
October 5, 2019 International Journal of Production Research output

To appear in the International Journal of Production Research
Vol. 00, No. 00, 00 Month 20XX, 1–21

An experimental analysis of Deepest Bottom-Left-Fill packing methods for

Additive Manufacturing

Luiz J.P. Araújoab∗ , Ajit Panesarcd , Ender Özcana , Jason Atkina , Martin Baumersd and Ian Ashcroftd

aAutomated Scheduling, Optimisation and Planning Group School of Computer Science, University of

Nottingham, Nottingham NG8 1BB, UK; bInnopolis University, Innopolis 420500, Russia; cDepartment of

Aeronautics, Imperial College London; dCentre for Additive Manufacturing, Faculty of Engineering,

University of Nottingham, Nottingham NG7 2RD, UK

(v5.0 released June 2015)

The adoption of Additive Manufacturing (AM) technology requires the efficient utilisation of the avail-
able build volumes to minimise production times and costs. Three-dimensional algorithms, particularly
the Deepest Bottom-Left-Fill (DBLF) heuristic, have been extensively used to tackle the problem of
packing arbitrary 3D geometries within the AM sector. A particularly common method applied to more
realistic packing problems is the combination of DBLF and metaheuristics such as Genetic Algorithms
(GAs). Through a series of experiments, this paper experimentally investigates the practical aspects, and
comparative performance of different DBLF based methods including a brute force algorithm and GA
combined with DBLF for AM build volume packing. The insights into the relationship between algorithm
efficiency (in terms of volume utilisation), simulation runtime, and practical requirements, in particular
geometry rotation constraints are investigated. In addition to providing an increased comprehension of
the practical aspects of applying DBLF algorithms in the AM context, this study confirms the limita-
tions of traditional DBLF and the requirements for more flexible and intelligent placement strategies
while experimentally demonstrating that higher degrees of freedom for part rotation contribute to small
improvements in volume density. The resulting additional computational effort discourages this strategy,
however.

Keywords: build volume packing; benchmarking; additive manufacturing; 3D printing; deepest
bottom-left-fill

1. Introduction

Additive Manufacturing (AM) technology, also known as 3D Printing, has emerged as a promis-
ing prospect for mainstream manufacturing (Petrovic et al. 2011; Conner et al. 2014). AM offers
the opportunity to realise high-performance parts exhibiting complex geometries which may be
more challenging or in some cases impossible to manufacture using conventional manufacturing
processes. Over the recent years there has been significant attention on the utilisation of computa-
tional methods to progress different strands of AM research (Zhang, Yao, and Li 2019). Examples
include: identifying optimal designs that incorporate support structure requirements (Langelaar
2016), efficient methods for AM designs (Wu, Clausen, and Sigmund 2017; Panesar et al. 2017b),
generative design approaches for functionally graded cellular materials (Daynes et al. 2017; Panesar
et al. 2017a), simulations to better understand and improve the processing conditions (Francois
et al. 2017), novel frameworks that allow for the realisation of structures with embedded system
componentry (Panesar et al. 2017a), and the efficient utilisation of the available build volume (i.e.
packing), which is a relevant feature from a cost perspective (Baumers et al. 2017a).

∗Corresponding author. Email: psxlja@exmail.nottingham.ac.uk

October 5, 2019 International Journal of Production Research output

In particular, the utilisation of the available build volume will enable reduced per-unit production
time and cost (Baumers et al. 2017a) which, according to models of technology diffusion, is likely
to lead to increased technology adoption (Stoneman 2001). Such process modelling is aided by
the layer-by-layer deposition process of currently available AM technology, allowing the precise
estimation of material utilisation, energy consumption, build time and production costs (Baumers
et al. 2013, 2017a). Among the available AM technology variants (Gibson, Rosen, and Stucker 2010)
Laser Sintering (LS) serves as a good starting point for investigating the packing performance of
algorithms in the context of real-world AM parts as it does not require support structures, avoiding
the addition of extra process-imposed constraints, and allows fully three-dimensional build volume
configurations.

Research from other communities can aid in addressing this AM problem. The Operations Re-
search (OR) community study a number of combinatorial optimisation problems. The engineering
problem of maximising the utilisation of a constrained n-dimensional space can be considered an
instance of a problem type referred to as Cutting and Packing (C&P) problem in the OR literature.
These problems occur in several other industrial applications such as shipping and packaging, where
the aim is to maximise the utilisation of some limited space. Despite their seemingly straightfor-
ward definition, C&P problems are NP-Hard (Fowler, Paterson, and Tanimoto 1981). In practical
terms, this means that the solution time to guarantee an optimal solution is likely to increase
exponentially with the size of the input, making real-world problems intractable. This is especially
true when more complex shapes are required to be arranged within the build volume. Wäscher,
Haußner, and Schumann (2007) distinguish objects between regular (e.g. rectangles, boxes, cylin-
ders, spheres) and irregular (or non-regular) with the latter being the more adequate to describe
objects typically produced by AM processes. The optimisation problem under consideration is
known as the three-dimensional irregular packing problem (3DIP).

C&P problems are often addressed by approximation methods that provide “good-enough” so-
lutions in a reasonable time (Stoyan et al. 2004). Most of the approaches for solving 3DIP problems
applied to the AM sector utilise variations of the bottom-left (BL) heuristic (Ikonen et al. 1997;
Canellidis et al. 2006; Gogate and Pande 2008; Canellidis, Giannatsis, and Dedoussis 2009, 2013;
Araújo et al. 2018). BL is a placement strategy firstly proposed by Art (1966) for solving two-
dimensional packing problems and subsequently adapted to iteratively fill the spaces between the
previously packed items, a variant commonly refereed to as bottom-left-fill (BLF). Finally, the
latter method was extended to 3D in the form of the deepest bottom-left-fill (DBLF) heuristic
(Karabulut and İnceoğlu 2004).

Existing solutions for 3DIP within usually integrate meta-heuristics to placement policies to
find packing sequences that result in better volume utilisation. Examples of meta-heuristics used
in the packing domain include tabu search (Lodi, Martello, and Vigo 2004; Gendreau et al. 2008;
Crainic, Perboli, and Tadei 2009), guided local search (Voudouris, Tsang, and Alsheddy 2010)
and algorithms (GA), which have been the predominant approach for three-dimensional problems
(Ikonen et al. 1997). Concerning GA, however, there has been no comprehensive investigation on
the effects that different degrees of freedom for rotation allowance have on the packing performance
from different DBLF methods, which can be assessed by observing the resulting algorithm runtime
and volume density.

This study focuses on the use of the DBLF heuristic with GA as this has been the most exten-
sively approach for packing problems applied to AM (Ikonen et al. 1997; Gogate and Pande 2008;
Canellidis et al. 2006; Baumers et al. 2013). This paper investigates the practicality of the DBLF al-
gorithm by (i) discussing the main DBLF based approaches, their strengths and weaknesses within
the remit of AM; (ii) presenting a study of the trade-offs in performance, in terms of computational
runtime and packing efficiency (z-height), and (iii) experimentally demonstrating the effects that
variations in constraints and input parameters for DBLF have on packing performance.

This paper is structured as follows. Firstly, the terminology and the main DBLF based packing
approaches reported in the literature are reviewed including a brief discussion of the common

2

October 5, 2019 International Journal of Production Research output

workflow structure shared by these algorithms. Secondly, the methodology for implementing the
considered three DBLF algorithms as well as the specifications for utilised instances and the design
of a series of experiments are presented. Subsequently, the results and findings from the experiments
are discussed together with some insights for AM practitioners. This study concludes by presenting
some recommendations for the utilisation of DBLF methods and future research efforts in this field.

2. Approaches: terminology, data structures and workflow

As outlined in the introduction, the build volume packing problem identified in the AM-related
engineering literature is viewed as a Cutting and Packing (C&P) problem in the field of of OR
and the terminologies used in both fields differ. To facilitate the understanding of research across
both areas, the following subsections introduce the key elements of this problem based on the usual
terminology, and describe the DBLF algorithm in detail.

2.1 Cutting and Packing Problems in Operational Research

C&P problems are multidisciplinary problems that have appeared in the OR literature since the
1960s (Art 1966) in several forms, with varying objectives and constraints. Surveys and typolo-
gies for classifying C&P problems have been presented in the past by Dyckhoff (1990), Wäscher,
Haußner, and Schumann (2007), and Araújo et al. (2018), with each new version attempting to
address issues identified in the prior art. While a variety of definitions of the common OR termi-
nology have been suggested in the literature, this paper will use the nomenclature introduced by
Araújo et al. (2018) in conjunction with an adapted terminology familiar to the AM community.

According to Dyckhoff (1990, page 148), C&P problems “in the narrow sense are characterised
by large objects defined as the empty useful space of ... containers and bins”. In this study, the term
‘container’ is utilised to refer to the cuboidal volume within AM systems in which part geometry is
built up. Dyckhoff (1990) also stated that “the principal aspect of container loading concerns the
geometric combination of small items to packing patterns which can be assigned to containers”.
Applied to the AM context, the term ‘small items’ reflects the digital 3D geometries provided in a
computer-aided design (CAD) format for manufacturing. Here, the STereoLithography (STL) file
format is an industry standard employed to represent parts in a modelling environment. Further,
Araújo et al. (2018) distinguished between the physical manufactured product as ‘part’ (or item)
and its data structure representation as ‘model’ (also ‘shape’).

The maximisation of the build volume utilisation is an objective that can arise in different
forms in a layer manufacturing process (Araújo et al. 2018). For example, Baumers et al. (2013)
demonstrated that the build volume height is a variable that affects the estimated production cost
and process energy consumption. Such optimisation problems are is known in the OR literature as
the Three-dimensional Strip Packing (3DSP) problems (Wäscher, Haußner, and Schumann 2007).
In other cases, C&P problems aim to minimise of the number of containers to accommodate the
a range of demanded items, which can be translated as the minimum number of build operations
in AM. This problem is commonly referred to and the Three-dimensional Bin Packing (3DBP)
problem (Wäscher, Haußner, and Schumann 2007).

It should also be noted that C&P problems have in common with other combinatorial opti-
misation problems that they are characterised by a large search spaces, disallowing exhaustive
investigation of each candidate solution (Jakobs 1996; Falkenauer and Delchambre 1992). Hence,
most of the solution methods for packing problems are heuristic in nature. Therefore, this study
includes an empirical analysis of the most common packing approaches that have been applied to
AM and aims to identify the strengths and weaknesses of each, as well to provide recommendations
for future implementations of such methods.

3

October 5, 2019 International Journal of Production Research output

(a) Resulting build volume height: 285.0 cm (b) Resulting build volume height: 205.0 cm

Figure 1. Application of the DBLF heuristic to a group of parts considering two different orders.

2.2 Bottom-Left and Deepest Bottom-Left-Fill algorithms

The intuition behind the bottom-left (BL) heuristic is that each of the two-dimensional objects
should be arranged onto as near as possible to the bottom-left corner of the available two-
dimensional space (Art 1966). Items are considered one at a time, and the order of considera-
tion can often affect the efficiency of the algorithm. Each item is then placed as low as possible
(‘bottom’) in the container, and as far to the left as possible on that lowest layer (‘left’).

The Deepest Bottom-Left-Fill (DBLF) algorithm is an extension of the BL heuristic to 3D,
which considers the deepest positions in the container, packing the item as close to the bottom and
left (in that order) on the deepest level as possible (Art 1966). The performance of such methods,
in terms of the volume density achieved, depends on a number of factors including: the number of
parts, the sequence they are processed in and the allowable part orientations (Bennell and Oliveira
2009). Figure 1 illustrates how different build volume heights, and hence volume densities, result
from changing the sequence of parts placed by a DBLF algorithm.

There are two common research directions pursued by the OR community to improve the effi-
ciency of BL and DBLF methods. The first direction aims to improve the placement strategy by
minimising the gaps that appear during the packing process (Albano and Sapuppo 1980; B lażewicz,
Hawryluk, and Walkowiak 1993). Methods like the no-fit polygon approach (Art 1966) often involve
advanced geometric and topologic calculations for detecting and resolving overlap between the ge-
ometries. Simpler alternatives, on the other hand, tackle this by considering small perturbations
in position and orientations for the parts (Knight, Jaeger, and Nagel 1993; Möbius et al. 2001).
The second direction is related to the choice of the sequence in which shapes are considered, or the
criteria for sorting the parts. For example, Art (1966) sorted the parts in increasing order of widths
due to the characteristics of the addressed problem, which required the minimisation of the width
of the utilised area. Other sorting criteria include, for example, decreasing order of a part feature
(e.g. height, volume) as implemented by the so-called ‘Bottom-Left Decreasing’ (BLD) algorithms
(Coffman Jr et al. 1980; Lesh et al. 2005).

When applied to AM, BL based techniques present a similar top-level structure of tasks, which

4

October 5, 2019 International Journal of Production Research output

Figure 2. Workflow of practical BL and DBLF based packing algorithm.

can be illustrated by the workflow in Figure 2 and is discussed in detail below.
An important aspect of BL approaches, including DBLF, when addressing arbitrary geometries

is the adopted boundary representation (i.e. how the solids are represented) (Cagan, Shimada,
and Yin 2002; Stroud 2006). In the original implementation of the BL procedure (Art 1966),
for example, non-convex 2D polygons were simplified to convex envelopes to allow more efficient
execution of the algorithm. The majority of existing 3DIP approaches employs either the original
STL model as presented in Figure 3(a) (Stoyan et al. 2004; Gogate and Pande 2008); or their
respective orthogonal bounding boxes (Canellidis et al. 2006; Canellidis, Giannatsis, and Dedoussis
2013) as illustrated in Figure 3(b). Although the latter representation requires lower computational
effort, it is more likely to result in inefficient packing due to underutilised spaces particularly when
considering non-convex geometries. More sophisticated alternatives for primitive definition include
2D horizontal projections (Canellidis et al. 2006; Canellidis, Giannatsis, and Dedoussis 2013), voxel
discretisation (Min 2004) as shown in Figure 3(c). This reduces to the minimum convex hull (Jia
et al. 2007) and mesh decimation (Garland and Heckbert 1997), as presented in Figure 3(d). A
simplified representation for complex geometries is desirable as it reduces the computational effort
when processing several instances or a large number of parts (Cagan, Degentesh, and Yin 1998).

It can also be observed that the general algorithm shown in Figure 2 requires the selection
of one or more packing plans before proceeding with the BL or DBLF heuristic. Most of DBLF
approaches for 3DIP integrates a search algorithm to asses the large search space of possible
sequences and orientations for the parts. In the recent decades, however, several authors have
systematically utilised metaheuristics to find promising packing patterns for such problems, mainly

5

October 5, 2019 International Journal of Production Research output

(a) Original model (b) Bounding box (c) Voxelised model (d) Decimated model

Figure 3. Possible primitive definitions for a given part.

in AM-targeted applications. Metaheuristics are combinatorial optimisation techniques which are
not restricted to a particular problem domain but are rather designed to be amenable to different
complex combinatorial problems and provide good enough solutions in reasonable time (Hertz and
Widmer 2003). Examples of metaheuristics seen in the AM literature include Simulated Annealing
(Cagan, Shimada, and Yin 2002) and Genetic Algorithms (Ikonen et al. 1997; Hur et al. 2001;
Gogate and Pande 2008; Canellidis, Giannatsis, and Dedoussis 2013).

Returning to the workflow shown in Figure 2, the general BL method validates whether the
solution satisfies the termination criteria or a new sequence is selected to be processed by the
packing heuristic. The termination criteria for the described loop is often determined by the top
layer search algorithm (e.g. maximum number of evaluations or total runtime).

BL and DBLF algorithms have been the most widely used computational tools to address practi-
cal packing problems in the context of AM applications (Araújo et al. 2018). The following sections
focus, therefore, on the strengths and weaknesses of three of the most common approaches for such
algorithms: brute force, DBLF Decreasing and the integration of GAs. The objective is to generate
experimental evidence that can support better decision making regarding the choice of packing
algorithm and parameters in future applications.

3. Introducing DBLF approaches: brute force search, DBLF Decreasing and
Genetic Algorithm with DBLF

This section discusses the uses of three selected strategies for DBLF and their advantages and
disadvantages. Presented in increasing order of number of occurrences in the literature, these
strategies are (i) brute force search, (ii) deepest bottom left with fill decreasing (DBLFD), and (iii)
genetic algorithm with DBLF. Each approach is discussed in detail in the following sections.

3.1 Brute force search

Brute force algorithms exhaustively search through all possible candidates to find globally optimum
solutions. Therefore, their algorithmic computational cost can be gauged by assessing the size of
the search space (Schaeffer et al. 1993). In the context of DBLF algorithms, the cardinality of the
search space is the number of possible packing plans for the given input and depends on the number
of parts and allowable orientations per part. Consider, for instance, the problem of packing a set of
‘n’ parts where part orientations arising from angle increments of ‘θ’ are allowed. The attainable
‘b’ angular states about the x, y and z-axes that give rise to a part orientation are captured by
function 1. For example, 90◦ increments result in 4 possible angular states (0◦, 90◦, 180◦, 270◦).

6

October 5, 2019 International Journal of Production Research output

b =

{
1, if θ = 0

b360
θ c, otherwise

(1)

The cardinality of the solution space can, therefore, be estimated by Equation 2, which reflects
the runtime of the brute force algorithm based on n and b.

f(n, b) = n! b3n (2)

The brute-force complete search method yields the best packing sequence with the minimum
volume height after investigating each candidate in the search space. For inputs of size n and a
constant b, it requires O(n! bn) time, which is not practical even for minimal values of b. Hence,
solving 3DIP problems using brute-force search is not and amenable strategy for problems con-
taining a large number of demanded parts as in most of the real-world instances. Nevertheless, the
inclusion of this approach in the conducted experiment aims to demonstrate some of the limitations
of search algorithms integrated into the DBLF heuristic.

3.2 Deepest Bottom-Left-Fill Decreasing

Deepest bottom-left-fill decreasing (DBLFD) is a strategy to manage the large search space of
packing plans by sorting the parts in decreasing order of a particular numeric feature. It extends
the standard DBLF by adding a preliminary task in which parts are sorted in decreasing order
of volume; the sequence of parts is then processed using DBLF. Another particularity of the
implemented approach is that three different orientations per part, which are shown in Figure 4,
are tested while the standard DBLF uses only the native (i.e. original) orientation. This mechanism
mitigates the effect of poor native orientations achieved during the part design and explores a more
extensive area of the search space (see equation 2).

(a) Original model and

first possible orientation

(b) Second possible ori-

entation for the given
part

(c) Third possible orien-

tation for the part

Figure 4. Three orientations per part, as in the implemented DBLF.

3.3 A Genetic Algorithm combined with DBLF

Ikonen et al. (1998) used the acronym GARP to refer to methods that integrate genetic algorithms
(GAs) with the DBLF heuristic for rapid prototyping, which has been one of the dominant strategies
for applying 3DIP in AM (Ikonen et al. 1996, 1997, 1998; Hur et al. 2001; Canellidis et al.

7

October 5, 2019 International Journal of Production Research output

1st gene

Part id

rx

ry

rz

2nd gene

Part id

rx

ry

rz

Lth gene

Part id

rx

ry

rz

Figure 5. Chromosome in the current GA implementation.

2006; Canellidis, Giannatsis, and Dedoussis 2009, 2013; Araújo et al. 2015). GAs are evolutionary
algorithms (population-based metaheuristics) that mimic the process of evolving a population
throughout the selection and combination of the fittest individuals (Holland 1992).

The characteristics of an individual are represented by a data structure called a chromosome,
which consists of an array of values or genes. In GARP, a chromosome encodes a sequence and
sometimes (depending on the solution design) the orientation in which parts are processed by the
DBLF heuristic, to create a data structure also known as ‘packing plan’ (Gogate and Pande 2008).
The assessment of the quality of an individual (fitness) is measured by the resulting volume density,
which is reflected by factors such as the z-height of the build volume constructed by DBLF given
the packing plan. The fitness has its maximum when the parts are perfectly assembled with no
gaps between them, resulting in a build volume with minimum z-height.

Parameter tuning is highly recommended when applying metaheuristics to any problem domain,
although this has not been done for 3D packing studies in AM (Grefenstette 1986). Approaches
using GA within this context have explored only a restricted range of parameter values, which
have been selected in an arbitrary manner or using limited rationalisation (see Table 6). The GA
components that have been used in such studies, which are also employed in the experiments shown
in section 4, are explained below.

Chromosome: A chromosome is an array of genes with a length (L) that is equal to the number
of parts (n). Each gene is a 4-tuple comprised of the id of the part and the rotations around the x,
y and z-axis (rx, ry and rz respectively), as illustrated in Figure 5.

Crossover: Crossover is responsible for transmitting genetic characteristics from good individ-
uals (parents) to the next generation (Holland 1992). In GARP, order-1 crossover is often used
since this operator is suitable for combining individuals that are represented as non-binary chro-
mosomes and is commonly used for permutations (Poon and Carter 1995). An aspect to consider
is the probability that crossover is applied and the strategy for selecting parents. Based on the
parameters used in reported GARP solutions and suggestions in the literature, the following values
are used for crossover probability (CP): 0.5, 0.75 and 1.0 (Srinivas and Patnaik 1994).

Selection: Individuals with higher fitness values have higher probability of being select to gen-
erate new individuals. Three parent selection schemes appear in GARP solutions and are used in
section 4 (Goldberg and Deb 1991):

• Roulette wheel or fitness proportionate selection: the probability of selecting an individual is
proportionate to the fitness
• Ranking selection: sorts a population with size p in decreasing order of fitness and then applies

proportional selection (similar to roulette wheel described above) based on the ‘new’ fitnesses
of the individuals with values 1/2, 1/3, ..., 1/(p + 1); particularly useful for distinguishing
individuals with similar fitness values

8

October 5, 2019 International Journal of Production Research output

• Tournament: selects the best individual from a randomly selected group of individuals, typi-
cally comprised of 2 or 4 elements

Mutation: Mutation adds genetic diversity to the population by changing the value of each
gene with mutation probability (MP) (Holland 1992). Three different schemes have been used in
GARP:

• Insert (Sivanandam and Deepa 2007): the gene is moved to a random position in the chro-
mosome
• Creep (Sivanandam and Deepa 2007): different values are assigned to the rx, ry and rz of the

gene
• Insert and creep: the gene values for rx, ry and rz are changed, and then the gene is randomly

moved to a different position in the chromosome. This scheme is used in the experiments
shown in section 4.

Concerning MP, two commonly used values are tested: 1/L and 0.01.
Fitness function: The fitness function maps how well the individual meets the problem objec-

tive. In this work, this function focuses on solutions to the three-dimensional strip packing (3DSP)
problem, which aims for minimum build volume height. The fitness function is calculated by the
equation 3.

f =
H∗

H + PEN
(3)

where, H∗ corresponds to the optimal minimum height, H is the resulting build volume height,
and PEN is the penalty value added to prioritise solutions in which all the parts are packed. In
real-world instances, H∗ is often unknown and can be replaced by a strictly positive constant, and
PEN is needed in cases where some part orientations result in x-y cross-sections that exceed the
bounds of the container. In this implementation, PEN is set to 10 times the optimal value if at
least one part is not packed, and 0 otherwise. This results in a fitness value (f) of between 0 and
1. Good packing configurations attain values closer to 1, while poor configurations approach 0. For
example, where all the parts can be perfectly assembled with no loss of space, then H = H∗ and
PEN = 0, resulting in fitness value of 1.0.

Replacement strategy: This is the strategy to replace individuals of the current population
by the offspring. Two replacement strategies are used the experiments presented in section 4:

• Generational replacement with elitism: (i) copies the best two individuals of the current pop-
ulation to the pool of individuals which will constitute the population of the next generation,
(ii) successively combines individuals, and (iii) copying the offspring to next generation until
its population is complete
• Steady state: instead of generating a new population, the best two individuals among the

two selected parents and the offspring are copied back to the population

Termination criteria: These criteria limit the computational costs of GA. The GA method
implemented in this study stops and returns the best individual (solution) found at a point when
at least one of the following conditions is satisfied:

• the best individual is above the acceptable threshold, i.e., its fitness is within the interval
[0.99, 1] (Safe et al. 2004)
• the algorithm ends if there is no improvement of the best individual after 1,400 (calculated

after preliminary tests) consecutive evaluations

Determining appropriate termination criteria depends on the problem domain and intended
search length (Safe et al. 2004). Preliminary tests conducted by the authors showed that solutions

9

October 5, 2019 International Journal of Production Research output

with a fitness within the interval [0.9, 1] have satisfactory results. Regarding the second criterion,
no further improvement to the best individual was observed after approximately 1,400 consecutive
evaluations (about 35 minutes runtime) for population up to 200 in size. This is a reasonable
amount considering that the runtime for one single evaluation is at most 1.5 seconds.

Parameter sets: A parameter set is comprised of the definition of the population size, CP, the
parent selection scheme, MP and the replacement strategy. Table 1 summarises the parameters
and values that have been tested in the existing GARP solutions and that are employed in the
experiments shown in section 4.

Table 1. Parameter settings of the GA implemented in this study.

Parameter Values

Size of population (p) 100, 200
Crossover probability (CP) 0.5, 0.75 and 1.0
Mutation probability (MP) 1/L a, 0.01
Parent selection scheme Roulette wheel, ranking, tournament-2 b and tournament-4 c

Replacement strategy Generational with elitism, steady state
a L: Length of chromosome; b Tournament of 2 individuals; c Tournament of 4 individuals

4. Experimental design

This section follows on from the description for three DBLF approaches in Section 3, and focuses
on a series of experiments to compare their algorithmic performances. Also presented here are the
benchmark problem instances and their properties, evaluation methods and targeted observations.

4.1 Problem instances used in the experiments

Three problem instances were generated to investigate the packing performance of DBLF-based
approaches. The first two instances, Cutcube1 with four parts and Cutcube2 with 11 parts, are
generated by slicing a three-dimensional cube using bounded regions of non-orthogonal planes.
The third instance is a Somacube (Peter-Orth 1985) comprised of seven polycube parts. Figure 6
illustrates the problem instances arranged in their best packing solution, which is known.

(a) Cutcube1 (4 parts) (b) Cutcube2 (11 parts) (c) Somacube (7 parts)

Figure 6. The number of parts and optimal packing configuration for the three instances.

10

October 5, 2019 International Journal of Production Research output

The instances1 shown in Figure 6 are comprised of relatively few parts: 4, 11 and 7 for the
Cutcube1, Cutcube2 and Somacube, respectively. The parts considered here pose a greater chal-
lenge from a packing perspective than the bounding box approximations. While they do not rep-
resent AM parts designed for industrial applications, they approximate the levels of complexity
found in reality. Using instances with intermediate levels of complexity and known optimal packing
arrangements is useful for comparing the effectiveness of DBLF-based approaches for packing AM
parts in reasonable runtime. Underlying this approach, of course, is the acknowledgement that
obtaining the optimal packing for a random set of AM parts, as pursued in some studies, is an
unfathomable task. Therefore, having known optimal packing configurations is a distinct advantage
for benchmarking (Szykman and Cagan 1995). The experiments for the present study also use the
original STL models for the parts to prevent the loss of information that would result from using
alternative primitive representations.

4.2 Experiments

In this section, we describe our experiments comparing the three DBLF approaches shown in
section 3 and the effects that different algorithm parameters have on performance regarding volume
utilisation and runtime.

Estimation of the runtime for brute force search. For each instance-θ, randomly selected
packing plans were processed by the DBLF heuristic to calculate their average runtime. A sample
size of 35 was used, except in the case of instance Cutcube1 with no part rotation which has search
space comprises only 24 elements, to enable statistical analysis on the results (Royall 1986).

Parameter tuning for the GA approach. Studies presenting GARP techniques often fail
to analyse how different values for GA parameters affect packing performance. Moreover, limited
rationalisation is given regarding the choice of these parameters, which is unfortunate since pa-
rameter tuning is an essential task while applying heuristics to any problem domain (Smit and
Eiben 2009). In this experiment, 96 parameter sets were generated from combinations of the GA
parameters shown in Table 1. For each parameter set, GA was executed 35 times to ascertain
the average runtime and obtained build volume height when solving the Cutcube2 instance with
angle increment of 90◦. As a result, the parameter set that maximises the average fitness withing
reasonable runtime is selected for further testing.

Comparing the GA approach to DBLFD. This experiment analyses the relationship be-
tween different degrees of freedom for part rotation and packing efficiency. Using the parameter set
selected previously, the GA is executed 35 times to solve each instance and angle increment, which
we will refer to in the following as an instance-θ pair. The average runtime and build volume height
are calculated and compared to the deterministic result obtained from the DBLFD method.

5. Results and Discussion

5.1 Testing for brute force search

As explained previously, 50 packing plans were randomly generated for each instance-θ, except in
the case of Cutcube1-0 as its search space is comprised of 24 elements. Table 2 shows the mean
runtime per instance and part, as well as the number in non-convex parts in each instance.

The results confirm the intuition that the runtime per instance depends on the quantity and
complexity of the parts processed. The runtime to solve Cutcube1 is lower than Cutcube2 due to
a lower number of parts. On the other hand, the mean runtime per part of Cutcube1 is higher,
mainly because of the presence of one non-convex part. The Somacube instance, which has the most

1Available at http://www.cs.nott.ac.uk/~psxlja/dblf

11

http://www.cs.nott.ac.uk/~psxlja/dblf

October 5, 2019 International Journal of Production Research output

Table 2. Estimated runtime for the brute force per instance-angle increment.

Instance Number of parts Number of irregular parts Mean time (seconds)
Per instance Per part

Cutcube1 4 1 0.031 0.008
Cutcube2 11 0 0.058 0.005
Somacube 7 7 1.445 0.206

non-convex parts, had the highest mean runtime for both instance and parts. The mean runtime
per instance and equation 2 enables an estimation of the time necessary to investigate each element
in the search space.

Brute force search often requires an unreasonable amount of time for most of instances-θ, espe-
cially those with a large number of parts or higher degrees of freedom regarding part rotation. For
example, processing every candidate solution in the search space of packing plans for Cutcube2-90
would require approximately 1.62 ∗ 1017 years, according to Equation 2. This reinforces the argu-
ment that approximate methods capable of giving results quickly and with reduced computational
cost are preferable to the brute force algorithm when addressing real-world packing instances. More
interesting, however, is the observation that instances comprised of higher mean shape complexity
(in terms of the number of faces) can require higher runtime than instances with more parts. For
example, the average runtime for processing the Somacube instance (see Table 2) is higher than the
average runtime for solving Cutcube2, regardless the angle increment2. These findings demonstrate
the importance of adopting simpler boundary representations for implementing DBLF approaches
(Stroud 2006).

5.2 Parameter tuning for GA-based approach

The mean runtime and build volume height are used to compare the 96 different sets of parameter
configurations generated from combinations of GA parameter values as shown in Table 1. First,
each attribute was analysed separately with respect to its effects on the performance (see Table 3).

Table 3. Comparing the mean and standard deviation of GA parameters separately.

Parameter Value Runtime Fitness
Average (s) SD Average SD

Crossover probability
0.5 55.9 19.3 0.2309 0.1296
0.75 84.2 30.2 0.2673 0.1227

1 111.84 39.2 0.3010 0.1059

Mutation probability
0.011 84.07 37.9 0.2628 0.1245
1/L 83.8 38.5 0.2699 0.1218

Population size
100 81.1 37.2 0.2627 0.1244
200 86.8 39.0 0.2700 0.1219

Selection scheme

Ranking 86.1 40.1 0.2637 0.1238
Roulette wheel 81.9 36.7 0.2651 0.1243
Tournament 2 84.0 37.7 0.2715 0.1213
Tournament4 83.7 38.2 0.2652 0.1234

Replacement strategy
Generational 87.5 40.5 0.2726 0.1211
Steady state 80.3 35.4 0.2602 0.1249

It can be observed from Table 3 that GA parameters do not strongly affect the mean runtime
and mean build volume height, except for CP. Increasing the value of CP from 0.5 to 1.0 results in
a noticeable improvement (> 10%) in build volume z-height at a modest increase in computational

2Data available at https://github.com/ljonata/ExperimentalAnalysisDBLF

12

https://github.com/ljonata/ExperimentalAnalysisDBLF

October 5, 2019 International Journal of Production Research output

cost. It is of note that generational GA with elitism produced marginally better results compared
to steady state implementation. Figure 7 shows that build volume height decreased as the time
spent on the search increased, which was expected. The first cluster of parameter sets with mean
times of less than 65 seconds is entirely comprised of configurations with CP equal to 0.5, while
the group of parameters between 65 and 105 seconds is predominantly comprised of configurations
with CP equal to 0.75 (33 out of 42 parameter sets). The graph stresses the two parameter sets that
resulted in highest mean fitness: 35 and 47. Table 4 presents the attributes and the mean fitness
obtained by the parameter sets 35, 47 and 33, which is formed by the best individual parameters
extracted from Table 3.

Figure 7. Scatter graph summarising the mean fitness and runtime for each parameter set.

Table 4. Comparing three selected parameter sets (33, 35 and 47).

Parameter Crossover Mutation Population Selection Replacement Mean

set probability probability scheme strategy fitness

33 1 1/L (0.090) 200 Tournament-2 Generational with elitism 0.2426

35 1 0.011 200 Tournament-2 Generational with elitism 0.2860
47 1 0.011 200 Tournament-4 Generational with elitism 0.2880

The three parameter configurations (sets) shown in Table 4 share the same values for the proba-
bility of crossover, size of population and replacement strategy. The parameter configuration iden-
tified by the ID 35 was chosen for further experiments, since the tournament-2 selection method
yielded better mean results than the tournament-4 method (see Table 3).

5.3 Comparing DBLFD and GA based packing methods

The mean fitness and mean runtime are reported in Figure 8, together with the result from DBLFD.
The data obtained from this experiment reinforces the need to adopt simpler primitive represen-
tations when aiming to minimise computational effort.

Although the Somacube instance is comprised of fewer parts than Cutcube2 (7 and 11, respec-
tively), the higher complexity, i.e., non-convexity of parts, resulted in considerable higher runtime.
While the mean runtimes for all Cutcube1-θ and Cutcube2-θ are less than 140 seconds, all the
Somacube-θ configurations have mean runtime over 2,000 seconds. Interestingly, for most of the

13

October 5, 2019 International Journal of Production Research output

Figure 8. Mean fitness and runtime obtained for each instance-θ.

instance-theta pairs (except for Cutcube2-0, Somacube-180 and Somacube-90), the DBLFD heuris-
tic produced more competitive results than the GA approach. This finding suggests that the former
method is a viable alternative, as it simpler to implement and has a more reasonable runtime than
the popular GA approach with angle increments less than 90◦. Therefore, future research on pack-
ing algorithms using such a strategy should integrate efficient search algorithms into DBLF with
more degree of freedom for part rotation; otherwise, a simple DBLFD could be employed.

The effects of part orientation on mean fitness and the importance of ‘good’ initial orientation
of the parts can also be observed in Figure 8. For configurations with non-orthogonal rotation
(θ = 120◦ or θ < 90◦), initial populations were comprised of several packing plans that resulted in
non-packable parts. This was due to horizontal projection of the parts exceeding the bounds of the
container. This observation indicates that local search methods should be run before proceeding
with the packing process to ensure that each part fits within the container (Canellidis et al. 2006;
Canellidis, Giannatsis, and Dedoussis 2009, 2013).

5.4 Discussion on the overall results and packing approaches for real-world
problems

This study provides evidence that shape complexity affects computational runtime to a greater
extent than the number of parts. As shown in the first experiment, instances with a smaller number
of parts exhibiting higher degrees of non-convexity require greater computational effort than those
with higher quantity requirements but simple geometries. For example, the mean runtime for solving
a Somacube instance is greater than in Cutcube2, despite its fewer number of parts (see Table 2).
This implies that high-resolution voxelised representations (Min 2004), which bear a resemblance
the non-convex polycubes contained in the Somacube instance, are likely to result in higher runtimes
compared to convex hull envelopes. Therefore, the results underline the importance of the adoption
of simple boundary representations in the early stages of packing solution development. This is of
special significance in AM, since the adoption of AM is often justified by the necessity to manage
highly complex or non-convex product geometries (Baumers et al. 2017b).

Another observation that can be made from these experiments concerns the limitations of DBLF
in obtaining configurations with no waste of space between objects (when such configurations exist)
due to the fixed order in which geometric operations (translation and rotation) are performed. For
example, the use of brute force search for solving Cutcube1-0 fails in achieving a ‘no-waste’ con-
figuration despite the small number of parts, which have been designed to be perfectly assembled.
As shown in Table 5, the best build volume height achieved by DBLF (depicted in Figure 9) was

14

October 5, 2019 International Journal of Production Research output

Table 5. Results of the 24 packing plans of Cutcube1 with the native orientation of parts.

Best height (cm) Worst height (cm) Mean height (cm) The standard deviation of height

118.32 190.31 144.03 23.86

Figure 9. The best out of 24 possible packing plans of Cutcube1-0 with no rotation allowed.

118.32mm. This demonstrates a need for placement heuristics that are more flexible regarding the
identification, translation and rotation of the processing part. Advantageous strategies would be
to temporarily allow infeasible states and to adopt more efficient methods of detecting eventual
geometry overlaps.

The above experiments and the comparison of the performance from GA an DBLFD can be
used to stress the necessity to optimise the orientation of each part individually before running the
packing algorithm. Incorporating this task into the process is likely to prevent both parts remaining
unpacked. It would also prevent part rotations that lead to technically problematic solutions due
to large horizontal sections, which are avoided in practice (to avoid part deformation and curling).
Therefore, it would be practical to integrate such an orientation determination step within the
design software that generates the final to-be-manufactured model instead delegated the task to
a human machine operator. The results discussed in this section have a number of additional
implications for AM practice:

• Simplifying part representations can lead to quicker determination of satisfactory build con-
figurations. This is essential in some practical situations, such as when cost estimates or price
quotations are required instantaneously.
• Similarly to other combinatorial optimisation problems, parameter tuning can heavily in-

fluence the entire functioning and performance regarding runtime and volume utilisation of
packing approaches. However, most of GARP techniques in the literature omit this critical
preprocessing stage and use arbitrary values for parameters and rotation. The incorporation
of such task into the AM workflow can, therefore, improve the packing outcome and thereby
reduce manufacturing costs in AM (Ruffo and Hague 2007; Baumers et al. 2017a).
• As shown in the experiment comparing GA to DBLFD, higher degrees of freedom for part

rotation does not necessarily result in a gain of performance concerning volume density for
packing algorithms. Instead, it occurs in additional computational effort due to the exponen-
tial increase of the search space. The use of orthogonal rotation, therefore, seems a reasonable
approach for this domain.
• Recent research has shown that the problem of build volume packing cannot be divorced from

the problem of machine scheduling in practice (Li, Kucukkoc, and Zhang 2017; Khajavi et al.
2018). As evident from the literature on control systems for flexible manufacturing systems

15

October 5, 2019 International Journal of Production Research output

(Pannequin, Morel, and Thomas 2009), dealing with problems in a decomposed way leads
to significant performance loss and results in high opportunity costs. Therefore, integrated
heuristic approaches such as GA only pose a partial solution of the AM workflow problem
faced in reality.

Products that have been designed for AM are particularly likely to feature high levels of com-
plexity (Hague, Campbell, and Dickens 2003), which, together with orientation in build, affects
manufacturing parameters, such as surface roughness, the area of contact with the build platform
and supporting structures. Therefore, pre-processing of the parts in the digital design environ-
ment would allow the simulation and prevention of losses associated with orientation-related issues
during the manufacturing step (Peko, Bašić, and Aljinović 2018).

6. Conclusion

With the increased interest in AM to create end-use parts, the efficient utilisation of machines is
an imminent challenge. This work provides valuable insight into the shortcomings, challenges and
practical aspects of computational solutions when addressing realistic packing problems in AM.
This work differs from previous studies on 3DIP algorithms in the sense it contains a rationalisation
regarding the configuration for the DBLF heuristic and the parameter tuning for the GA based
packing method, an approach which has been the cornerstone of packing approaches in AM.

It is concluded that the significance of implementing a simpler (enveloping shape) primitive
representation far out-weighs algorithmic choice when aiming to achieve good-enough packing in
a reasonable runtime. This study also exposes a core weakness of the DBLF heuristic, i.e. being
unable to obtain an optimal packing when dealing with non-convex parts, indicating the need for
a more flexible placement heuristic.

Further work is required to establish the relationship between part complexity and predicted
runtime as an important question for real time packing tools required by the AM community.
The comparison of DBLF based algorithms with other placement policies and meta-heuristics are
timely as they can expose the opportunities for improving the runtime performance of commercial
applications.

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research Council [grant number
EP/N010280/1]. The authors would also like to thank CNPq (Brazilian Council for Research and
Development), process 248602/2013-6 for sponsoring Luiz J.P. Araújo.

References

Albano, Antonio, and Giuseppe Sapuppo. 1980. “Optimal allocation of two-dimensional irregular shapes
using heuristic search methods.” Systems, Man and Cybernetics, IEEE Transactions on 10 (5): 242–248.

Araújo, Luiz Jonata Pires de, Ender Özcan, J A D Jason Atkin, Martin Baumers, Christopher Tuck, and
Richard J M Hague. 2015. “Toward better build volume packing in additive manufacturing: classification
of existing problems and benchmarks.” Proceedings of the Solid Freeform Fabrication Symposium 401–410.

Araújo, Luiz Jonatã Pires de, Ender Özcan, Jason A. D. Atkin, and Martin Baumers. 2018. “Analysis of
irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset.”
International Journal of Production Research 0 (0): 1–15.

Art, Richard Carl. 1966. “An approach to the two dimensional irregular cutting stock problem.” PhD diss.,
Massachusetts Institute of Technology.

16

October 5, 2019 International Journal of Production Research output

Baumers, Martin, Luca Beltrametti, Angelo Gasparre, and Richard Hague. 2017a. “Informing additive
manufacturing technology adoption: total cost and the impact of capacity utilisation.” International
Journal of Production Research 55 (23): 6957–6970.

Baumers, Martin, Chris Tuck, Ricky Wildman, Ian Ashcroft, and Richard Hague. 2017b. “Shape complexity
and process energy consumption in electron beam melting: A case of something for nothing in additive
manufacturing?” Journal of industrial Ecology 21 (S1): S157–S167.

Baumers, Martin, Chris Tuck, Ricky Wildman, Ian Ashcroft, Emma Rosamond, and Richard Hague. 2013.
“Transparency Built-in: Energy Consumption and Cost Estimation for Additive Manufacturing Baumers
et al. Energy and Cost Estimation for Additive Manufacturing.” Journal of Industrial Ecology 17 (3):
418–431.

Bennell, J.a., and J.F. F Oliveira. 2009. “A tutorial in irregular shape packing problems.” Journal of the
Operational Research Society 60: 93–105.

B lażewicz, J, P Hawryluk, and Rafal Walkowiak. 1993. “Using a tabu search approach for solving the
two-dimensional irregular cutting problem.” Annals of Operations Research 41 (4): 313–325.

Cagan, Jonathan, Drew Degentesh, and Su Yin. 1998. “A simulated annealing-based algorithm using hierar-
chical models for general three-dimensional component layout.” Computer-aided design 30 (10): 781–790.

Cagan, Jonathan, Kenji Shimada, and Sun Yin. 2002. “A survey of computational approaches to three-
dimensional layout problems.” Computer-Aided Design 34 (8): 597–611.

Canellidis, V., V. Dedoussis, N. Mantzouratos, and S. Sofianopoulou. 2006. “Pre-processing methodology
for optimizing stereolithography apparatus build performance.” Computers in Industry 57 (5): 424–436.

Canellidis, V., J. Giannatsis, and V. Dedoussis. 2009. “Genetic-algorithm-based multi-objective optimiza-
tion of the build orientation in stereolithography.” International Journal of Advanced Manufacturing
Technology 45 (7-8): 714–730.

Canellidis, Vassilios, John Giannatsis, and Vassilis Dedoussis. 2013. “Efficient parts nesting schemes for
improving stereolithography utilization.” CAD Computer Aided Design 45 (5): 875–886.

Coffman Jr, Edward G, Michael R Garey, David S Johnson, and Robert Endre Tarjan. 1980. “Performance
bounds for level-oriented two-dimensional packing algorithms.” SIAM Journal on Computing 9 (4): 808–
826.

Conner, Brett P., Guha P. Manogharan, Ashley N. Martof, Lauren M. Rodomsky, Caitlyn M. Rodomsky,
Dakesha C. Jordan, and James W. Limperos. 2014. “Making sense of 3-D printing: Creating a map of
additive manufacturing products and services.” Additive Manufacturing 1: 64–76.

Crainic, Teodor Gabriel, Guido Perboli, and Roberto Tadei. 2009. “TS2PACK: A two-level tabu search for
the three-dimensional bin packing problem.” European Journal of Operational Research 195 (3): 744–760.

Daynes, Stephen, Stefanie Feih, Wen Feng Lu, and Jun Wei. 2017. “Optimisation of functionally graded
lattice structures using isostatic lines.” Materials and Design 127 (February): 215–223.

Dyckhoff, Harald. 1990. “A typology of cutting and packing problems.” European Journal of Operational
Research 44 (2): 145–159.

Falkenauer, E., and S. Bouffouix. 1991. “A Genetic Algorithm for Job Shop.” CRIF - Research Center for
Belgian Metalworking Industry 1–6.

Falkenauer, Emanuel, and Alain Delchambre. 1992. “A genetic algorithm for bin packing and line balancing.”
In Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on, 1186–1192.
IEEE.

Fowler, Robert J., Michael S. Paterson, and Steven L. Tanimoto. 1981. “Optimal packing and covering in
the plane are NP-complete.” Information processing letters 12 (3): 133–137.

Francois, M. M., A. Sun, W. E. King, N. J. Henson, D. Tourret, C. A. Bronkhorst, N. N. Carlson, et al.
2017. “Modeling of additive manufacturing processes for metals: Challenges and opportunities.” Current
Opinion in Solid State and Materials Science 21 (4): 198–206.

Garland, Michael, and Paul S. Heckbert. 1997. “Surface simplification using quadric error metrics.” In
Proceedings of the 24th annual conference on Computer graphics and interactive techniques, 209–216.
ACM Press/Addison-Wesley Publishing Co.

Gendreau, Michel, Manuel Iori, Gilbert Laporte, and Silvaro Martello. 2008. “A Tabu Search heuristic for
the vehicle routing problem with two-dimensional loading constraints.” Networks 51 (1): 4–18.

Gibson, I, D Rosen, and B Stucker. 2010. “Additive manufacturing technologies, 3D printing, rapid proto-
typing, and direct digital manufacturing, Springer.” New York Heidelberg Dordrecht London .

Gogate, A. S., and S. S. Pande. 2008. “Intelligent layout planning for rapid prototyping.” International

17

October 5, 2019 International Journal of Production Research output

Journal of Production Research 46 (20): 5607–5631.
Goldberg, David E, and Kalyanmoy Deb. 1991. “A Comparative Analysis of Selection Schemes Used in

Genetic Algorithms.” Foundations of Genetic Algorithms 1: 69–93.
Grefenstette, John J. 1986. “Optimization of control parameters for genetic algorithms.” IEEE Transactions

on systems, man, and cybernetics 16 (1): 122–128.
Hague, Richard, I Campbell, and Phill Dickens. 2003. “Implications on design of rapid manufacturing.”

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
217 (1): 25–30.

Hertz, Alain, and Marino Widmer. 2003. “Guidelines for the use of meta-heuristics in combinatorial opti-
mization.” European Journal of Operational Research 151 (2): 247–252.

Holland, John.H. 1992. “Adaption in Natural and Artificial Systems.” Ann Arbor MI: The University of
Michigan Press 211.

Hur, Sung Min, Kyung Hyun Choi, Seok Hee Lee, and Pok Keun Chang. 2001. “Determination of fabricating
orientation and packing in SLS process.” Journal of Materials Processing Technology 112 (2-3): 236–243.

Ikonen, Ilkka, William E Biles, Anup Kumar, and Rammohan K Ragade. 1996. “Concept for a genetic
algorithm for packing three dimensional objects of complex shape.” .

Ikonen, Ilkka, William E Biles, Anup Kumar, John C Wissel, and Rammohan K Ragade. 1997. “A Genetic
Algorithm for Packing Three-Dimensional Non-Convex Objects Having Cavities and Holes.” In Proceed-
ings of the 7th International Conference on Genetic Algorithms, 591–598.

Ikonen, Ilkka, William E Biles, James E Lewis, Anup Kumar, and Rammohan K Ragade. 1998. “GARP :
Genetic algorithm for part packing in a rapid prototyping machine.” Intelligent Systems in Design and
Manufacturing 3517: 54–63.

Jakobs, Stefan. 1996. “On genetic algorithms for the packing of polygons.” European journal of operational
research 88 (1): 165–181.

Jia, X., M. Gan, R. A. Williams, and D. Rhodes. 2007. “Validation of a digital packing algorithm in
predicting powder packing densities.” Powder Technology 174 (1-2): 10–13.

Karabulut, Korhan, and Mustafa Murat İnceoğlu. 2004. “A hybrid genetic algorithm for packing in 3d with
deepest bottom left with fill method.” In International Conference on Advances in Information Systems,
441–450. Springer.

Khajavi, Siavash H., Martin Baumers, Jan Holmström, Ender Özcan, Jason Atkin, Warren Jackson, and
Wenwen Li. 2018. “To kit or not to kit: Analysing the value of model-based kitting for additive manu-
facturing.” Computers in Industry 98: 100–117.

Knight, James B., H. M. Jaeger, and Sidney R. Nagel. 1993. “Vibration-induced size separation in granular
media: The convection connection.” Physical Review Letters 70 (24): 3728–3731.

Langelaar, Matthijs. 2016. “Topology optimization of 3D self-supporting structures for additive manufac-
turing.” Additive Manufacturing 12: 60–70.

Lesh, Neal, Joe Marks, Adam McMahon, and Michael Mitzenmacher. 2005. “New heuristic and interactive
approaches to 2D rectangular strip packing.” Journal of Experimental Algorithmics (JEA) 10: 1–2.

Li, Q, I Kucukkoc, and D Z Zhang. 2017. “Production planning in additive manufacturing and 3D printing.”
Computers and Operations Research 83: 1339–1351.

Lodi, Andrea, Silvano Martello, and Daniele Vigo. 2004. “TSpack: A Unified Tabu Search Code for Multi-
Dimensional Bin Packing Problems.” Annals of Operations Research 131 (1-4): 203–213.

Min, Patrick. 2004. “Binvox, a 3d mesh voxelizer.” .
Möbius, Matthias E, Benjamin E Lauderdale, Sidney R Nagel, and Heinrich M Jaeger. 2001. “Brazil-nut

effect: Size separation of granular particles.” Nature 414 (6861): 270.
Panesar, Ajit, Ian Ashcroft, David Brackett, Ricky Wildman, and Richard Hague. 2017a. “Design framework

for multifunctional additive manufacturing: Coupled optimization strategy for structures with embedded
functional systems.” Additive Manufacturing 16: 98–106.

Panesar, Ajit, David Brackett, Ian Ashcroft, Ricky Wildman, and Richard Hague. 2017b. “Hierarchical
remeshing strategies with mesh mapping for topology optimisation.” International Journal for Numerical
Methods in Engineering 111 (7): 676–700.

Pannequin, Rémi, Gérard Morel, and André Thomas. 2009. “The performance of product-driven manufac-
turing control: An emulation-based benchmarking study.” Computers in Industry 60 (3): 195–203.

Peko, Ivan, Andrej Bašić, and Amanda Aljinović. 2018. “Computer aided design, additive manufactur-
ing and 3D product scanning.” In Inovativno pametno poduzeće, Fakultet elektrotehnike, strojarstva i

18

October 5, 2019 International Journal of Production Research output

brodogradnje.
Peter-Orth, Christoph. 1985. “All solutions of the Soma cube puzzle.” Discrete mathematics 57 (1-2):

105–121.
Petrovic, Vojislav, Juan Vicente Haro Gonzalez, Olga Jord Ferrando, Javier Delgado Gordillo, Jose

Ramn Blasco Puchades, and Luis Portols Grian. 2011. “Additive layered manufacturing: sectors of in-
dustrial application shown through case studies.” International Journal of Production Research 49 (4):
1061–1079.

Poon, P. W., and J. N. Carter. 1995. “Genetic algorithm crossover operators for ordering applications.”
Computers and Operations Research 22 (1): 135–147.

Ravindran, Ashwin. 2003. “An octree based genetic algorithm for three-dimensional packing of irregular
parts.” PhD diss.

Royall, Richard M. 1986. “The effect of sample size on the meaning of significance tests.” The American
Statistician 40 (4): 313–315.

Ruffo, M, and R Hague. 2007. “Cost estimation for rapid manufacturing - simultaneous production of mixed
components using laser sintering.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal
of Engineering Manufacture 221 (11): 1585–1591.

Safe, Mart\’\in, Jessica Carballido, Ignacio Ponzoni, and Nélida Brignole. 2004. “On stopping criteria for
genetic algorithms.” In Brazilian Symposium on Artificial Intelligence, 405–413. Springer.

Schaeffer, Jonathan, Paul Lu, Duane Szafron, and Robert Lake. 1993. “A re-examination of brute-force
search.” In Proceedings of the AAAI Fall Symposium on Games: Planning and Learning, 51–58.

Sivanandam, S N, and S N Deepa. 2007. Introduction to genetic algorithms. Springer Science & Business
Media.

Smit, Selmar K, and Agoston E Eiben. 2009. “Comparing parameter tuning methods for evolutionary
algorithms.” In 2009 IEEE congress on evolutionary computation, 399–406. IEEE.

Srinivas, M., and L. M. Patnaik. 1994. “Adaptive Probabilities of Crossover and Mutation in Genetic
Algorithms.” IEEE Transactions on Systems, Man and Cybernetics 24 (4): 656–667.

Stoneman, Paul. 2001. The economics of technological diffusion. Wiley-Blackwell.
Stoyan, Y. G., N.I. Gil, A. Pankratov, and G. Scheithauer. 2004. “Packing non-convex polytopes into a

parallelepiped.” MATH-NM-06-2004 (June).
Stroud, Ian. 2006. Boundary representation modelling techniques. Springer Science & Business Media.
Szykman, S, and J Cagan. 1995. “A simulated annealing-based approach to three-dimensional component

packing.”Asmedigitalcollection.Asme.Org 117: 308.
Voudouris, Christos, Edward P.K. Tsang, and Abdullah Alsheddy. 2010. “Guided Local Search.” Springer

321–361.
Wäscher, Gerhard, Heike Haußner, and Holger Schumann. 2007. “An improved typology of cutting and

packing problems.” European journal of operational research 183 (3): 1109–1130.
Wu, Jun, Anders Clausen, and Ole Sigmund. 2017. “Minimum compliance topology optimization of shellinfill

composites for additive manufacturing.” Computer Methods in Applied Mechanics and Engineering 326:
358–375.

Zhang, Jianming, Xifan Yao, and Yun Li. 2019. “Improved evolutionary algorithm for parallel batch pro-
cessing machine scheduling in additive manufacturing.” International Journal of Production Research
1–20.

19

October 5, 2019 International Journal of Production Research output

A
p

p
e
n

d
ix

R
ef

er
en

ce
P

ro
b

le
m

#
o
f

ru
n

s
E

li
ti

sm
R

ep
la

ce
m

en
t

st
ra

te
g
y

P
o
p

u
-

la
ti

o
n

C
ro

ss
-

o
v
er

C
P
a

(%
)

S
el

ec
ti

o
n

sc
h

em
e

M
u

ta
ti

o
n

M
P
b

(%
)

R
o
ta

-
ti

o
n

Ik
o
n

en
et

a
l.

(1
9
9
6
)

3
D

S
P
c

a
n

d

m
in

.
o
v
er

la
p

N
Id

N
Id

G
en

er
a
ti

o
n

a
l

N
Id

O
X

1
e

1
0
0

R
a
n

k
in

g
S

w
a
p

0
.5

-
5

4
5

Ik
o
n

en
et

a
l.

(1
9
9
7
)

3
D

S
P
c

a
n

d
m

in
.

o
v
er

la
p

5
N

Id
G

en
er

a
ti

o
n

a
l

5
0

O
X

1
e

9
0

R
o
u

le
tt

e
w

h
ee

l
S

w
a
p

1
-

2
0

4
5

Ik
o
n

en
et

a
l.

(1
9
9
8
)

3
D

S
P
c

a
n

d

m
in

.
o
v
er

la
p

1
N

Id
G

en
er

a
ti

o
n

a
l

1
0
0

O
X

1
e

8
0

R
o
u

le
tt

e

w
h

ee
l

S
w

a
p

7
-

1
3

4
5

H
u

r
et

a
l.

(2
0
0
1
)

3
D

S
P
c

N
Id

N
Id

G
en

er
a
ti

o
n

a
l

N
Id

O
X

1
e

N
Id

N
Id

S
w

a
p

N
Id

N
Id

R
a
v
in

d
ra

n
(2

0
0
3
)

3
D

B
P
f

N
Id

N
Id

G
en

er
a
ti

o
n

a
l

7
5

O
X

1
e

7
0

R
a
n

k
in

g
N

o
n

-u
n

if
o
rm

(a
n

g
le

s)

1
2

9
0

C
a
n

el
li
d

is
et

a
l.

(2
0
0
6
)

2
D

K
n

a
p

-

sa
ck

N
Id

N
Id

N
Id

5
0

S
J
X

g
N

Id
R

o
u

le
tt

e

w
h

ee
l

S
w

a
p

;
ro

ta
te

p
a
rt

s
in

9
0

7
5

9
0

G
o
g
a
te

a
n

d
P

a
n

d
e

(2
0
0
8
)

3
D

S
P
c

1
Y

es
G

en
er

a
ti

o
n

a
l

3
*

#
o
f

p
a
rt

s
S

in
g
le

p
o
in

t
7
5

R
o
u

le
tt

e
w

h
ee

l
C

o
m

p
le

-
m

en
ta

ry
2
0

4
5

(C
a
n

el
li
d

is
,

G
i-

a
n

n
a
ts

is
,

a
n

d

D
ed

o
u

ss
is

2
0
1
3
)

2
D

K
n

a
p

-
sa

ck
N

Id
N

Id
G

en
er

a
ti

o
n

a
l

w
it

h
w

ea
k

re
p

la
ce

m
en

t

5
0

S
J
X

g
1
0
0

R
o
u

le
tt

e
w

h
ee

l
S

w
a
p

1
.2

5
9
0

a
C

ro
ss

o
v
er

p
ro

b
a
b

il
it

y
;
b

M
u

ta
ti

o
n

p
ro

b
a
b

il
it

y
;
c

T
h

re
e-

d
im

en
si

o
n

a
l

S
tr

ip
P

a
ck

in
g
;
d

N
o
t

in
fo

rm
ed

;
e

O
rd

er
1

C
ro

ss
o
v
er

(F
a
lk

en
a
u

er
a
n

d
B

o
u

ff
o
u

ix
1
9
9
1
);

f
T

h
re

e-
d

im
en

si
o
n

a
l

B
in

P
a
ck

in
g
;
g

(J
a
k
o
b

s
1
9
9
6
)

T
a
b

le
6
.

R
ep

o
rt

ed
ch

a
ra

ct
er

is
ti

cs
o
f

th
e

G
A

im
p

le
m

en
ta

ti
o
n

s
fo

r
A

M
in

th
e

3
D

IP
li
te

ra
tu

re
.

20

	Introduction
	Approaches: terminology, data structures and workflow
	Cutting and Packing Problems in Operational Research
	Bottom-Left and Deepest Bottom-Left-Fill algorithms

	Introducing DBLF approaches: brute force search, DBLF Decreasing and Genetic Algorithm with DBLF
	Brute force search
	Deepest Bottom-Left-Fill Decreasing
	A Genetic Algorithm combined with DBLF

	Experimental design
	Problem instances used in the experiments
	Experiments

	Results and Discussion
	Testing for brute force search
	Parameter tuning for GA-based approach
	Comparing DBLFD and GA based packing methods
	Discussion on the overall results and packing approaches for real-world problems

	Conclusion

