000000

1500000

2000000

2500000

1 17 33 49 65 81 97 113 129 145
Generation

Fi
tn

es
s

Average

Best

0

500000

1000000

1500000

2000000

2500000

1 4 7 10 13 16 19 22 25 28 31 34 37 40
Generation

Fi
tn

es
s

Average

Best

Figure 9. Plot of average and best fitness at each generation
averaged over 100 runs for solving H1 using (a) SSGA and (b)
TGGA with 1PTX.

While solving H2, GA sometimes gets stuck at the
same local optimum, arranging expected number of
processors and related alignments at the first two levels
and failing at the rest. Although, these instances are not
that many, the individuals tend to become alike. Parallel
code optimization problem can be formulized as a
multiobjective problem. Premature convergence is a
common issue, while applying Genetic Algorithms on
some multiobjective problems, as in [22]. As the size of
the search space of a PCO problem instances increases
and the number of global optima in the search space
decreases, we expect that this issue will arise and become
a burden.

Comparing the number of evaluations, SSGA performs
slightly better than TGGA. For example, SSGA with
1PTX requires 136 (68.40*2) evaluations on average,
while TGGA with 1PTX requires 171 (17.13*10) for
solving H1. Furthermore, crossover operators establish
approximately the same performance. For this reason, D1
is tested using only SSGA with 1PTX.

Results supported our predictions about the solution, as
explained in Section IV. B. 50% of the runs yield the
same solution for D1, emphasizing the problem is
computation intensive for the first two levels. Figure 10
shows this final solution generated by SSGA with 1PTX.
Therefore, the first two levels are mapped to 16 processors
and the same decomposition patterns are used in order to
minimize the communication. Other levels are computed
on one processor. As the computation is sequential on one
processor, communication patterns do not have any effect.

Figure 10. A solution of D1 obtained by SSGA with 1PTX, where
each entry is in the following form: [level] number of
processors, alignment id.

VI. CONCLUSIONS AND FUTURE WORK

Our experiments show that SSGA is more promising
than TGGA for solving the parallel code optimization
problem. SSGA with 1PTX successfully generated a
solution for Dongarra’s benchmarks (D1).

Speed is an important issue for this problem. If it takes
too long time to get optimal settings for a code, users may
prefer utilizing their intuition for parallelizing their codes.
Note that success rates for the simpler instances of the
problem are much better than the success rate for D1.
Furthermore, the initial indication of premature
convergence is received. Hence, a diversification scheme
can be added to improve the GA solver. There is a variety
of approaches, such as crowding [23], or hyper mutation
[24] for keeping the population diversified. Different hill
climbing techniques can also be developed as a part of the
GA solver.

REFERENCES

[1] J. Li, M. Chen, “Index Domain Alignment: Minimizing
Costs of Cross-referencing between Distributed Arrays”,
Third Symp. on the Frontiers of Massively Parallel
Computation, pp. 424-433, 1990.

[2] J. Anderson, M. Lam, “Global Optimizations for
Parallelism and Locality on Scalable Parallel Machines”,
ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pp. 112-125, 1993.

[3] R. Bixby, K. Kennedy, U. Kremer, “Automatic Data
Layout using 0-1 Integer Programming”, Proc. Int. Conf.
on Parallel Architectures and Compilation Techniques
(PACT’94), 1994.

[1] 16, 2
[2] 16, 2
[3] 1, -
[4] 1, -
[5] 1, -
[6] 1, -

[7] 1, -
[8] 1, -
[9] 1, -
[10] 1, -
[11] 1, -

(a)

(b)

[4] K. Knobe, J. Lucas, G. Steele, “Data Optimizations:
Allocation of Arrays to Reduce Communication on
SIMD machines”, Journal of Parallel and Distributed
Computing, no. 8, 102-118, 1990.

[5] D. Palermo, Compiler Techniques for Optimizing
Communication and Data Distribution for Distributed
Memory Multicomputers, PhD Thesis, University of
Illinois at Urbana-Champaign, 1996.

[6] J. Ramanujan, P. Sadayappan, “Compile-time
Techniques for Data Distribution in Distributed Memory
Machines”, IEEE Tr. on Parallel and Distributed
Systems, pp. 472-482, 1991.

[7] T. Rauber, G. Runger, “Deriving Array Distributions by
Optimization Techniques”, J. Supercomputing, vol. 15,
pp. 271-293, 2000.

[8] S. Wholey, “Automatic Data Mapping for Distributed
Memory Parallel Computers”, Proc. of Int. Conf. on
Supercomputing, 1992.

[9] M. Wolfe, High Performance Compilers for Parallel
Computers, Addison-Wesley, 1996.

[10] M.E. Wolf, M.S. Lam, “A Data Locality Optimizing
Algorithm”, Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pp.
30-44, 1991.

[11] K. Ikudome, G. Fox, A. Kolawa, J. Flower, “An
Automatic and Symbolic Parallelization System for
Distributed Memory Parallel Computers”, Proc. of 5th
Distributed Memory Computing Conference, pp. 1105-
1114, 1990.

[12] E. Onbasioglu, L. Ozdamar, “Optimization of Data
Distribution and Processor Allocation Problem using
Simulated Annealing”, The Journal of Supercomputing,
vol.25, pp. 237-253, 2003.

[13] T. Chen, J. Sheu, “Communication-Free Data Allocation
Techniques for Parallelizing Compilers on
Multicomputers”, IEEE Tr. on Parallel and Distributed
Systems, pp. 924-938, 1994.

[14] C.H. Huang, P. Sadayappan, ”Communication-Free
Hyperplane Partitioning of Nested Loops”, J. Parallel
and Distributed Computing, vol. 19, pp. 90-102, 1993.

[15] M. Mace, Memory Storage Patterns in Parallel
Processing, Kluwer Academic, 1987.

[16] E. Onbasioglu, Y. Paker, “A Comparative Workload-
based Methodology for Performance Evaluation of
Parallel Computers”, Future Generation Computer
Systems, vol. 12, pp. 512-545, 1997.

[17] J. Mohan, Performance of Parallel Programs, PhD
dissertation, Dept. of Computer Science, Carnegie-
Mellon University, 1984.

[18] P.Lee, “Efficient algorithms for Data Distribution on
Distributed Memory Parallel Computers”, IEEE Tr. on
Parallel and Distributed Systems, vol. 8, no. 8, pp. 825-
839, 1997.

[19] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading (MA), 1989.

[20] J. H. Holland, Adaptation in Natural and Artificial
Systems, Univ. Mich. Press, 1975.

[21] J. Choi, J.J. Dongarra, D.W. Walker, “The design of a
parallel, Dense Linear Algebra Software Library:
Reduction to Hessenberg, Tridiagonal and Bidiagonal
Form“, Proceedings of the 2nd Workshop on
Environments and Tools for Parallel Scientific
Computing, pp. 98-111, 1994.

[22] A. Alkan, E. Ozcan, “Memetic Algorithms for
Timetabling“, Proc. of IEEE Congress on Evolutionary
Computation, pp. 1796-1802, 2003.

[23] K.A. De Jong., An Analysis of the Behavior of a Class of
GeneticAdaptive Systems, PhD Thesis, University of
Michigan, Ann Arbour, MI, 1975.

[24] H.G. Cobb, “An investigation into the use of
hypermutation as an adaptive operator in Genetic
Algorithms Having Continuous, Time-dependent
Nonstationary Environment”, NRL Memorandum Report
6760, 1990.

