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Abstract—Hot spot identification problems are present across
a wide range of areas, such as transportation, health care and
energy. Hot spots are locations where a certain type of event
occurs with high frequency. A recent big data approach is
capable of identifying hot spots in a dynamic manner, through
the processing of large volumes of sensor data arriving as a
stream. However, the method may produce imprecise results due
to its crisp interpretation of hot spot locations and reliance on
a fixed hot spot radius value. This paper presents an initial
approach to addressing this shortcoming through incorporating
the concept of fuzzy hot spots into the process. Experimental
results on large real-world transportation datasets demonstrate
the improved way in which this approach handles uncertainty
in the definition of hot spots, and highlight promising future
research areas for further application of fuzzy systems to the hot
spot identification problem.

Index Terms—Hot Spot Identification, Fuzzy Logic, Big Data,
Instance Selection, Data Streams

I. INTRODUCTION

The process of hot spot identification (HSID) aims to
discover hot spot locations, defined as areas with a high
likelihood of occurrence of a given type of event. The HSID
problem is applicable in a variety of contexts, such as trans-
portation, health care and energy [1], [2]. In this work, we use
transportation as a real-world case study, where the problem
is to identify hot spots from heavy goods vehicle (HGV) data.
A large portion of businesses and government sectors across
the globe depend on HGVs for procurement and delivery
of goods and services. Due to the importance of HGVs in
the economy, there are great efforts to reduce their incident
numbers. One of those efforts regards vehicle monitoring via
telematics. HGVs are fitted with sensors that continuously
generate large volumes of data on their status, location and
incidents that occur within a journey. Detecting HGV incident
hot spots allows transport companies and the government to
trigger safety measures such as road repair, education, reward
programs or law enforcement. In order to effectively exploit
the available incident data and successfully identify hot spots,
methods capable of handling very large volumes of data in a
timely manner, with the adaptability to respond to changes in
road or traffic conditions over time, are required.

Traditional approaches to HSID use statistical methods and
historical incident data to determine hot spots [1]. However,
these methods do not scale well to cases where large volumes
of data are under consideration. More recently, data mining
techniques such as clustering have been applied [3], but may
result in the generation of invalid, elliptical hot spots. In
recent work, we have proposed the use of instance selection
techniques, usually employed to pre-process data prior to data
mining tasks [4], for the task of HSID. In [5] and [6], an
immune-inspired instance selection technique [7] was applied
to find hot spots in large telematics datasets. Experimental
results showed the success of this method (SeleSup-HSID)
as a HSID approach. This approach was later extended [8],
adapting the methodology in order to make it suitable for
processing large, dynamic data streams.

While SeleSup-HSID and its later versions are able to
provide timely and informative results in both the static and
streaming big data scenarios, they do not address the inherent
vagueness in the definition of a hot spot area or distance range.
SeleSup-HSID requires a fixed hot spot radius to be provided,
and a hot spot is therefore expected to indicate incidents
within a pre-defined mileage range. This results in a single
interpretation of hot spots being applied to all road locations
despite not necessarily being suitable in all cases. In order to
overcome this limitation, we consider the introduction of ideas
from fuzzy systems into our instance selection-based HSID
method. There are some fuzzy instance selection methods
present in the literature; however, these are usually designed
for use on datasets containing instances that are labelled with
respect to the class they belong to [9], with some also focusing
on selecting those instances situated close to class boundaries
[10]. As HSID is an unsupervised data mining task, these
existing methods are not applicable to our problem.

The aim of this paper is to provide an initial study of
how HSID can be improved through the addition of fuzzy
techniques. We first update our definition of hot spots, utilising
the ideas of fuzzy sets. We subsequently use fuzzy inference to
enable the identification of hot spots with varying radiuses, as
well as to provide a more informative output. Experimental
results on real-world transportation datasets show that the



introduction of fuzziness is a promising area for further
improvement of the HSID process. The remainder of this
paper is organised as follows. In Section II we provide rel-
evant background information and related work for the HSID
problem, as well as briefly describing our previous non-fuzzy
HSID method. In Section III we propose an initial approach to
incorporating fuzzy concepts into the HSID process. In Section
IV we present an experimental study analysing the behaviour
of the proposed fuzzy method. Finally, in Section V we discuss
the conclusions and identify opportunities for future work.

II. BACKGROUND

In this section, we first describe the transportation HSID
problem in detail, followed by a discussion of the related work
for HSID and data mining using fuzzy techniques. Finally, we
provide an overview of our previous immune-inspired HSID
method, which is the basis of the initial fuzzy approach.

A. Problem Description

The HSID problem for transportation can be defined as
follows: given a dataset containing vehicle incident locations,
road areas where there is a high frequency of incident oc-
currence should be determined. Due to the large volumes of
telematics data generated from HGV sensors, the solution must
be capable of providing identified hot spots in a timely manner.
The constraints for establishing hot spots are that incidents
must occur on the same road, and have similar bearings.

The problem defined thus far is successfully addressed
with SeleSup-HSID and its subsequent extensions. However,
a limitation of the current solution is that it detects hot spots
based on a fixed mileage range. Depending on the value for
this parameter, a much smaller or larger number of indicators
of high road incidents might occur, as illustrated in Figure 1.
A higher mileage range may result in missed, potentially
dangerous, areas, such as that highlighted by the red ellipse.
Conversely, a smaller mileage range will produce redundancy
in the identified hot spots, such as those inside the blue ellipse.

We now define the problem to include a requirement that
the solution should account for the vagueness in the charac-
terisation of a hot spot. Note that the definition only states
that areas of high likelihood of incident occurrence should be
identified, with no specification of the size of these areas. We
find that by fixing the radius of hot spots, we risk providing
either too much redundant information, or too little detail on
the hot spot locations. It is therefore desirable to move towards
a HSID method that does not create hot spots of a single,
fixed mileage, but is instead capable of self-organising to the
distribution of incidents present in the data and handles the
uncertainty in the definition of hot spots.

B. Related Work

Previous approaches to HSID have employed statistical
methods [1] and clustering techniques [3], [11]. The shortcom-
ings of these methods lie in the fact that they may produce
invalid results, require historical data or a predefined number
of hot spots, and are not suitable for big data processing.
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Fig. 1. Hot spots identified with fixed mileage ranges, demonstrating missed
hot spots (mileage=5) and redundant hot spots (mileage=1).

Detailed reviews of the existing methods for HSID can be
found in [5], [8]. The literature on employing concepts of
fuzzy logic for HSID is limited. The neuro-fuzzy approach
proposed in [12] uses an adaptive neuro-fuzzy inference sys-
tem to process road features and environmental data to produce
a hazard level for certain road locations. Their method requires
road locations under investigation to be segmented, and does
not generate fuzzy hot spots but rather assigns a hazard level
to the individual road segments through fuzzy inference. In
[13], fuzzy C-means clustering is first applied over pre-defined
locations to obtain hot spot centres, after which each hot spot is
assigned a safety level using fuzzy inference. Both the above
approaches are not suitable for identifying hot spots over a
wide geographical area, due to their requirements for specific
data about the locations in question making them difficult to
generalise.

C. Overview of Streaming SeleSup HSID

In this subsection we provide a high-level description of the
streaming SeleSup-HSID algorithm, based on the earlier works
on SeleSup-HSID in [5] and [6], and used here as the method
into which we introduce fuzzy concepts. A full description
can be found in [8] and our implementation is available on
GitHub! (using Apache Spark Streaming [14]). The method
is designed to work on a large data stream of incident data,
processed as a sequential chain of microbatches containing
incidents from a given time interval. The algorithm must be
provided with a mileage range, defining the radius of hot spots.
There are three stages, all of which are executed for every
microbatch of incidents that arrive:

Thttps://github.com/beccatickle/PAS-HSID



o Stage 1: During the first stage, hot spots returned from
the previous time interval are used to reduce the latest
microbatch of incidents. If an incident is within mileage
range of an existing hot spot, then it is considered to be
reduced by that hot spot and can be deleted.

o Stage 2: Any incidents not reduced during Stage 1
potentially represent hot spots that have only recently
appeared. The second stage aims to identify these new
hot spot locations by calculating distances between these
leftover incidents.

« Stage 3: The final stage updates the hot spot fitness values
using the following equation:

FVI =FvI=t. (1 —dr)+nf (1)

Where FVkT_1 is the fitness value of hot spot k at the
previous time interval, ng is the number of incidents that
hot spot k has reduced during the current time interval,
and dr is the decay rate (used to control how fast hot spots
will disappear after a period of time with no incidents
occurring). Following this calculation, any hot spot for
which FV,I is less than a specified deletion threshold is
considered to have faded enough to no longer be a hot
spot. Such hot spots are deleted. The resulting set of hot
spots is then passed into Stage 1 of the next time interval,
to be used to reduce the next microbatch of incidents.

The streaming SeleSup-HSID algorithm produces a set of
hot spots that dynamically changes over time in response to
the incidents occurring. However, it suffers from the issue
of having a fixed mileage range, as previously described in
Subsection II-A. In this paper, we develop a preliminary
fuzzy HSID approach, in order to investigate whether the
introduction of fuzzy concepts enables the implementation of
a more general HSID method.

III. Fuzzy HOT SPOT IDENTIFICATION

Our initial fuzzy HSID method is an extension of the
streaming SeleSup-HSID algorithm, and follows the same
three stages that are described in Section II-C. However, we
update Stages 1 and 3 to introduce the concept of fuzzy hot
spots (Subsection III-A), and use fuzzy inference to both vary
the radius of hot spots and provide additional information
about the nature of the identified hot spots (Subsection III-B).

A. Defining Fuzzy Hot Spots

In the original SeleSup-HSID algorithm, hot spots are
viewed as disjoint sets H;...H where K is the number of hot
spots that have been found. Incidents are reduced by either one
or none of these hot spots; if an incident is reduced by a Hjy,
it becomes a member of the associated set. Note that these
sets are not actually maintained, as instances are discarded
once they are reduced by a hot spot, but are rather used here
to illustrate the concepts. We identify two problems with this
crisp interpretation of hot spots:

o The radiuses of several hot spots may overlap, due to the
appearance of new hot spot locations over time. When an

incident ¢ falls within a region of overlap, SeleSup-HSID
will use only one of the hot spots to reduce ¢. Therefore,
¢ will not contribute to any other hot spots, despite being
located within their radius.

o For every incident that a hot spot Hj reduces, the
fitness value F'Vj, representing the strength of Hy, is
incremented by one. Incidents located close to the edge
of the mileage range contribute the same amount to the
fitness value as those situated close to the hot spot centre.

We propose an alternative definition of hot spots as fuzzy
sets, in order to alleviate these problems. In fuzzy C-means
clustering [15], instances can belong to multiple clusters with
varying degrees of membership. We use this idea of multiple
membership when defining fuzzy hot spots. During the process
of HSID, fuzzy hot spots F'H,...FFHg are identified. When
allocating incidents to the existing hot spots, they can be
reduced by one, multiple or none of these fuzzy hot spots.
The membership of an incident ¢ in a fuzzy hot spot F Hy
is given by the membership function p(d;) where d; is the
Haversine distance [16] between ¢ and the centre of F Hy.
The membership function for F'Hy is defined as a Gaussian
function centred on zero, chosen as its shape can be easily
controlled by adjusting the standard deviation parameter:

2
—1 {( d; .
exp | 5 (G—) ) d; < maxMiles
u(ds) = < SN (2
0 otherwise

Where maxzMiles is the maximum radius of any hot spot
(provided as a parameter) and o, is the standard deviation, cal-
culated based on the density of F'H}, (described in Subsection
I1-B). Note that d; will always be positive.

We say that 7 is reduced by F' Hy, if uy(d;) is greater than a
given confidence threshold, con fTh. If an incident is reduced
by at least one fuzzy hot spot, then it is discarded at the end
of the current time interval. We then define n;, the value to
increase the fitness value of F'Hj, by (see Equation 1), as the
sum of the membership values of all incidents reduced by
F H;. in this time interval:

Ji
ng =Y u(d;) 3)
j=1

Where Jj, is the number of incidents reduced by F' Hy.

In the original streaming SeleSup-HSID, nj; was simply
defined as the number of incidents reduced by H},. By defining
ny, based on the membership values, incidents that we are more
certain belong to the hot spot (that is, are closer to the hot
spot centre) will contribute more to the fitness value than those
where the membership is less certain. Allowing incidents to be
reduced by multiple fuzzy hot spots ensures that in overlapping
regions incidents will contribute to the fitness values of all hot
spots they lie in range of.

By implementing fuzzy hot spots, we have changed how
Stage 1 of the streaming HSID algorithm is performed. Algo-
rithm 1 displays the pseudocode for the fuzzy Stage 1.



Algorithm 1: Stage 1 - ReduceWithFuzzyHotSpots

Require: HotSpots; Incidents; Con fTh
forall HotSpots do ny = 0;
for all ¢ in Incidents do
for all k in HotSpots do
d; < calculate distance between k and i
m < calculate iy (d;)
if m > ConfTh then
Incidents <— Incidents —
ng +=m
end if
end for
end for

B. Fuzzy Inference for Controlling Hot Spots

In the previous subsection we defined fuzzy hot spots and
how the membership of incidents within a fuzzy hot spot is
calculated. In this subsection, we consider how we can remove
the need for a fixed mileage range, through dynamically
controlling the membership functions of individual hot spots.
As an initial approach, we propose to adjust the membership
function p(d) of a fuzzy hot spot F'Hj, based on the density
of F'Hjy. The density of a fuzzy hot spot is here used to
describe the distribution of the incidents that contribute to that
hot spot. Intuitively, if the hot spot consists of a large number
of incidents that are all located close to the hot spot centre,
then it is a dense hot spot. In this case, the radius should be
restricted in order to give a more precise location for the hot
spot. Conversely, if the incidents tend to be situated further
from the centre, then it is a sparse hot spot. The radius of
sparse hot spots should be wider than that for dense hot spots,
as the road area that the incidents span is larger.

As described in the previous subsection, the fuzzy hot
spot membership functions are Gaussian and the closer an
incident is to a hot spot centre, the greater its membership
value. We control the shape of the function by changing
the standard deviation, depending on the density of the hot
spot. For denser hot spots, the standard deviation should be
reduced; consequently, incidents will need to be closer to
the hot spot centre in order to obtain a membership value
greater than the confidence threshold and contribute to the hot
spot. For sparser hot spots, the standard deviation should be
increased. Figure 2 illustrates the differences between example
membership functions of dense and sparse hot spots.

The overall effect is an automatic expansion or shrinking
of the effective radius of individual hot spots, producing a
hot spot identification method that self-organises, in terms of
both hot spot locations and their mileage ranges, depending
on the distribution of incidents. Furthermore, by recalculating
the density and standard deviation of fuzzy hot spots at each
time interval of the stream, the radius of hot spots is adjusted
over time in response to newly arriving incidents.

In order to implement these dynamic membership functions,
we need to define how to determine the density of hot
spots, as well as how to use the density to calculate the
standard deviations. For this initial work on fuzzy hot spot
identification, we use a simple zero-order TSK fuzzy inference
system [17] in order to establish the density of the hot spots.
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Fig. 2. Example membership functions of dense and sparse hot spots.

We establish a small rule base, with input variables
numlIncidents (number of incidents added to a hot spot in
the current time interval) and avgDistance (average distance
of the added incidents from the hot spot centre). The output
variable is the density of the incidents recently added to the
hot spot. These rules were developed through analysis of the
distribution of incidents within hot spots identified by the
original SeleSup-HSID algorithm. Table I summarises the rule
base, with all rules taking the form “IF numlncidents is x
AND avgDistance is y THEN density is z”.

TABLE 1
SUMMARY OF THE FUZZY RULE BASE. THE RULE CONSEQUENTS
REPRESENT THE DENSITY OF THE HOT SPOT.

numlIncidents
low medium high
low medium high very high
avgDistance | medium | very low low low
high very low  very low low

For a given hot spot F'Hy, the output of combining these
rules is a single value in the range [0,1]. This value is
considered the density proportion, p;“*, of incidents added to
F Hy, in the current time interval. However, this algorithm is
designed for use with dynamic data streams, and so we also
need to take into consideration the previous nature of F'Hjy
prior to calculating an updated standard deviation. Therefore,
in order to obtain the density of F'Hj at the current time
interval T', we calculate the following weighted average:

0.5 - prl + prew

Where pf‘l is the density of F'Hj at the previous time
interval. Thus, the impact of old incidents is incorporated into
the current density, with their influence gradually fading over
time. We directly use p! to calculate a new standard deviation
of F'Hy, as follows:

O'E = Omin + ((1 7p17;) . (Umam - Umin)) (5)

Where 0, and 0,4, are lower and upper bounds of the
standard deviation. For the purposes of this study, we set



Omin = 0.15 and 0,4 = 2.75. These values were calculated
in order to produce a reasonable range of hot spot radiuses,
roughly between 0.1 and 2 miles.

We also utilise p} to provide additional information on
the nature of identified hot spots to stakeholders in an easily
understandable manner. We label hot spots as either Dense
or Sparse, using the following rule:

pg > 0.5
otherwise

D
labell = {2 °1°°

6

Sparse ©

The calculation of an updated density and oy, for each hot

spot occurs during Stage 3 of the algorithm, in order to define
the membership functions for the next time interval.

IV. EXPERIMENTAL STUDY

Two sets of telematics data for HGV incidents over a three-
month period within the UK are investigated. We split these
datasets in two different ways: into ten equally sized batches,
and into day-long batches. Table II shows the average number
of incidents per batch for both datasets.

TABLE I
AVERAGE NUMBER OF INCIDENTS PER BATCH FOR THE USED DATASETS
Dataset Day  Equal Total
Harsh Braking (HB) 2298 21369 213696
Contextual Speeding (CS) 7762 72187 721878

We compare the fuzzy approach with the non-fuzzy stream-
ing SeleSup-HSID algorithm, both implemented under Apache
Spark Streaming [14], a big data processing framework. For
the non-fuzzy version, we use dr=0.3, delTh=1.9, hsTh=3
and mileage ranges of 0.5 and 5.0 for harsh braking and
contextual speeding data respectively, as was done in [8]. For
the fuzzy method, we use maxMiles=2, dr=0.3, delTh=1.2
and hsTh=3. For the non-fuzzy approach, delTh is chosen
so that newly-initialised hot spots must encompass at least
two incidents to avoid deletion. In order to achieve this same
effect in the fuzzy version, where fitness values are calculated
differently, we choose a lower value for del/Th. We also analyse
the impact of using different confidence thresholds on the
behaviour of the fuzzy approach, specifically with the values
{0.1,0.2,0.3,0.4,0.5}. The experiments have been carried out
in a single node with an Intel(R) Xeon(R) CPU E5-1650 v4
processor (12 cores) at 3.60GHz, and 64 GB of RAM. We have
used the Cloudera open-source Apache Hadoop distribution
(Hadoop 2.6.0-cdh5.14.2) and Spark 2.0.0. In our experiments,
we use 8 partitions.

Table III displays the results in terms of number of hot
spots and runtime for both the original streaming SeleSup-
HSID algorithm and the fuzzy version. The fuzzy version
returns a much larger number of hot spots for the same hot
spot threshold than the non-fuzzy version. This may be due
to a general increase in fitness values, caused by incidents
contributing to multiple hot spots rather than a single hot
spot. An increase in the value of the confidence threshold
tends to lead to an increase in the number of identified hot

spots, as incidents require a higher degree of membership
to be reduced by existing hot spots, and are therefore more
likely to form new hot spots instead. A similar effect was
observed in [6] following an increase in the defined mileage
range. The difference in the fuzzy version is that within the set
of identified hot spots, a variety of different radiuses will be
present, depending on the distribution of incidents. The value
of ConfTh therefore provides some control over the granularity
of hot spots, whilst not being restricted to a fixed radius.

In terms of runtime, the comparison is made with Con-
fTh=0.1, which has the fastest execution time of the confidence
thresholds due to the reduced number of hot spots it identifies.
The fuzzy HSID approach is slower than the original SeleSup-
HSID, which can be attributed to the increased number of
comparisons performed between incidents and hot spots in
Stage 1 of the algorithm. In SeleSup-HSID, because incidents
are only reduced by up to a single hot spot, the algorithm stops
searching as soon as a suitable hot spot is found. However,
with the introduction of fuzzy hot spots, we need to calculate
the membership of every incident within every hot spot to
ensure that incidents contribute to each hot spot that they fall
in range of. Despite this, the runtimes of the fuzzy version are
still reasonable for the size of the datasets considered.
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TABLE III
RESULTS FOR THE FUZZY AND NON-FUZZY VERSIONS OF STREAMING SELESUP-HSID, AVERAGED PER INTERVAL OF THE STREAM. NOTE THAT THE
FUZZY APPROACH IS DENOTED AS FHSID-ConfTh, AND THE NON-FUZZY VERSION IS DENOTED AS HSID.

Dataset FV > hsTh Runtime (seconds)
FHSID-0.1  FHSID-0.2 FHSID-0.3 FHSID-0.4 FHSID-0.5 HSID | FHSID-0. HSID
HB-day 334 336 339 341 340 261 1.676 0.975
HB-equal 4543 4620 4695 4775 4848 4358 9.114 6.353
CS-day 2163 2213 2277 2357 2448 1614 2.819 1.295
CS-equal 9377 9675 10037 10466 11158 5930 30.372 6.338
Figure 3 displays the difference in the number of dense hot ACKNOWLEDGMENTS

spots found within the harsh braking and contextual speeding
datasets, represented as a percentage of the total number of
hot spots. The nature of harsh braking incidents is that they
frequently occur in very specific locations, for example close
to road junctions. Contextual speeding incidents will usually
occur at multiple points along a long stretch of a road. We
can see that the fuzzy HSID approach identifies a higher
proportion of dense hot spots for the harsh braking dataset than
contextual speeding, suggesting that the method is successfully
adapting the radius of individual hot spots in response to
the incidents that they contain. Further evidence of this is
provided in Figure 4, which shows a sample of the hot spots
identified within the harsh braking dataset. This demonstrates
the improved self-organising nature of the fuzzy approach.
Around road junctions, a large number of dense hot spots
are identified, giving very precise locations for hot spots in
these areas. Conversely, on straighter stretches of road where
less precision is required, sparse hot spots are identified that
encompass incidents over a larger distance. In Figure 3, the
regular drops in the percentage of dense hot spots coincide
with data from weekends. As discussed in [8], at these times
there are fewer HGVs active, and therefore a reduction in the
number of incidents occurring. Over the weekends, dense hot
spots decay into sparse hot spots, resulting in the patterns seen
in this figure.

Overall, these results demonstrate that this initial fuzzy ap-
proach, despite utilising simple techniques, is able to provide
more precise and informative hot spots, with a minor increase
in the processing time.

V. CONCLUSIONS

In this paper, we have presented a first approach for in-
corporating the ideas of fuzzy sets and fuzzy inference into
an existing HSID method for big data, in order to improve
the way in which it handles the inherent uncertainty of the
problem. The experimental study shows that the use of simple
fuzzy techniques has enhanced the self-organisation of the
hot spots, removing the requirement of a fixed mileage range
and enabling a more informative output to be presented to
stakeholders. These results provide a foundation for future
research into additional ways in which fuzzy logic can be
utilised to continue improving HSID methods. For example,
the fuzzy inference could be extended to include the dynamic
aspects of the streaming algorithm, removing the need for the
associated thresholds and further generalising the method.

We would like to thank Dr Mohammad Mesgarpour and
Matt Hague from Microlise for the support and for providing
the large data sets that made this research possible.
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