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Abstract—Hyper-heuristics are search methodologies which
operate at a higher level of abstraction than traditional search
and optimisation techniques. Rather than operating on a search
space of solutions directly, a hyper-heuristic searches a space
of low-level heuristics or heuristic components. An iterative
selection hyper-heuristic operates on a single solution, selecting
and applying a low-level heuristic at each step before deciding
whether to accept the resulting solution. Crossover low-level
heuristics are often included in modern selection hyper-heuristic
frameworks, however as they require multiple solutions to op-
erate, a strategy is required to manage potential solutions to
use as input. In this paper we investigate the use of crossover
control schemes within two existing selection hyper-heuristics
and observe the difference in performance when the method for
managing potential solutions for crossover is modified. Firstly,
we use the crossover control scheme of AdapHH, the winner of
an international competition in heuristic search, in a Modified
Choice Function - All Moves selection hyper-heuristic. Secondly,
we replace the crossover control scheme within AdapHH with
another method taken from the literature. We observe that the
performance of selection hyper-heuristics using crossover low-
level heuristics is not independent of the choice of strategy for
managing input solutions to these operators.

I. INTRODUCTION

Optimisation problems often explore a search space which
is too large to enumerate and exhaustively search for an
optimal solution. Various heuristics and metaheuristics have
been applied successfully to problems of this nature. One
drawback of such approaches is the necessity to manually
adapt the method used to solve different problem domains or
classes of problem. Hyper-heuristics are a class of high-level
search techniques which operate at a higher level of abstraction
than traditional search and optimisation techniques [3]. One of
the key goals of hyper-heuristic research is the automation of
the heuristic design process, minimising the amount of human
effort needed to design effective problem solving methods.
Unlike traditional strategies for search and optimisation, hyper-
heuristics operate over a search space of low-level heuristics
or heuristic components, rather than over a search space of
solutions directly. Hyper-heuristics are broadly split into two
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main categories [4], those which select a low-level heuristic to
apply from a set of existing heuristics [17] and those which
create new heuristics from a set of low-level components [9].
This paper is concerned with the first category, those method-
ologies which select a low-level heuristic to apply at a given
point in a search. Selection hyper-heuristics have been used
to solve a large number of problems including examination
timetabling [23], sports scheduling [15] and vehicle routing
problems [14].

The objective of cross-domain heuristic search is to develop
methods which are able to consistently find good quality
solutions in multiple problem domains, using a given set
of low-level heuristics. The HyFlex framework [1], [21],
introduced chiefly to support the first Cross-domain Heuristic
Search Challenge (CHeSC2011) [2], is used as a benchmark
framework for the methods investigated in this paper. HyFlex
provides a common software interface to test the performance
of high-level search strategies over multiple problem domains,
and an increasing body of associated research with which to
compare. Currently HyFlex supports six problem domains and
provides implementations of low-level heuristics from four
categories: crossover, mutation, ruin-recreate and hill climbing
for each domain. Unlike the other three categories, crossover
low-level heuristics require more than one solution as input.
As a typical selection hyper-heuristic is based on a single-point
search framework (i.e. it operates on a single solution), some
strategy is needed to manage the second input solution for this
type of heuristic.

The winner of the CHeSC2011 competition, AdapHH [20],
is considered as one of the state-of-the-art selection hyper-
heuristics in cross-domain search. AdapHH was the only
method of the top 10 entrants to CHeSC2011 to provide a
strategy to manage input for crossover low-level heuristics.
Drake et al. [13] presented results over the CHeSC2011
benchmarks using a Modified Choice Function - All Moves
hyper-heuristic, improving on the initial results of Drake et
al. [11] by including a strategy to manage the input for
crossover low-level heuristics. In this paper we present a
set of experiments to investigate the use of crossover oper-
ators within these two previously proposed selection hyper-
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heuristics. Firstly, we replace the crossover control mechanism
of Drake et al. [13] within a Modified Choice Function -
All Moves hyper-heuristic with the mechanism from AdapHH,
resulting in a significant deterioration in performance in some
problem domains. Secondly, we use the crossover mechanism
of Drake et al. [13] within AdapHH, with mixed results in
different problem domains.

Mutational Heuristics

II. LITERATURE REVIEW

Ozcan et al. [22] decomposed selection hyper-heuristics
into two fundamental components, a heuristic selection method
and a move acceptance criterion. A number of frameworks
such hyper-heuristics can operate in was also defined. In a
traditional selection hyper-heuristic framework operating on a
single solution, low-level heuristics are iteratively selected and
applied to the solution, with a decision made following each
application as to whether to accept the modified solution. This
is typically referred to as an F4 selection hyper-heuristic using
the definitions of Ozcan et al. [22]. A selection hyper-heuristic
operating within an Fo framework is defined as one which
first selects and applies a heuristic from a set of mutational
low-level heuristics, before applying a hill climbing low-level
heuristic. This is the framework that will be used for any
Modified Choice Function - All Moves hyper-heuristics in this
paper and is depicted in Figure 1.

Despite the inclusion of crossover operators in modern
hyper-heuristic frameworks such as HyFlex [21] and Hyper-
ion [24], limited research effort has been directed at managing
the input for this type of low-level heuristic. Typically a
selection hyper-heuristic operates within a single-point search
framework, operating on a single solution. In the case of
low-level heuristics which require more than one solution as
input, a natural choice for one of the solutions is the current
working solution in the hyper-heuristic. Unfortunately there is
not necessarily a natural choice for which solution to use as
the second input to such operators. Drake et al. [10] introduced
the notion of crossover control at two different conceptual
levels, raising a broader question regarding the responsibility
of crossover management within selection hyper-heuristics.
Although controlling crossover below the domain barrier has
shown to be useful in some problem domains [10], depending
on the framework used this is not always possible. In the case
of the HyFlex framework, this responsibility lies entirely with

the implementer of the high-level heuristic search methodology
rather than the coder of the low-level problem domain. Doerr
et al. [7], [8] showed that crossover is provably beneficial
in at least some classes of practical optimisation problems.
It follows that in order to be successful, methods operating
over multiple problem domains need to manage this type of
operator effectively.

The Choice Function was introduced as a heuristic selec-
tion method by Cowling et al. [6] in the first hyper-heuristic
paper in the field of combinatorial optimisation. The Choice
Function scores heuristics based on a combination of three
different measures and applies the heuristic with the highest
rank at each given step. Each measure is weighted to priori-
tise intensification and diversification in the heuristic search
process at appropriate times during the search. A number of
methods have been proposed in the literature to set appropriate
parameter values to weight these measures. One such method
is the Modified Choice Function heuristic selection method
proposed by Drake et al. [11], designed to overcome some
of the limitations of the original Choice Function within the
context of cross-domain heuristic search. Placing a heavy em-
phasis on the intensification component of the original Choice
Function, the Modified Choice Function showed increased
performance on average over the CHeSC2011 benchmark
instances. Modified Choice Function heuristic selection has
also been used in the context of dynamic environments [18]
and the multidimensional knapsack problem [12].

The winner of the CHeSC2011 competition, AdapHH [20],
is a highly adaptive hyper-heuristic which contains a number
of online learning mechanisms. Unlike many of the other
leading entrants to CHeSC2011, AdapHH includes crossover
operators in the available low-level heuristic set. Although the
original description of this algorithm contained no mention
of a method to manage the second input solution required
by crossover operators, the code of AdapHH was later made
publicly available with the crossover management scheme
described by Misir [19] as:

‘...a population of five solutions including previously
explored new best solutions is accommodated. They
are applied using the current solution and a randomly
selected one from these five solutions. Each time
a new best solution is found, a randomly chosen
solution from these solutions is replaced by the new
solution.’

Again in the context of the CHeSC2011 benchmark in-
stances, Drake et al. [13] presented a Modified Choice Function
- All Moves hyper-heuristic using crossover low-level heuristics
managed using a control scheme inspired by Drake et al. [10].
This hyper-heuristic operated within an F4 framework and
showed a vast improvement in solution quality over the six
benchmark problem domains in HyFlex, compared to the
results of Drake et al. [11]. Each time the heuristic selection
mechanism selects a crossover low-level heuristic, a solution is
selected randomly from a memory of elite solutions to use as a
second input, with the first input being the incumbent solution
within the single-point search framework. The memory of
elite solutions is updated each time a new solution is found
which is an improvement over any existing solution within the
memory. In this case, the new solution replaces the poorest



quality solution in the elite list. At every m-th application of
a crossover low-level heuristic, where m is the length of the
memory of elite solutions, a new randomly generated solution
is used as the second input for crossover. This intends to
preserve some element of diversity within the search.

III. EXPERIMENTAL FRAMEWORK DEFINITIONS

The following sections of this paper explore the intro-
duction of different crossover control schemes into different
hyper-heuristics, using the instances from CHeSC2011 as a
benchmark for comparison. Section IV-A modifies the hyper-
heuristics of Drake et al. [13] to use the Fz framework as
defined by [22] and compares the effect of using the original
crossover control scheme to using the AdapHH crossover
control scheme of Misir et al. [20] and omitting crossover low-
level heuristics completely. Section IV-B compares the perfor-
mance when replacing the original crossover control mecha-
nism within the AdapHH hyper-heuristic with the method used
in the Modified Choice Function - All Moves hyper-heuristic
presented by Drake et al. [13].

The crossover control mechanism of Drake et al. [13]
selects a second solution from a memory of elite solutions,
with a random solution used every mth time a crossover low-
level heuristic is selected. In the original work, the value of
m was set to 10, in order to quickly expunge poor quality
solutions early on in the search process. In all experiments
using this crossover control mechanism within this paper we
will also set this value to 10. In the case of the AdapHH
crossover control mechanism, each time a second solution is
required by a crossover operator, one is selected at random
from a list of 5 solutions. In the case a superior solution is
found after applying the crossover low-level heuristic, the new
solution replaces one of the 5 solutions in the list at random.
Initially the list of 5 solutions is comprised of copies of the
starting solution.

In order to compare the hyper-heuristics submitted to the
competition, CHeSC2011 used a points-based scoring system
inspired by a system previously used by Formula One motor
racing to rank performance. Here we will use the same method
to compare hyper-heuristics. The Formula One ranking system
(2003-2009) assigns a number of points to different competi-
tors based on their performance. The first place competitor
is awarded 10 points, the second 8 points and then each
further hyper-heuristic is awarded 6, 5, 4, 3, 2, 1 and O points
respectively. As the Formula One ranking system allocates
scores to the top 8 ranked contestants, all hyper-heuristics
which are ranked > 9th position are given a score of 0. A
selection of five instances were selected from each of the six
problem domains to use as testing instances, resulting in a
total of 30 instances. The six problem domains are: Boolean
satisfiability (MAX-SAT), one-dimensional bin packing (BP),
personnel scheduling (PS) and permutation flow shop (FS),
the vehicle routing problem (VRP) and the travelling salesman
problem (TSP). Each hyper-heuristic was allowed to run for
a notional 10 minutes per instance, as dictated by the bench-
marking tool provided by the CHeSC2011 organisers. Runs are
repeated 31 times in order to account for the stochastic nature
of solving such optimisation problems. The median result of
the 31 runs is reported as the score for a given hyper-heuristic
applied to a given instance. Scores are then allocated using

TABLE I: Results of the median of 31 runs of Fo Modified
Choice Function - All Moves hyper-heuristics (a) without
crossover and (b) with crossover, compared to CHeSC2011
competitors using Formula One scores over all problem do-
mains

(2) (W)

Rank Name Score Rank | Name Score
1 AdapHH 179.1 1 AdapHH 176.85
2 VNS-TW 131.6 VNS-TW 131.35
3 ML 127.5 3 ML 122
4 PHunter 90.25 4 PHunter 87.75
5 EPH 89.25 5 EPH 84.25
6 HAHA 72.85 6 HAHA 74.1
7 NAHH 71.5 7 MCF - AM 73.2
8 ISEA 68.5 8 NAHH 69.5
9 KSATS-HH 61.35 9 ISEA 65.5
10 HAEA 52 10 KSATS-HH 57.7
11 ACO-HH 39 11 HAEA 49
12 GenHive 36.5 12 ACO-HH 37
13 MCF - AM | 36.35 13 GenHive 335
14 DynILS 27 14 SA-ILS 23.1
15 SA-ILS 2275 15 DynILS 22
16 XCJ 20.5 16 XCJ 18.5
17 AVEG-Nep 19.5 17 AVEG-Nep 18.5
18 GISS 16.25 18 GISS 16.6
19 SelfSearch 5 19 SelfSearch 6
20 MCHH-S 3.25 20 MCHH-S 3.6
21 Ant-Q 0 21 Ant-Q 0

the Formula One system outlined above, based on the median
results obtained by each hyper-heuristic for each instance. As
the maximum number of points for each instance is 10, and
there are 30 instances in total, the maximum possible score
for any hyper-heuristic is 300.

IV. EXPERIMENTS AND RESULTS

A. The F¢c Modified Choice Function - All Moves hyper-
heuristic with and without crossover

The Modified Choice Function - All Moves hyper-heuristics
of Drake et al. [13] operated using an F'4 framework. That
is, the hyper-heuristics select and apply a low-level heuristic
from the full set of available heuristics without discriminating
between different heuristic types. This section will modify
these hyper-heuristics to operate using an F framework.
As discussed in detail by Drake et al. [13], the top three
hyper-heuristics in CHeSC2011 are all capable of behaving
as F selection hyper-heuristics. Table I presents the results
of Modified Choice Function - All Moves with and without
crossover, using an F selection hyper-heuristic framework
over the CHeSC2011 benchmarks. As stated previously, the
median of each of 31 ten minute runs are used to compare a
hyper-heuristic with the 20 entrants to CHeSC2011 using the
Formula One scoring system. From Table I(a) and Table I(b) it
is clear that the F(o versions of these hyper-heuristics perform
slightly worse than their F'4 counterparts presented by Drake
et al. [13].

Table II shows the breakdown of points scored in each
problem domain, compared to the CHeSC2011 entrants, for
each of the F'y and Fo Modified Choice Function - All Moves
hyper-heuristics with and without crossover. In the case of
Modified Choice Function - All Moves hyper-heuristics without
crossover, very high scores are obtained in the MAX-SAT



problem domain within both an F'4 and an Fo framework. The
Feo Modified Choice Function - All Moves without crossover
scores 28.35 points in this domain whereas the F'4 version of
this hyper-heuristic scored 32.85 points. Despite performing
well, the Fo hyper-heuristic is not the best method in this
domain overall, unlike the F4 Modified Choice Function
- All Moves of Drake et al. [11] which outperformed all
20 CHeSC2011 competitors. The performance of these two
hyper-heuristics over all six problem domains is very similar
in terms of Formula One score. The F¢ and Fa Modi-
fied Choice Function - All Moves hyper-heuristics without
crossover score 36.35 and 38.85 points in total respectively
against the CHeSC2011 competitors. Both hyper-heuristics
score 6 points in the personnel scheduling problem domain.
Although the F» hyper-heuristic scores fewer points in total,
it does score 2 points in the vehicle routing problem where
previously the F'4 hyper-heuristic scored no points. This could
be a direct result of the addition of a local improvement phase.
The methods which are first, second and third in this domain
all operate within frameworks which use local improvement
following a perturbative move in the search space.

For Modified Choice Function - All Moves with crossover
(Table II(c) and Table II(d)), again the performance of the
F, and F¢ variants are similar in terms of total Formula
One points scored (73.7 and 73.2 respectively). In the case
of MAX-SAT, both variants score exactly the same number
of Formula One points (21.2) so the inclusion of a local
search phase has little effect in this domain. Both methods are
also similar in bin packing and the vehicle routing problem,
with the F hyper-heuristic slightly outperforming the F4
hyper-heuristic obtaining 24 and 25 points in each domain
respectively, compared to 21 and 23 points gained by the
F4 variant. The only notable difference in performance is
observed in the personnel scheduling domain where the F4
hyper-heuristic scores 8.5 points and the Fo hyper-heuristic
scores 2. This is unexpected as in general hyper-heuristics
which use a local search phase performed well in this domain
in the competition.

Table III shows the Formula One scores obtained by the
Modified Choice Function - All Moves hyper-heuristics with
the AdapHH crossover control scheme, compared to the 20
CHeSC2011 entrants. Overall the Modified Choice Function -
All Moves with AdapHH crossover scores 34.6 points over the
six problem domains, ranking 12th out of 21 when compared
to the CHeSC2011 entries. This hyper-heuristic performs very
well in the vehicle routing problem, scoring 26 points, second
only to PHunter [5]. In the remaining five problem domains
points are scored in four, with 6 points scored in bin packing
being the only performance of note.

Figure 2 shows the number of Formula One points scored
by an Fo Modified Choice Function - All Moves hyper-
heuristic using the crossover control scheme described by
Drake et al. [13], the crossover control scheme of AdapHH [20]
or no crossover at all.

From this figure, we can see that the most striking differ-
ence between the hyper-heuristic using the AdapHH crossover
control scheme and the two Modified Choice Function - All
Moves hyper-heuristics from Section IV-A (With Crossover
and Without Crossover), is the complete deterioration in per-
formance in the MAX-SAT problem domain. Whereas the

TABLE 1II: Formula One scores for (a) F'4 Modified Choice
Function - All Moves without crossover [13], (b) Fo Modified
Choice Function - All Moves without crossover, (¢) F'4 Modi-
fied Choice Function - All Moves with crossover [13] and (d)
Feo Modified Choice Function - All Moves with crossover in
each problem domain compared to CHeSC2011 competitors
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TABLE III: Formula One scores for Modified Choice Function
- All Moves with the crossover control mechanism of the
CHeSC2011 winner and CHeSC2011 competitors in each
problem domain

Rank | Name SAT BP PS FS TSP VRP Total
1 AdapHH 34.75 45 9 37 40.25 14 180
2 VNS-TW 34.25 2 39.5 34 17.25 5 132
3 ML 14.5 11 31 39 13 18 126.5
4 PHunter 10.5 3 11.5 9 26.25 30 90.25
5 EPH 0 10 10.5 21 35.25 11 87.75
6 HAHA 32.75 0 255 | 35 12 73.75
7 NAHH 14 19 2 22 2 4 73
8 ISEA 6 29 145 | 35 12 3 68
9 KSATS-HH 23.85 11 9.5 0 0 20 64.35
10 HAEA 0.5 3 2 10 11 24 50.5
11 ACO-HH 0 20 0 9 8 1 38
12 MCF - AM 0.6 6 1 0 1 26 34.6
13 GenHive 0 12 6.5 7 3 6 34.5
14 DynILS 0 12 0 0 13 0 25
15 SA-ILS 0.6 0 19.5 0 0 3 23.1
16 XCJ 55 12 0 0 0 4 21.5
17 AVEG-Nep 12 0 0 0 0 8 20
18 GISS 0.6 0 10 0 0 6 16.6
19 SelfSearch 0 0 3 0 3 0 6
20 MCHH-S 4.6 0 0 0 0 0 4.6
21 Ant-Q 0 0 0 0 0 0 0

decision to either include crossover operators or not in the
low-level heuristic set did not affect the performance in this
domain significantly, the management of the inputs for such
operators can have a great effect on performance. This is an
interesting result as it is not necessarily a simple case of
whether or not crossover operators are useful in a particular
problem class. In the case of the vehicle routing problem it
is clear from Figure 2 that both of the hyper-heuristics which
use crossover outperform the hyper-heuristic which doesn‘t.
This result suggests that crossover is inherently beneficial
in the case of the vehicle routing problem irrespective of
method of managing the second solutions. Bin packing is
another interesting case, where including crossover obviously
provides benefits, however the strategy used to manage the



Fig. 2: Formula One points scored using each crossover control
scheme within Fo Modified Choice Function - All Moves
compared to CHeSC2011 entrants
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input solutions also has a great bearing on performance. The
crossover strategy of AdapHH scores 6 points in this domain,
with the crossover control scheme of Drake et al. [13] scoring
24 points. For the travelling salesman problem and permu-
tation flow shop domains, all three hyper-heuristics perform
particularly poorly, scoring a single point between them. It is
possible that there is another crossover control scheme which
will perform well in these domains, however it is more likely
that this is a result of the high-level heuristic selection method
- move acceptance criterion combination used. The methods
that perform particularly well in these two domains are often
the hyper-heuristics which perform well overall. Not including
crossover operators at all is the best scheme in personnel
scheduling however even this strategy does not perform well
when compared to the CHeSC2011 entrants.

B. Introducing a different crossover control scheme into the
CHeSC2011 winner

Where the previous section introduced the crossover con-
trol scheme of the CHeSC2011 winner into an Fo Modified
Choice Function - All Moves hyper-heuristic, this section will
reverse these roles and introduce the crossover control scheme
defined by Drake et al. [13] into the CHeSC2011 winner.
Following the CHeSC2011 competition the source code for
the winning hyper-heuristic (AdapHH) was made available!.
For our experiments, no modifications were made to this
source code with the exception of modifying the mechanism to
provide second solutions for crossover. Here the results of an
independent set of 31 runs of AdapHH over the CHeSC2011
benchmarks are presented along with 31 runs of this hyper-
heuristic with the crossover control scheme of Drake et al. [13].
As an indirect comparison, Table IV(a) and Table IV (b) present
the number of Formula One points scored by each AdapHH
hyper-heuristic when compared with the other 19 competition
entrants. These figures are presented visually in Figure 3.
Please note that in each case the results obtained replace the

!Available at: http://code.google.com/p/generic-intelligent-hyper-heuristic/
downloads/list

TABLE IV: Formula One scores for (a) an independent
run of AdapHH and (b) AdapHH with modified crossover
management scheme in each problem domain compared to
CHeSC2011 competitors

(a)

Rank Name SAT BP PS FS TSP VRP Total
1 AdapHH 35.75 32 13.5 42 45 15 183.25
2 ML 14.5 12 31 37 13 22 129.5
3 VNS-TW 33.25 3 375 32 16.33 6 128.083
4 PHunter 10.5 4 11.5 9 25.33 33 93.33
5 EPH 0 11 10.5 20 33.33 12 86.83
6 NAHH 14 22 2 22 12 6 78
7 ISEA 6 34 145 | 35 12 5 75
8 HAHA 32.75 0 245 | 35 0 14 74.75
9 KSATS-HH 24 11 9.5 0 0 22 66.5
10 HAEA 0.5 3 2 10 11 27 53.5
11 ACO-HH 0 23 0 9 8 2 42
12 GenHive 0 14 7 7 3 6 37
13 DynILS 0 14 0 0 13 1 28
14 SA-ILS 0.75 0 19.5 0 0 4 24.25
15 XCJ 55 12 0 0 0 5 22.5
16 AVEG-Nep 12 0 0 0 0 9 21
17 GISS 0.75 0 8 0 0 6 14.75
18 SelfSearch 0 0 4 0 3 0 7
19 MCHH-S 4.75 0 0 0 0 0 4.75
20 Ant-Q 0 0 0 0 0 0 0
(b)

Rank Name SAT BP PS FS TSP VRP Total
1 AdapHH 34.75 31 14 39 44 13 175.75
2 VNS-TW 34.25 3 375 34 16.33 6 131.083
3 ML 14.5 12 31 38 13 22 130.5
4 PHUNTER 10.5 4 11.5 9 25.33 32 92.33
5 EPH 0 11 10.5 21 33.33 12 87.83
6 ISEA 6 34 145 | 35 14 6 78
7 NAHH 14 22 2 21 11 6 76
8 HAHA 32.75 0 245 | 35 0 13 73.75
9 KSATS-HH 24 11 9.5 0 0 22 66.5
10 HAEA 0.5 4 2 10 11 27 54.5
11 ACO-HH 0 23 0 9 8 3 43
12 GenHive 0 14 6.5 7 3 6 36.5
13 DynILS 0 14 0 0 13 1 28
14 SA-ILS 0.75 0 19.5 0 0 4 24.25
15 XCJ 55 12 0 0 0 5 225
16 AVEG-Nep 12 0 0 0 0 9 21
17 GISS 0.75 0 8 0 0 8 16.75
18 SelfSearch 0 0 4 0 3 0 7
19 MCHH-S 4.75 0 0 0 0 0 4.75
20 Ant-Q 0 0 0 0 0 0 0

results of the original CHeSC2011 AdapHH hyper-heuristic
when calculating the Formula One scores for each instance.

Interestingly the results of 31 independent runs of
AdapHH Yyield slightly different results to those achieved in
CHeSC2011, with 183.25 points scored overall compared to
181 in the original competition. This has the knock-on effect
that the second placed competitor in the original competition
VNS-TW [16], is now third having been overtaken by ML.
Comparing the results of Table IV it can be seen that the
original crossover management scheme of AdapHH is able to
yield better results than modifying the crossover management
scheme to the method described in Drake et al. [13]. The
original AdapHH outperforms the version with a modified
crossover management scheme in all problem domains with the
exception of personnel scheduling. There does not appear to be
a significant difference in general, with both hyper-heuristics
retaining first place when compared to the other 19 competition
entrants.



Fig. 3: Formula One points scored by each crossover control
mechanism within AdapHH compared to CHeSC2011 com-
petitors
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TABLE V: Pairwise comparison of AdapHH with differing
crossover control schemes using independent Student’s t-test

Problem Domain
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As a direct comparison, Table V shows the results of an
independent Student’s t-test within a 95% confidence interval
on the objective function values for 31 runs of each instance.
Each cell of the table provides the number of instances of a
particular domain in which there is a variation in performance
between the two hyper-heuristics. In this table > and > show
the number of cases that the original AdapHH is outperform-
ing performing AdapHH with a modified crossover control
scheme on average or statistically significantly respectively.
Conversely, < and < denote the number of cases which the
AdapHH with modified crossover control scheme outperforms
the original AdapHH on average or statistically significantly.

In terms of average performance, the original AdapHH
outperforms AdapHH with modified crossover management
in 18 of the 30 instances. There are very few cases in
which the difference is statistically significantly different. A
notable case is the vehicle routing problem where it is possible
for both AdapHH hyper-heuristics to statistically significantly
outperform each other in different instances. If it is indeed
the case that the benefit of crossover varies on a per instance
basis, this effectively reduces the size of each problem class
for which crossover is useful to one, rendering generalisation
irrelevant. It could also be the case that in the problem domains
where crossover is useful in some cases but not others, there
is a subset of instances which share certain features for which
the use of crossover leads to gains in performance. This raises
a larger question regarding the tuning of hyper-heuristics,

particularly in an offline manner. If in advance of a full run,
a hyper-heuristic is made aware of instance specific properties
(e.g. size, nature of the search landscape), it would be possible
to make choices regarding which hyper-heuristic components
or parameter settings to use in different cases. A counter
argument to this type of tuning is that in effect, as the hyper-
heuristic is able to distinguish between problem domains based
on these properties and therefore alter behaviour for different
domains, the domain barrier is effectively broken.

The same argument can be made regarding offline tun-
ing based on the set of low-level heuristics available, using
properties such as heuristic type (i.e. mutation, crossover etc.)
or expected runtime. As an example, in the case of the
personnel scheduling domain the expected runtime of each
low-level heuristic is exceptional in length compared to the
other problem domains in HyFlex. Some of the competitors to
CHeSC2011 take advantage of this fact, modifying behaviour
at execution time based on the observed runtimes of low-level
heuristics, often through schemes designed based on previous
experience. This is a slippery slope when the intention is
to develop general methods which are able to perform well
over a large number of domains. If the behaviour of a hyper-
heuristic is adjusted in such a way for each available problem
domain, potentially it is reduced to a set of if-then clauses,
with individual behaviours specified for each problem domain.
This reduces the hyper-heuristic design process to a software
engineering task, with the intention of ‘winning’ a competition,
rather than focusing on algorithm design for multiple problem
domains.

A further complication is the relatively small number of
problem domains being considered. In some cases the choice
of whether or not to include crossover operators at all will
affect performance, however in others it can be affected by
the method used to manage the inputs for such operators. In
a more general sense, using only six problem domains could
be seen as a very small sample. It is accepted that in order
to assess the effectiveness of a stochastic method, multiple
runs are needed to provide a reasonable picture of average
performance. It is also the case that to assess how effective a
method is in a given problem domain, a reasonable size sample
of problem instances should be tested to average performance.
Therefore it could be considered unreasonable to expect any
generalisations made using these benchmarks to hold true if
there were 50 or 5000 problem domains.

V. CONCLUSIONS

In this paper we have compared the hyper-heuristic level
crossover control scheme introduced by Drake et al. [13] with
the crossover management scheme of the CHeSC2011 winner,
AdapHH. This was done in two ways, firstly the crossover
control scheme defined by Drake et al. [13] was replaced
with the crossover management scheme of AdapHH within
a Modified Choice Function - All Moves hyper-heuristic. Sec-
ondly, this crossover control scheme was used within AdapHH,
replacing the existing crossover control scheme defined for this
hyper-heuristic. When comparing different crossover control
schemes, it becomes clear that there are some domains or
instances for which the choice of crossover control scheme
is crucial in determining performance. Unfortunately despite
having a large impact in some instances within a Modified



Choice Function - All Moves hyper-heuristic previously, the
choice of crossover management scheme does not make a
great deal of difference in the case of AdapHH. This provides
a challenge when trying to generalise certain hyper-heuristic
components, such as the management of solutions for n-
ary operators, as dependencies clearly exist between different
hyper-heuristic components. Although these conclusions may
seem inconclusive, this is somewhat a result of performing
such a wide study over multiple domains. If a single do-
main was studied, it may have been possible to derive a
stronger conclusion however this would not have survived
future studies. Future work will focus on identifying which
situations certain crossover control schemes are effective in,
and adjusting the method used based on the requirements of
the problem currently under consideration.
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