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Abstract. The mutation operator is the only source of variation in Evo-
lutionary Programming. In the past these have been human nominated
and have included the Gaussian distribution in Classical Evolutionary
Programming, the Cauchy distribution in Fast Evolutionary Program-
ming, and the Lévy distribution. In this paper, we automatically design
the mutation operators (probability distributions) using Genetic Pro-
gramming. This is done by using random number generators (uniformly
distributed in the range 0 to 1) and using them as terminals in Genetic
Programming. In other words, a random number generator is a func-
tion of a uniformly generated random number passed through a function
generated by Genetic Programming. Rather than attempting to devel-
op mutation operator for arbitrary benchmark functions drawn from the
research literature, we have taken existing benchmark functions and in-
cluded them in a function class, which is a probability distribution over a
set of problem instances (functions). The mutation probability distribu-
tion is trained on a set of problems instances, and then tested on a second
independent test set of instances to confirm that the evolved probability
distribution has indeed generalized to the problem class. Initial results
are highly encouraging; on each of the problem classes the probability
distributions generated using Genetic Programming outperforms both
the Gaussian and Cauchy distributions.

Keywords: Evolutionary Programming, Genetic Programming, Evolu-
tionary Computation, Function Optimization, Machine Learning, Meta-
learning, Hyper-heuristics.

1 Introduction

1.1 Evolutionary Programming

Evolutionary programming (EP) is one of the branches of Evolutionary Com-
putation (EC) and is used to evolve numerical values in order to find a global
optimum of a function.

The main genetic operator is mutation. The probability distributions used as
mutation operators include: Gaussian, Cauchy and Lévy, among others. Classical
EP (CEP) [3] uses a Gaussian distribution as mutation operator. Fast EP (FEP)
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2 Genetic Programming with Evolutionary Programming

[3] uses a Cauchy distribution as mutation operator. A Lévy distribution (LEP)
has also been used as a mutation operator [4].

In recent years, many improvements of EP have been proposed. Improved
FEP (IFEP) [5], mixes mutation operators, and uses both Gaussian and Cauchy
distributions. Later mixed mutation strategy (MSEP) [8] was proposed; four
mutation operators are used and the mutation operator is selected according to
its probability in each generation during the evolution.

This paper proposes a novel method to generate new mutation operators
to promote the convergence speed of EP. That is using genetic programming
(GP) to train EP’s mutation operators, and then use the new distribution as
new mutation operator for EP on functions similar (i.e. drawn from the same
problem class) to functions in the training set.

1.2 Problem Instances, Problem Classes and Meta-learning

In previous work on function optimization, typically an algorithm is applied to
a single function to be optimized. As the algorithm is applied, it learns better
values for its best-so-far value. We regard a problem instance as a single function
to be optimized which is drawn from a probability distribution over functions,
which we call a function class. In this paper we are employing a meta-learning
approach consisting of a base-level and meta-level; EP sitting at the base-level,
learning about the specific function, and GP sitting at the meta-level which is
applied across problem instances, learning about the function class as a whole.
By taking this approach we can say that one mutation operator developed by
GP on one function class is suitable for problem instances drawn from that class,
while another mutation operator is more suited to problem instances drawn from
a different problem class.

1.3 Recent Research

In 1992 and 1993, David B. Fogel and Béck et al [1, 2] indicated that CEP with
adaptive mutation usually performs better than CEP without adaptive muta-
tion. In 1996, a new mutation operator, the Cauchy distribution was proposed
to replace the Gaussian distribution which is used in classical evolutionary pro-
gramming (CEP) with adaptive mutation, in order to distinguish CEP, EP uses
Cauchy mutation and is called FEP, to compare CEP and FEP, the authors have
done the experiment which followed Béck et al’s algorithm [3].

In 1999, Improved FEP (IFEP) was proposed, it mixes both Cauchy and
Gaussian mutations in EP [5].

In 2004, EP that uses Lévy probability distribution L,,, (y) as mutation
operator was proposed [4]. According to their experimental results, they obtained
the following conclusion: Lévy mutation can lead to a large variation and a large
number of distinct values in evolutionary search, in comparison with traditional
Gaussian mutation [4].

Ensemble strategies with adaptive EP (ESAEP), evaluation of novel adaptive
EP on four constraint handling techniques, EP using a mixed mutation strategy
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were proposed [6-8]. However, all these technologies are focus on the improve-
ment of EP itself, they are not trying to find new mutation operators to replace
the exists mutation operator like Gaussian, Cauchy or Lévy distribution.

1.4 Genetic Programming

GP is considered a specialization of GAs where each individual is a computer
program [9]. GP can be succinctly described as a GA wherein the population
contains programs rather than bit strings [10]. GP automatically generates com-
puter programs to solve specified problems.

It develops programs through the process of a “create-test-modify” cycle
which is similar to the way a human writes programs.

1.5 Function Optimization by Evolutionary Programming

In section 2 we describe function optimization. Section2 describes how EP is
applied to the task of finding a probability distribution which can be used as a
mutation operator in EP to find the global minimum of a function.

Todo

2 Function Optimization by Evolutionary Programming

A global minimization problem can be formalized as a pair (S, f), where S €
R™ is a bounded set on R™ and f : S — R is an n-dimensional real-valued
function. The problem is to find a point ;€ S such that f(2m,:,) is a global
minimum on .S. More specifically, it is required to find an z,,;,€ S such that

Here f does not need to be continuous or differentiable but it must be bounded.
According to the description by Béck et al [3], the EP is implemented as
follows:

1. Generate the initial population of p individuals, and set k = 1. Each indi-
vidual is taken as a pair of real-valued vectors, (x;,m;), Vi € {1, -, u}.The
initialization value of the strategy parameter n is set to 3.0.
FEvaluate the fitness value for each (x;,m;), Vi € {1,-- -, u}.
3. Each parent (x;,m;), Vi € {1,---,u}, creates \/u offspring on average, so

o

that a total of \ offspring are generated: for i=1, - - -, u, j=1, - - -, n, and
k=1, -, A.

%' (j) = @i (j) + ni(3)D; 1)

n'(j) = ni(j)exp(v'N(0,1) + vN;(0,1)) (2)

The above two equations are used to generate new offspring. Objective func-
tion is used to calculate the fitness value, the survival offspring is picked up
according to the fitness value. The factors v and ' have set to (1/2y/n) 1

and (v/2n)~!
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4. Step4. Evaluate the fitness of each offspring (x;,m.), Vi € {1, -, u}, according
to f(a').

5. Conduct pairwise comparison over the union of parents (x;,n;) and offspring
(xh,nt), Vi e {1,---,u}. Q opponents are selected randomly from the parents
and offspring for each individual. During the comparison, the individual re-
cewes a “win” if its fitness is no greater than the opponents’s, it receives a
’7win”.

6. Pick up the p individuals out of parents and offspring, i € {1,- - -, u}, that
have the most wins to be parents, as the next generation.

7. Stop if the stopping criterion is satisfied; otherwise, k = k + 1 and go to
Step3.

If D; in Eq.(1) uses the Gaussian distribution, it is called CEP. If D; in
Eq.(1) use Cauchy distribution, it is FEP. If D, in Eq.(1) use Lévy distribution,
it is LEP.

3 Using Genetic Programming to Train Evolutionary
Programming

In this section, we give the details of how and why we use GP to train a EP
mutation operator.

In the past, candidate distributions have been nominated by humans and
tested on a set of benchmark instances. Here we are automating this process
using GP to generate and test the distributions.

The research question we are addressing in this paper is the following; is it
possible for GP to automatically generate mutation operators (i.e. probability
distributions ) which can be used in EP as the mutation operator and outperform
the human generate distributions.

3.1 Problem Classes

In previous work, researchers use particular functions as a benchmark to test the
performance of particular mutation operator. Our work differs in this respect.
We define a set of problem classes from which each of those functions are drawn
from. In this way, we can train an EP mutation operator which is tuned to that
function class. It would not make sense to apply an EP algorithm to arbitrary
functions.

For example: when a = 1, f(z) = >."" 27 is an instance of problem class
f(z) = ad>} 22 where a € [1, 2]. GP generates mutation operators for EP,
when GP processing, the fitness value is calculated by EP, we random generated
a from range [1,2] for EP.

In this paper, as an example of a function class, we define a ;- ; z7. The
motivation for defining a function class like this is that a is in the range [1,2]
and so we are evolving a distribution which is fit-for-purpose on functions from
this class.

Below is the pseudo-code of the algorithm:
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= 0 /* Set generation counterx*/
: Initialize terminal set /* Set terminal set for GPx/
: Initialize functional set /* Set functional set for GPx*/

: Initialize population Q(i) /* Generate probability distributions*/

: while not reach the max generation do
ti=1+1
: Select Q(i) from Q(i - 1)
: Crossover Q(i) /* Crossover in GPx*/
10: Mutate Q(i) /* Mutation in GPx*/
11: Evaluate Q(i) /* Compute fitness values by EPx*/
12: end while

1
2
3
4
5: Evaluate population Q(i) /* Compute fitness values by EP*/
6
7
8
9:

In step 2, we set N(u,0?) in terminal set, when p = 0, o = 1, it is standard
normal distribution, in our test the value of © = 0 and the value of ¢ is in range
[0,5]. In step 3, we assign the function set as {+, —, x,+}. In step 11, we use
EP as fitness function to evaluate the fitness value. In step 11 we evaluate the
utility of the distribution, and assign it the best fitness of each EP run, averaged
over the 20 EP runs. When evaluating the fitness value, EP will run 20 times
and calculate the mean value in last generation as fitness value for GP.

After training a new distribution will survived, this distribution find by GP
is called GP-Dist. The function classes is in table 1.

Table 1: The 10 function classes used in our experimental studies, where n is
the dimension of the function, f,.;, is the minimum value of the function, and
S CR” nis 30, a and b are random number from the specified range.

Function Classes S a b Jmin
fi(z) =a X0 o2 (100,100 a € [1,2] N/A 0
folx)=ad " | | @i | +b]1iy | 2 | [-10,10] a€[1,2] b€[0,107°] 0

f3(x) =>"" 1 (a Z; L T5)? [-100,100]" a€ [1,2] N/A 0

fa(z) =mazi{a| z; |,1 <i<n} [—100,100]" a€[1,2] N/A 0

f5(x) = EH[ (Tit1— $2)2+($z —1)%][-30,30]" a€[1,2] N/A 0

fo(z) =21 1(LaxZ +0.5])2 [-100,100]" a€[1,2] N/A 0

fr(x) = ad i, iz} + random[0, 1) [-1.28,1.28]"a € [1,2] N/A 0

fe(z) =31 — (xlsm(M) + a) [-500,500]" a€[1,2] N/A [12629.5,

~12599.5]

fo(z) =31 [ax? + b(l —cos(2rx;))] [-5.12,5.12]"a € [1,2] be[5,10] O

fio(z) = —aexp(—0.2y/L 3" x2) — [-32,32]" ac[l,2] N/A 0

exp(L 3", cos?wxi) +a+e

Table 2: Comparison among GP-Dist, FEP and CEP on fi-f1g. All results
have been averaged over 50 runs, where “Mean Best” indicates the mean best
function values found in the last generation, and “Std Dev” stands for the stan-
dard deviation.
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Function FEP CEP GP-Dist
Classes Mean Best Std Dev  Mean Best Std Dev  Mean Best Std Dev
fi 1.24x1073 2.69x107% 1.45%x107* 9.95x107° 6.37x107° 5.56x10~°
fo 1.53x1071 2.72x1072 4.30x1072 9.08x1073 8.14x10~* 8.50x10~*
fs 2.74x1072 2.43x1072 5.15x1072 9.52x1072 6.14x1073 8.78x1073
fa 1.79 1.84 1.75%10  6.10 2.16x10~" 6.54x107!
fs 2.52x1073 4.96x107% 2.66x10™% 4.65x107° 8.39x 107 1.43x10~7
fs 3.86x1072 3.12x1072 4.40x10 1.42x10% 9.20x1073 1.34x10~2
fa 6.49%1072 1.04x1072 6.64x1072 1.21x1072 5.25x1072 8.46x10~3
fs TBD TBD TBD TBD TBD TBD

fo 6.24x1072 1.30x1072 1.09x10% 3.58x10 1.74x1073 4.25x10~4
f1o 1.67 4.26x1071 1.45 2.77x1071 1.38 2.45x107 1

Table 3: t-tests comparing GP-Dist, with FEP and CEP on fi-fio

Function Number of GP-Dist vs FEP GP-Dist vs CEP

Classes Generations t-test t-test

fi 1500 2.78x10~47 4.07x10~2

fo 2000 5.53x 10762 1.59x10754
f3 5000 8.03x1078 1.14x1073

fa 5000 1.28x107 3.73x10736
fs 20000 2.80x10~°8 9.29% 10763
fs 1500 1.85x10~8 3.11x1072

fr 3000 3.27x107? 2.00x107?

fa 9000 TBD TBD

fo 5000 6.37x1075° 6.54x10~39
f1o 1500 9.23x107° 1.93x107!

4 Test Function Classes

In table 2, we list out the results for all 10 function classes. From the results,
GP-Dist outperforms both Cauchy and Gaussian on all function classes, and GP-
Dist has significant improvement on f1, 2, f3, f4, f5, f6, f9. The finally result
of f1 is promoted from level 10~ (made by FEP) and 10~* (made by CEP) to
107°, f2 is promoted from level 10~ and 102 to 10~%, f3 is promoted from
level 1072 and 1072 to 1073, f4 is promoted from level 10° and 10' to 1071, f5
is promoted from level 102 and 10~ to 10~7, f6 is promoted from level 1072
and 10! to 1073, f9 is promoted from level 10~2 and 102 to 1073.

5 Experimental Studies

In previous work, most of the authors have tested their algorithms on a bench-
mark suit of 23 function instances.
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In this paper, we use our method test 10 of them.

In our test, we run EP 20 times, and use the mean value of all 20 runs as
fitness value for GP. If a mutation operator, we call it GP-Dist in later part of
this paper, find by GP has good performance on a problem class, it should have
good performance on particular instance of that class as well.

the new methods we proposed has successfully found a new mutation operator
for each function class. All the mutation operators found beat both Cauchy and
Gaussian mutation operator. The only function on which good results were not
found was fig9, but this may be because GP was either over-fitting or under-
fitting.

5.1 Analysis and Comparisons

Below is a GP-Dist finally survived in GP for function class 1:

(= (+(=(+(= 0 N(p,0%))(+ N(p,0%) 0))(= (+ 00) 0)) N(p,0%))(+ 00))

Here o is 0.171281, o is randomly generated by GP in range [0, 5].
To compare the difference among GP-Dists, Gaussian and Cauchy, we plot
the distribution in below graph. For each distribution we plot it for 3000 samples.
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Fig. 2. A histogram of the Cauchy Distribution
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Fig. 3. A histogram of the GP generated distri-
bution for Function Class 1 for 3000 samples.
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Fig. 4. A histogram of the GP generated distri-
bution for Function Class 2 for 3000 samples.
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Fig. 5. A histogram of the GP generated distri-
bution for Function Class 3 for 3000 samples.
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Fig. 6. A histogram of the GP generated distri-
bution for Function Class 4 for 3000 samples.
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Fig. 7. A histogram of the GP generated distri- Fig. 10. A histogram of the GP generated dis-
bution for Function Class 5 for 3000 samples. tribution for Function Class 9 for 3000 samples.
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Fig. 9. A histogram of the GP generated distri-
bution for Function Class 7 for 3000 samples.
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5.2 Unimodal Function Classes and Multimodal Function Classes

In the function class suite, f1-f7 are unimodal function classes, f8-f10 are
multimodal function classes, the experimental results prove that our method is
well applied on both unimodal and multimodal functions classes.

6 Future Work

The initial aim of this paper is to build a system which is capable for synthesizing
distributions and we therefore compare it with only FEP and CEP. Later work
will address comparisons with more recent developments in EP including IFEP
[5] and MSEP [8].

In this paper we have run the GP system for a fixed number of iterations, and
have not optimized these parameters, so there is further scope for improvement
of results in this regard. Further work includes using more sophisticated methods
of terminating the search for a probability distributions, such as early stopping
to prevent either under-fitting or over-fitting.

We have defined functions classes in terms of a random variable which forms
a coefficient in the function. This provides a source of related functions to be
optimized. Each of these function classes (see table 1) are either unimodal or
multimodal functions. None of the currently defined function classes contain
both, so it would be interesting to evolve a distribution capable of performing
well on both types of function instances.

In future, we would like to pursue more interesting research topics. In pre-
vious work, researchers are usually uses 23 functions to test the performance of
EP. We have already extended 10 of them as function classes, and will extend
another 13 functions to test the performance of the methods we propose in this

paper.

7 Conclusion

A GP-EP algorithm is proposed in this paper. When GP is running, EP is work-
ing as fitness function to test the performance of mutation operator generated
by GP. The mutation operator survived in GP is called GP-Dist. GP-Dist out-
performs both Cauchy and Gaussian mutation operator on the function classes
in the testing phase. Our experimental results indicates that GP-Dist for each
function classes converges to a better near optimal solution much faster than
CEP and FEP for both single-modal and multi-modal function classes.
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