
Soft Computing Journal manuscript No.
(will be inserted by the editor)

A Hybrid Multi-population Framework for Dynamic
Environments Combining Online and Offline Learning

Gönül Uludağ · Berna Kiraz · A. Şima Etaner-Uyar · Ender Özcan

Received: date / Accepted: date

Abstract Population based incremental learning algo-
rithms and selection hyper-heuristics are highly adap-
tive methods which can handle different types of dy-

namism that may occur while a given problem is being
solved. In this study, we present an approach based on
a framework hybridizing these approaches to solve dy-

namic environment problems. A key feature of this hy-
brid approach is that it also incorporates online learn-
ing, which takes place during the search process for a

high quality solution to a given instance, mixing it with
offline learning which takes place during the training
session prior to dealing with the instance. The perfor-

mance of the approach along with the influence of dif-
ferent heuristic selection methods used within the selec-
tion hyper-heuristic is investigated over a range of dy-

namic environments produced by a well known bench-
mark generator. The empirical results show that the
proposed approach using a particular hyper-heuristic

A preliminary version of this study was presented in UKCI
2012: 12th Annual Workshop on Computational Intelligence

Gönül Uludağ and Berna Kiraz
Institute of Science and Technology
Istanbul Technical University
Maslak, Istanbul, Turkey 34469
E-mail: uludagg@itu.edu.tr
E-mail: berna.kiraz@marmara.edu.tr

A. Şima Etaner-Uyar
Department of Computer Engineering
Istanbul Technical University
Maslak, Istanbul, Turkey 34469
E-mail: etaner@itu.edu.tr

Ender Özcan
School of Computer Science
University of Nottingham
Nottingham, UK NG8 1BB
E-mail: Ender.Ozcan@nottingham.ac.uk

outperforms some of the top approaches in literature
for dynamic environment problems.

Keywords Heuristic · Metaheuristic · Hyper-

heuristic · Estimation of Distribution Algorithm ·
Dynamic Environment

1 Introduction

One of the challenges in combinatorial optimization is
to develop a solution method for dynamic environment

problems in which the environment changes over time
during the optimization/search process. There is a va-
riety of heuristic search methodologies, such as tabu

search and evolutionary algorithms to choose from to
solve static combinatorial optimization problems (Burke
and Kendall, 2005). When performing a search for the

best solution in dynamic environments, the dynamism
is often ignored and generic search methodologies are
utilized. However, the key to success for a search algo-

rithm in dynamic environments is its adaptation ability
and speed to react whenever a change occurs. There is
a range of approaches in literature proposed for solv-

ing dynamic environment problems (Branke, 2002; Cruz
et al, 2011; Yang et al, 2007). Often, a given approach
performs better than some others for handling a partic-

ular type of dynamism in the environment. This implies
that the properties of the dynamism need to be known
beforehand, if the most appropriate approach is to be

chosen. However, even this may be impossible depend-
ing on the relevant dynamism associated with the prob-
lem. In this study, we use propose a hybrid approach to

deal with a variety of dynamic environment problems
regardless of the nature of their dynamism.

Most of the approaches for dynamic environments

are either online or offline learning approaches. The on-

2 Uludağ,Kiraz,Etaner-Uyar,Özcan

line learning approaches get feedback/guidance during

the search process while a problem instance is being
solved. The offline approaches make use of a training
session using a set of test instances to learn how to deal

with unseen instances. Statistical Model-based Optimi-
zation Algorithms (SMOAs) are known to be highly
adaptive and thus are expected to be able to track

the changes, if and when they occur. They are poten-
tially viable approaches for solving dynamic environ-
ment problems. Consequently, their use has been grow-

ing in the recent years. Probabilistic model-based tech-
niques, for example Estimation of Distribution Algo-
rithms (EDAs) are among the most common ones used

within these approaches (Larrañaga and Lozano, 2002).
EDAs are population based search methodologies in
which new candidate solutions are produced using the

probabilistic distribution model learned from the cur-
rent best candidate solutions. Univariate marginal dis-
tribution algorithm (UMDA) (Ghosh and Muehlenbein,
2004), Bayesian optimization algorithm (BOA) (Kobliha

et al, 2006) and population based incremental learning
(PBIL) (Yang and Yao, 2005) are among the most com-
monly used EDAs in literature. There is a growing num-

ber of studies which apply improved variants of EDAs in
dynamic environments (Barlow and Smith, 2009; Fer-
nandes et al, 2008a; Wu et al, 2010b; Yang and Richter,

2009; Peng et al, 2011; Yang and Yao, 2008; Yuan et al,
2008).

Heuristic and many meta-heuristic approaches op-
erate directly on the solution space and utilize problem
domain specific information. Hyper-heuristics (Burke

et al, 2012), on the other hand, are described as more
general methodologies as compared to such approaches,
since they are designed for solving a range of computa-

tionally difficult problems without requiring any mod-
ification. They conduct search over the space formed
by a set of low-level heuristics which perturb or con-

struct a (set of) candidate solution(s) (Cowling et al,
2000; Özcan et al, 2008). Hyper-heuristics operate at
a higher level, communicating with the problem do-

main through a domain barrier as they perform search
over the heuristics space. Any type of problem spe-
cific information is filtered through the domain barrier.

Due to this feature, a hyper-heuristic can be directly
employed in various problem domains without requir-
ing any change, of course, through the use of appro-

priate domain specific low-level heuristics. This gives
hyper-heuristics an increased level of generality. There
are two main types of hyper-heuristics; methodologies

that generate and select heuristics (Ross, 2005; Burke
et al, 2012). This study focuses on the selection hyper-
heuristic methodologies. There is strong empirical evi-

dence showing that selection hyper-heuristics are able

to quickly adapt without any external intervention in

a given dynamic environment providing effective solu-
tions (Kiraz and Topcuoglu, 2010; Kiraz et al, 2011).

In order to exploit the advantages of approaches

with learning and those with model-building features in
dynamic environments, we proposed a hybridization of
EDAs with hyper-heuristics in the form of a two-phase

framework, combining offline and online learning mech-
anisms in Uludağ et al (2012a). A list of probability vec-
tors for generating good solutions is learned in an offline

manner in the first phase. In the second phase, two sub-
populations are maintained. A sub-population is sam-
pled using an EDA, while the other one uses a hyper-

heuristic for sampling appropriate probability vectors
from the previously learned list in an online manner. In
this study, we extend our previous studies and perform

exhaustive tests to empirically analyze and explain the
behavior of such an EDA and hyper-heuristic hybrid
and try to determine a selection method which per-

forms well within the proposed framework. We also try
to decrease the computational requirements of the ap-
proach while maintaining its high performance through

the use of adaptive mechanisms.

The rest of the paper is organized as follows. Section

2 provides an overview of selection hyper-heuristics,
components used in the experiments and related stud-
ies on dynamic environments. Section 3 describes the

proposed multi-phase hybrid approach which combines
online and offline learning via a framework hybridiz-
ing multi-population EDAs and hyper-heuristics. The
empirical analysis of this hybrid approach over a set

of dynamic environment benchmark problems and the
experimental design are provided in section 4. Finally,
section 5 discusses the conclusion and future work.

2 Background and Related Work

2.1 Selection Hyper-heuristics

An iterative selection hyper-heuristic based on a single
point search framework, in general, consists of heuris-
tic selection and move acceptance components (Özcan

et al, 2008). Previous studies show that different com-
binations of these components yield selection hyper-
heuristics with differing performances. A selection hyper-

heuristic operates at a high level and controls a set of
predefined low level heuristics. At each step, a (set of)
current solution(s) is modified through the application

of a heuristic, which is chosen by the heuristic selec-
tion method. Then the new (set of) solution(s) is ac-
cepted or rejected using the move acceptance method.

This process continues until the termination criteria are

A Hybrid Multi-population Framework 3

satisfied. In this section, we provide an overview of the

selection hyper-heuristic components used in this study.

There are many heuristic selection methods pro-

posed in literature. Some of these methods were in-
troduced in Cowling et al (2000) including Simple
Random (SR), Random Descent (RD), Random Per-

mutation (RP), Random Permutation Descent (RPD),
Greedy (GR) and Choice Function (CF). In Simple
Random, a low-level heuristic is randomly selected and

applied to the candidate solution once. In Random De-
scent, a randomly selected heuristic is applied repeat-
edly to the candidate solution as long as the solution

improves. In Random Permutation, a permutation of
all low-level heuristics is generated at random and each
heuristic is applied successively once. In Random Per-

mutation Descent, a heuristic is selected in the same
way as Random Permutation, but it is applied repeat-
edly to the candidate solution as long as the solution

improves. In Greedy, all low-level heuristics are applied
to the candidate solution and the one generating the
best solution is selected. Choice Function maintains a

score for each heuristic, which is based on a weighted
average of three measures: the performance of each in-
dividual heuristic, the pairwise performance between

the heuristic and the previously selected heuristic and
the elapsed time since the heuristic was last used. The
heuristic with the maximum score is selected at each

iteration. The score of each heuristic is updated after
the heuristic selection process.

Nareyek (2004) used Reinforcement Learning (RL)
to choose from a set of neighborhoods. Reinforcement

Learning employs a notion of reward/punishment to
maintain the performance of a heuristic which yields an
improving/worsening solution after it is chosen and is

applied to a solution at hand. In Reinforcement Learn-
ing, each heuristic is initialized with the same utility
score. After a heuristic is selected and applied to a can-

didate solution, its score is increased or decreased at
a certain rate depending on change (improvement or
worsening) in the solution quality. At each iteration,

the low level heuristic with the maximum score is se-
lected as in Choice Function.

A heuristic selection method incorporates online learn-
ing, if the method receives some feedback during the
search process and makes its decisions accordingly. In

this respect, Random Descent, Random Permutation
Descent, Greedy, Choice Function and Reinforcement
Learning are all learning heuristic selection methods.

Random Descent, Random Permutation Descent and
Greedy also receive a feedback during the search pro-
cess, that is whether or not a given heuristic makes an

improvement (or largest improvement). So, they can be

considered as learning mechanisms with an extremely

short term memory.
A recent learning heuristic selection method, Ant-

based Selection (AbS), was proposed in Kiraz et al

(2013b). As in ant colony optimization approaches, Ant-
based Selection uses a matrix of pheromone trail values
(τhi,hj). A pheromone trail value (τhi,hj) shows the de-

sirability of selecting heuristic hj after the selection of
heuristic hi. All pheromone trails are initialized with
a small value τ0. In the first step, a low-level heuristic

is randomly selected. Then, the most appropriate low-
level heuristic is selected based on pheromone trail val-
ues. In Ant-based Selection (Kiraz et al, 2013b), there

are two successive stages: heuristic selection and pheromone
update stages. In the heuristic selection stage, Ant-
based Selection chooses the heuristic hs with the high-

est pheromone trail (hs = maxi=1..k τhc,hj) with a prob-
ability of q0 where hc is the previously invoked heuristic.
Otherwise, the authors consider two different methods
to decide the next heuristic to invoke. The first method

selects the next heuristic based on probabilities propor-
tional to the pheromone trail of each heuristic pair. This
method is analogous to the roulette wheel selection of

evolutionary computation. In the second method, the
next heuristic is selected based on tournament selec-
tion. After the selection process, the pheromone ma-

trix is updated. First, all values in the pheromone ma-
trix are decreased by a constant factor (evaporation)
(τhi,hj

= (1−ρ)τhi,hj
where 0 < ρ ≤ 1 is the pheromone

evaporation rate). Then, only the pheromone trail value
between the previously selected heuristic and the last
selected heuristic is increased by using Equation 1.

τhc,hs = τhc,hs +∆τ (1)

where hc is the previously selected heuristic and hs is

the last selected heuristic. ∆τ is the amount of phero-
mone trail value to be added and is defined as ∆τ =
1/fc where fc is the fitness value of the new solution

generated by applying the last selected heuristic hs.
Kiraz and Topcuoglu (2010) tested { Simple Ran-

dom, Random Descent, Random Permutation, Random

Permutation Descent, Choice Function } across dynamic
generalized assignment problem instances, extending a
memory-based evolutionary algorithm with the use of

hyper-heuristics. The results showed that Choice Func-
tion combined with the method which accepts all moves,
outperformed the generic memory-based evolutionary

algorithm. Kiraz et al (2011, 2013a) investigated the
behavior of hyper-heuristics using a range of heuristic
selection methods in combination with various move

acceptance schemes on dynamic environment instances
generated using the moving peaks benchmark genera-
tor. The results indicated the success of Choice Func-

tion across a variety of change dynamics, once again.

4 Uludağ,Kiraz,Etaner-Uyar,Özcan

However, this time, the best move acceptance method,

used together with Choice Function, accepted those
new solution candidates which were better than or equal
to the current solution candidate. A major difference

between our approach and previous studies is that our
approach uses a population of operators to create solu-
tions, not a population of solutions directly. More on se-

lection hyper-heuristics including their categorization,
different components, application areas can be found in
Özcan et al (2008); Chakhlevitch and Cowling (2008);

Burke et al (2012)

2.2 Dynamic Environments

A dynamic environment problem contains one or more
components which may change in time individually or

simultaneously. For example, constraints of a given prob-
lem instance, objectives, or both may change in time.
Branke (2002) identified the following criteria to cate-

gorize the change dynamics in an environment:

– Frequency of change indicates how often a change
occurs,

– Severity of change is the magnitude of the change,

– Predictability of change is a measure of correlation
between the changes,

– Cycle length/cycle accuracy is a characteristic defin-

ing whether an optimum returns exactly to previous
locations or close to them in the search space, peri-
odically.

In order to handle different types of change prop-

erties in the environment, a variety of strategies have
been utilized which can be grouped under four main
categories (Yaochu and Branke, 2005):

– strategies which maintain diversity at all times,

– strategies which increase diversity after a change,
– strategies which use implicit or explicit memory,
– strategies that work with multiple populations.

Most of the existing approaches for solving dynamic

environment problems are based on evolutionary algo-
rithms. The use of memory in evolutionary algorithms
has been proposed to allow the algorithm to remember

solutions which have been successful in previous envi-
ronments. Commonly memory schemes used in evolu-
tionary algorithms are either implicit, e.g. as in (Lewis

et al, 1998; Uyar and Harmanci, 2005), or explicit, e.g.
as in (Branke, 1999; Yang, 2007). The main benefit
of using memory in an evolutionary algorithm is to

enable the algorithm to detect and track changes in
a given environment rapidly if the changes are peri-
odic. For similar reasons, some algorithms make use

of multiple populations, e.g. as in (Branke et al, 2000;

Ursem, 2000; Wineberg and Oppacher, 2000). These

approaches explore different regions of the search space
by dividing the population into sub-populations. Each
sub-population tracks several optima simultaneously in

different parts of the search space.

The sentinel-based genetic algorithm (GA) (Mor-

rison, 2004) is another multi-population approach to
dynamic environments which makes use of solutions re-
ferred to as sentinels, uniformly distributed over the

search space for maintaining diversity. Sentinels are fixed
at the beginning of the search and in general, are not
mutated or replaced during the search. Sentinels can

be selected for mating and used during crossover. Due
to having the sentinels distributed uniformly over the
search space, the algorithm can recover quickly when

the environment changes and the optimum moves to
another location in the search space. Sentinels were re-
ported to be effective in detecting and following the
changes in the environment.

There is a growing interest in Statistical Model-
based Optimization Algorithms which are adaptive and,

thus, have the potential to react quickly to changes in
the environment and track them. For example, EDAs,
such as, Univariate marginal distribution algorithm (Ghosh

and Muehlenbein, 2004), Bayesian optimization algo-
rithm (Kobliha et al, 2006), and PBIL (Yang and Yao,
2005), are among the most common Statistical Model-

based Optimization Algorithms used in dynamic envi-
ronments. There are also some studies based on Statisti-
cal Model-based Optimization Algorithms for dynamic

environments to estimate both time and direction (pat-
tern) of changes (Simões and Costa, 2008a,b, 2009b,a).

The standard PBIL (PBIL) algorithm was first in-
troduced by Baluja (1994). PBIL builds a probabil-
ity distribution model based on a probability vector,−→
P using a selected set of promising solutions to esti-
mate a new set of candidate solutions. Learning and
sampling are the key steps in PBIL. The initial pop-

ulation is sampled from the central probability vector,−→
P central. During the search process, the probability
vector

−→
P (t) = {p1, p2, ..., pl} (l is the length) is learnt

by using the best sample(s)
−→
B (t) at each t iteration as

pi(t+1) := (1−α)pi(t)+αBi(t), i = {1, 2, ..., l}, where
α is the learning rate. A bitwise mutation is applied to

the probability vector for maintaining diversity. Then a
set S(t) of n candidate solutions are sampled from the
updated probability vector as follows. For each locus i,

if a randomly created number r = rand(0.0, 1.0) < pi,
it is set to 1; otherwise, it is set to 0. The process is
repeated until the termination criteria are met.

In literature, several PBIL variants were proposed
for dynamic environments (Yang, 2005b; Yang and Yao,

2005, 2008). One of them is a dual population PBIL

A Hybrid Multi-population Framework 5

(PBIL2) introduced in Yang and Yao (2005). In PBIL2,

the population is divided into two sub-populations. Each
sub-population has its own probability vector. Both
vectors are maintained in parallel. As in PBIL, the first

probability vector
−→
P 1 is initialized based on the central

probability vector, while the second probability vector−→
P 2 is initialized randomly. The sizes of the initial sub-

populations are equal. Thus, half of the population is
initialized using

−→
P 1, and the other half using

−→
P 2. After

all candidate solutions are evaluated, sub-population

sample sizes are slightly adjusted. Then, each proba-
bility vector is learnt towards the best solution(s) in
the relevant sub-population. Similar to PBIL, a bitwise

mutation is applied to both probability vectors before
sampling them to obtain the new set of candidate solu-
tions.

Yang (2005b) proposed an explicit associative me-
mory-based PBIL (MPBIL) approach. In memory-based

PBIL, the best candidate solution along with the corre-
sponding environmental information, i.e. the probabil-
ity vector

−→
P (t) at a given time, is stored in the memory

and it is retrieved when a new environment is encoun-
tered. The memory is updated every t generations using
a stochastic time pattern based on tM = t+rand(5, 10),

where tM is the next memory update time. Whenever
the memory is full and needs to be updated, first the
memory point with its sample

−→
BM (t) closest to the

best candidate solution
−→
B (t) in terms of Hamming dis-

tances, is found. If the best candidate solution has a
higher fitness than this memory sample, it is replaced

by the candidate solution; otherwise, memory remains
unchanged. When the best candidate solution

−→
B (t) is

stored in the memory, the current working probabil-

ity vector
−→
P (t) is also stored in the memory and is

associated with
−→
B (t). Likewise, when replacing a mem-

ory point, the best candidate solution and the working

probability vector replace both the sample and the as-
sociated probability vector within the memory point,
respectively. The memory is re-evaluated every itera-

tion in order to detect environment changes. When an
environment change is detected, the memory probabil-
ity vector associated with the best re-evaluated memory

sample replaces the current working probability vector
if the best memory sample is fitter than the best candi-
date solution created by the current working probability

vector. If no environment change is detected, memory-
based PBIL progresses just as the standard PBIL does.

Another PBIL variant; dual population memory-
based PBIL (MPBIL2) was introduced by Yang and

Yao (2008). This scheme employs both memory and
multi-population approaches. Similar to PBIL2,

−→
P 1 is

initialized with the central probability vector, and the

second probability vector
−→
P 2 is initialized randomly.

The size of each population in dual population memory-

based PBIL is adjusted according to its individual per-
formance. When it is time to update the memory, the
working probability vector that creates the best over-

all sample, i.e., the winner of
−→
P 1 and

−→
P 2, is stored

together with the best sample in the memory, if it is
fitter than the closest memory sample. The memory

is re-evaluated every iteration. When an environment
change is detected, only

−→
P 1 is replaced by the best

memory probability vector, if the associated memory

sample is fitter than the best candidate solution gener-
ated by

−→
P 1. This is to avoid having

−→
P 1 and

−→
P 2 con-

verge to the same values.

All variants of PBILs using restart and random im-
migrant schemes were investigated in Yang and Yao

(2008). According to the experimental results, the dual
population memory-based PBIL approach with restart
outperforms other techniques. Cao and Luo (2010) in-

troduced different associative memory updating strate-
gies inspired from memory-based PBIL (Yang and Yao,
2008). The empirical results indicate that the environ-

mental information based updating strategy gives bet-
ter results only in cyclic dynamic environments. A di-
rect memory scheme and its interaction with random

immigrants is examined for Univariate marginal distri-
bution algorithm in Yang (2005a). Yang and Richter
(2009) introduced a hyper-learning scheme using restart

and hypermutation in PBIL. Moreover, a multi-population
scheme is applied successfully to Univariate marginal
distribution algorithm by (Wu et al, 2010a,b). Xing-

guang et al (2011) investigated an environment-triggered
population diversity control approach for memory en-
hanced Univariate marginal distribution algorithm, while

Peng et al (2011) examined an environment identification-
based memory management scheme for binary coded
EDAs.

An EDA based approach in continuous domains has
been implemented based on online Gaussian mixture

model by Goncalves and Zuben (2011). The proposed
online learning approach outperformed mainly in high-
frequency changing environments. Yuan et al (2008)

implemented continuous Gaussian model EDAs and in-
vestigated their potential for solving dynamic optimiza-
tion problems. Bosman (2005) investigated online time-

linkage real valued problems and analyzed how remem-
bering information from the past can help to find new
solutions.

EDAs have been applied with good results to some
real world problems, such as inventory management

problems (Bosman, 2005), the dynamic task allocation
problem (Barlow and Smith, 2009) and the dynamic
pricing model (Shakya et al, 2007). The main draw-

back of the EDA-based approaches, such as Univariate

6 Uludağ,Kiraz,Etaner-Uyar,Özcan

marginal distribution algorithm and PBIL, is diversity

loss. Some strategies are used to cope with converging
to local optima. Fernandes et al (2008b) proposed a new
update strategy for the probability model in Univariate

marginal distribution algorithm, based on Ant Colony
Optimization transition probability equations. The ex-
perimental results showed that the proposed strategies

increase the adaptation ability of Univariate marginal
distribution algorithm in uncertain environments. Li
et al (2011) introduced a new Univariate marginal dis-

tribution algorithm, referred to as transfer model to en-
hance the diversity of the population. The results show
that the proposed algorithm can adapt in dynamic en-

vironments, rapidly.

There are different benchmark generators in liter-

ature for dynamic environments. The Moving Peaks
Benchmark generator (Branke, 2002) is commonly used
in continuous domains, while in discrete domains the

XOR dynamic problem generator (Yang, 2004, 2005a) is
preferred. In this study, we use the XOR dynamic prob-
lem generator for creating dynamic environment prob-

lems with various degrees of difficulty from any binary-
encoded stationary problem using a bitwise exclusive-or
(XOR) operator. Given a function f(x) in a stationary

environment and x ∈ {0, 1}l, the fitness value of the x
at a given generation g is calculated as f(x, g) = f(x⊕
mk), where mk is a binary mask for kth stationary envi-

ronment and ⊕ is the XOR operator. Firstly, the mask
m is initialized with a zero vector. Then, every τ gen-
erations, the mask mk is changed as mk = mk−1 ⊕ tk,

where tk is a binary template.

3 A Hybrid Framework for Dynamic

Environments

In this section, we describe our multi-phase hybrid frame-
work, referred to as hyper-heuristic based dual popula-
tion EDA (HH-EDA2), for solving dynamic environ-

ment problems. Our initial investigations in (Uludağ
et al, 2012a,b) indicated that this framework has poten-
tial for solving dynamic environment problems. There-

fore, in this paper, we extend our studies further and
provide an analysis of this framework across a variety
of dynamic environment problems with different change

properties produced by the XOR dynamic problem gen-
erator and explore further enhancements and modifica-
tions.

Although we chose PBIL2 as the EDA component

in our studies, the proposed hybrid framework can com-
bine any multi-population EDA with any selection hyper-
heuristic in order to exploit the strengths of both ap-

proaches.

HH-EDA2 consists of two main phases: offline learn-

ing and online learning. In the offline learning phase, a
number of masks to be used in the XOR generator are
sampled over the search space. The search space is di-

vided intoM sub-spaces and a set of masks is generated
randomly in each sub-space, thus making the masks
distributed well over the landscape. For the XOR gen-

erator, each mask corresponds to a different environ-
ment. Then, for each environment (represented by each
mask) PBIL is executed. As a result of this, good prob-

ability vectors
−→
P list corresponding to a set of different

environments are learned in an offline manner. These
learned probability vectors are stored for later use dur-

ing the online learning phase of HH-EDA2.

In the online learning phase, the probability vectors−→
P list, serve as the low-level heuristics, which a selec-
tion hyper-heuristic manages. Figure 1 shows a simple

diagram illustrating the structure and execution of HH-
EDA2.

Fig. 1 The framework of HH-EDA2

The online learning phase of the HH-EDA2 frame-
work uses the PBIL2 approach, explained in Section 2.
Similar to PBIL2, the population is divided into two

sub-populations and two probability vectors, one for
each sub-population, are used simultaneously. As seen
in Figure 1, pop1 represents the first sub-population

and
−→
P 1 is its corresponding probability vector; pop2

represents the second sub-population and
−→
P 2 is its cor-

responding probability vector. HH Select shows selec-

tion of
−→
P 2 in Plist using heuristic selection methods.

The pseudocode of the proposed HH-EDA2 is shown in
Algorithm 1.

In HH-EDA2, the first probability vector
−→
P 1 is ini-

tialized to
−→
P central, and the second probability vector−→

P 2 is initialized to a randomly selected vector from−→
P list. Initial sub-populations of equal sizes are sampled

independently from their own probability vectors. Af-

A Hybrid Multi-population Framework 7

Algorithm 1 Pseudocode of the proposed HH-EDA2
approach
1: t := 0
2: initialize

−→
P 1(0) :=

−→
0.5

3:
−→
P 2(0) is selected from

−→
P list

4: S1(0) := sample(
−→
P 1(0)) and S2(0) := sample(

−→
P 2(0))

5: while (termination criteria not fulfilled) do
6: evaluate S1(t) and evaluate S2(t)

7: adjust next population sizes for
−→
P 1(t) and

−→
P 2(t) re-

spectively
8: place k best samples from S1(t) and S2(t) into

−→
B (t)

9: send best fitness from whole/second population to
heuristic selection component

10: learn
−→
P 1(t) toward

−→
B (t)

11: mutate
−→
P 1(t)

12:
−→
P 2(t) is selected using heuristic selection

13: S1(t) := sample(
−→
P 1(t)) and S2(t) := sample(

−→
P 2(t))

14: t := t+ 1
15: end while

ter the fitness evaluation process, sub-population sam-
ple sizes are slightly adjusted within the range [0.3 ∗
n, 0.7∗n] according to their best fitness values. At each
iteration, if the best candidate solution of the first sub-
population is better than the best candidate solution of

the second sub-population, the sample size of the first
sub-population, n1 is determined by min(n1 + 0.05 ∗
n, 0.7 ∗ n); otherwise n1 is defined by min(n1 − 0.05 ∗
n, 0.3 ∗ n). While,

−→
P 1 is learned towards the best solu-

tion candidate(s) in the whole population and mutation
is applied to

−→
P 1,

−→
P 2 is selected using the heuristic se-

lection methods from
−→
P list. No mutation is applied to−→

P 2. Then, the two sub-populations are sampled based
on their respective probability vectors. The approach
repeats this cycle until some termination criteria are

met. In the HH-EDA2 framework, different heuristic
selection methods can be used for selecting the second
probability vector from

−→
P list.

4 Experiments

In this study, we performed four groups of experiments.
In the first group, we investigated the influence of differ-
ent heuristic selection methods on the performance of

the proposed framework, to determine the most suitable
one for dynamic environment problems. In the second
group of experiments, the proposed framework, incor-

porating the chosen heuristic selection scheme, is com-
pared to similar methods from literature. The third and
fourth group of experiments focus on the offline and

online learning components of the framework, respec-
tively. We explore the influence of the time spent for
offline learning on the performance of the overall ap-

proach. For the online learning component, we explore

the effects of the learning parameter on the overall per-

formance and then propose and analyze an adaptive
version.

4.1 Experimental Design and Settings

In this subsection, we explain the dynamic environ-
ment problems used in the experiments and present the
general parameter settings for all experiments. More-

over, approaches from literature that are implemented
for comparisons and the details of their settings are
also provided in this section. Further parameter set-

tings specific to each experiment will be given in the
relevant subsections.

4.1.1 Benchmark Problems and Settings of Algorithms

We use three Decomposable Unitation-Based Functions

(DUFs) Yang and Yao (2008) within the XOR gener-
ator. All Decomposable Unitation-Based Functions are
composed of 25 copies of 4-bit building blocks. Each

building block is denoted as a unitation-based function
u(x) which gives the number of ones in the correspond-
ing building block. Its maximum value is 4. The fitness

of a bit string is calculated as the sum of the u(x) values
of the building blocks. The optimum fitness value for all
Decomposable Unitation-Based Functions is 100. DUF1
is the OneMax problem whose objective is to maximize

the number of ones in a bit string. DUF2 has a unique
optimal solution surrounded by four local optima and a
wide plateau with eleven points having a fitness of zero.

DUF2 is more difficult than DUF1. DUF3 is fully de-
ceptive. The mathematical formulations of the Decom-
posable Unitation-Based Functions, as given in Yang

and Yao (2008), can be seen below.

fDUF1 = u(x) (2)

fDUF2 =


4 , if u(x) = 4
2 , if u(x) = 3

0 , if u(x) < 3

(3)

fDUF3 =

{
4 , if u(x) = 4
3− u(x) , if u(x) < 4

(4)

In the offline learning phase, first a set of M XOR
masks are generated. In order to have the XOR masks

distributed uniformly on the search space, an approach
similar to stratified sampling is used. Then, for each
mask, PBIL is executed for 100 independent runs where

each run consists of G generations. During offline learn-
ing, each environment is stationary and 3 best can-
didate solutions are used to learn probability vectors.

The population size is set to 100. At the end of the

8 Uludağ,Kiraz,Etaner-Uyar,Özcan

offline learning stage, the probability vector producing

the best solution found so far over all runs for each en-
vironment, is stored in

−→
P list. The parameter settings

for PBIL used in this stage is given in Table 1

Table 1 Parameter settings for PBILs

Parameter Setting Parameter Setting

Solution length 100 Mutation rate Pm 0.02
Population size 100 Mutation shift δm 0.05
Number of runs 100 Learning rate α 0.25

After the offline learning stage, we experiment with
four main types of dynamic environments: randomly

changing environments (Random), environments with
cyclic changes of type 1 (Cyclic1), environments with
cyclic changes of type 1 with noise (Cyclic1-with-Noise)

and environments with cyclic changes of type 2 (Cyclic2).
In the Cyclic1 type environments, the masks represent-
ing the environments, which repeat in a cycle, are se-
lected from among the sampledM masks used in the of-

fline learning phase of HH-EDA2. To construct Cyclic1-
with-Noise type environments, we added a random bit-
wise noise to the masks used in the Cyclic1 type en-

vironments. In Cyclic2 type environments, the masks
representing the environments, which repeat in a cycle,
are generated randomly.

To generate dynamic environments showing differ-
ent dynamism properties, we consider different change
frequencies τ , change severities ρ and cycle lengths CL.

We determined the change periods which correspond to
low frequency (LF), medium frequency (MF) and high
frequency (HF) changes as a result of some prelimi-

nary experiments where we executed PBIL on station-
ary versions of all the Decomposable Unitation-Based
Functions. The corresponding convergence plots for the

Decomposable Unitation-Based Functions are given in
Figure 4. As can be seen in the plots, the selected set-
tings for low frequency, medium frequency and high fre-

quency for each Decomposable Unitation-Based Func-
tion correspond respectively to stages where the PBIL
algorithm has been converged for some time, where it

has not yet fully converged and where it is very early
on in the search. Table 2 shows the determined change
periods for each Decomposable Unitation-Based Func-

tion.

Table 2 The value of the change periods

Functions LF MF HF

DUF1 50 25 5
DUF2 50 25 5
DUF3 100 35 10

In the Random type environments, the severity of

changes are determined based on the definition of the
XOR generator and are chosen as 0.1 for low severity
(LS), 0.2 for medium severity (MS), 0.5 for high severity

(HS), and 0.75 for very high severity (VHS) changes.
For all types of cyclic environments, the cycle lengths
CL are selected as 2, 4 and 8. Except for Cyclic1-with-

Noise type of environments, the environments return to
their exact previous locations.

In our previous study Uludağ et al (2012b), we ex-
plored the effects of restart schemes for HH-EDA2. Our
experiments showed that a restart scheme significantly

improves the performance of HH-EDA2. In the best
performing restart scheme for HH-EDA2, only the first
probability vector

−→
P 1 is reset to the to

−→
P central, when-

ever an environment change is detected.

Since HH-EDA2 is a multi-population approach, which
also uses a kind of memory, for our comparison experi-

ments, we focused on memory based approaches as well
as multi-population ones which were shown in litera-
ture to be successful in dynamic environments. There-

fore, we used different variants of PBILs with restart
schemes and a sentinel-based genetic algorithm.

In Yang and Yao (2008), experiments show that
a restart scheme combined with the multi-population
PBIL, significantly outperforms dual population memory-

based PBIL on most Decomposable Unitation-Based
Functions in different kinds of dynamic environments.
In the version of PBIL that utilizes a restart scheme

(PBILr), the probability vector
−→
P is reset to

−→
P central

when an environment change is detected. In the ver-
sion of PBIL2 that utilizes a restart scheme (PBIL2r),

whenever an environment change is detected, only the
first probability vector

−→
P 1 is reset to

−→
P central. In the

restart variant for memory-based PBIL (MPBILr), the

probability vector
−→
P is reset to

−→
P central when change

is detected. The parameter settings of memory-based
PBIL with restart are the same as the PBIL used in

the offline learning phase 1. In the dual population
memory-based PBIL approach with a restart scheme
(MPBIL2r), whenever an environment change is de-

tected, the second probability vector
−→
P 2 is reset to−→

P central. The population size n is set to 100 and the
memory size is fixed to 0.1∗n = 10. Initial sub-populations

are 0.45 ∗ n = 45 and sub-population sample sizes are
slightly adjusted within the range of [30, 60]. The mem-
ory is updated using a stochastic time pattern. After

each memory update, the next memory updating time
is set as tM = t+ rand(5, 10).

For the sentinel-based genetic algorithm, we used
tournament selection where the tournament size is 2,
uniform crossover with a probability of 1.0, mutation

with a mutation rate of 1/l where l is the chromosome

A Hybrid Multi-population Framework 9

length. The population size is set to 100. We tested

two different values for the number of sentinels: 8 and
16. These values are chosen for two reasons. First of all,
(Morrison, 2004) suggests working with 10% of the pop-

ulation as sentinels. Secondly, in our previous study, we
experimented with storing M = 8 and M = 16 proba-
bility vectors in

−→
P list for HH-EDA2 and found M = 8

to be better. At the beginning of the search, sentinels
are initialized to locations of the masks representing
different parts of the search space. For HH-EDA2, the

masks used in the offline learning stage were chosen in
such a way as to ensure that they are distributed uni-
formly on the search space. ThereforeM = 8 orM = 16

masks are used as the sentinels.
Both in PBIL2 and HH-EDA2, each sub-population

size is initialized as 50 and adjusted within the range

of [30, 70].
In Reinforcement Learning, score of each heuristic

is initialized to 15 and is allowed to vary between 0 and

30. If the selected heuristic yields a solution with an
improved fitness, its score is increased by 1, otherwise it
is decreased by 1. The Reinforcement Learning settings
are taken as recommended in Özcan et al (2010).

In (Kiraz et al, 2013b), the results show that Ant-
based Selection with roulette wheel selection is better
than the version with tournament selection. Therefore,

we work Ant-based Selection with roulette wheel selec-
tion in this paper. In (Kiraz et al, 2013b), ∆τ is cal-
culated as ∆τ = 0.1 ∗ (1/fc) so that pheromone values

increase gradually. For Ant-based Selection, q0 and ρ
are set to 0.5 and 0.1, respectively. These are the set-
tings recommended in (Kiraz et al, 2013b).

For each run of the algorithms, 128 changes oc-
cur after the initial environment. Therefore, the to-
tal number of generations in a run is calculated as

maxGenerations = changeFrequency ∗ changeCount.

4.1.2 Performance Evaluation Criteria

In order to compare the performance of the algorithms,
the results are reported in terms of offline error Branke

(2002), which is calculated as the cumulative average of
the differences between the best values found so far and
the optimum value at each time step, as given below.

1

T

T∑
t=1

| optt − et ∗ | (5)

e∗t = max(eτ , eτ+1, ..., et) where T is the total number
of evaluations and τ is the last time step (τ < t) when

change occurred.
In the result tables, each entry shows the average of-

fline error values averaged over 100 independent runs.

In the rows of the tables, we can see the performance

of each approach under a variety of change frequency-

severity pair settings in randomly changing environ-
ments and under different cycle length and change fre-
quency settings in cyclic environments for three De-

composable Unitation-Based Functions. Each column
shows the performance of all the approaches for the
corresponding change frequency-severity pair settings

in randomly changing environments and for the cycle
length-change frequency pair settings in cyclic environ-
ments. In addition, in all the tables, the best performing

approach(es) in each row is marked in bold.

We also perform One-way ANOVA and Tukey HSD
tests at a confidence level of 95% for testing whether

the differences between the approaches are statistically
significant or not. To provide a summary of the statis-
tical comparison results, we count the number of times

an approach obtains a significance state over the others
on the three Decomposable Unitation-Based Functions
for different change severity and frequency settings in

randomly changing environments and for different cycle
length and change frequency settings in cyclic environ-
ments. In the tables providing the summary of statis-

tical comparisons, s+ shows the total number of times
the corresponding approach performs statistically bet-
ter than the others and s− shows the vice versa; ≥
shows the total number of times the corresponding ap-
proach performs slightly better than the others, how-
ever, the performance difference is not statistically sig-

nificant and ≤ shows the vice versa.

To compare the performance of approaches over dif-

ferent dynamic environments, the approaches are scored
in the same way as in the CHeSC competition 1. The
scoring system in CHeSC is based on the Formula 1

scoring system used before 2010. For each approach,
median, best and average values over 100 runs are cal-
culated. Then, the results of the approaches are sorted

with respect to these values. The top 8 approaches
eventually get the following points for each problem in-
stance: 10, 8, 6, 5, 4, 3, 2 and 1, respectively. The sum

of scores over all problem instances is the final score of
an algorithm. Considering random and cyclic environ-
ments, there are 117 problem instances, therefore, 1170

is the maximum overall score that an algorithm can get
in this scoring system.

4.2 Results

In this subsection, we provide and discuss the results of
each group of experiments separately.

1 http://www.asap.cs.nott.ac.uk/external/chesc2011/

10 Uludağ,Kiraz,Etaner-Uyar,Özcan

4.2.1 Comparison of heuristic selection methods

In this set of experiments, we test different heuristic
selection methods within the proposed framework. The

tested heuristic selection methods are Simple Random
(SR), Random Descent (RD), Random Permutation (RP),
Random Permutation Descent (RPD), Reinforcement

Learning (RL) and Ant-based Selection (AbS). We use
all change frequency and severity settings for the Ran-
dom dynamic environments; we also use all change fre-

quency and cycle length settings for the Cyclic1, Cylic1-
with-Noise and Cyclic2 type dynamic environments. Tests
are performed on all Decomposable Unitation-Based

Functions, i.e. DUF1, DUF2 and DUF3. The results
are summarized in Table 3 and 4. Table 3 provides the
statistical comparison summary, whereas Table 4 shows
the ranking results obtained based on median, best and

average offline error values.

Table 3 Overall (s+, s−, ≥ and ≤) counts for the different
heuristic selection schemes.

Heuristic Selection s+ s− ≥ ≤
RP 247 58 192 88
RPD 196 68 122 199
SR 139 123 197 126
AbS 129 173 148 135
RD 91 181 144 169
RL 52 251 98 184

Table 4 The overall score according to the Formula 1 rank-
ing based on median, best and average offline error values for
the different heuristic selection schemes.

Heuristic Selection Median Best Average

RP 930 908 927
SR 738 706 733
RPD 737 767 731
AbS 668 626 688
RD 602 626 605
RL 537 579 528

As seen in Table 3, Random Permutation generates
the best average performance across all dynamic en-

vironment problems, performing significantly/slightly
better than the rest for 247/192 instances. The second
best approach is Random Permutation Descent on av-

erage. Random Permutation is still the best approach
if the median and best performances are considered as
well (Table 4) based on the Formula 1 ranking. It can

be seen from the table that Random Permutation scores
930 and 908, respectively. Learning via the PBIL pro-
cess helps, but using an additional learning mechanism

on top of that turns out to be misleading for the search

process. For example, the use of reinforcement learning

in the selection hyper-heuristic (RL) yields the worst
average performance. Random Permutation as a non-
learning heuristic selection combines the learnt prob-

ability vectors effectively yielding an improved perfor-
mance which outperforms Simple Random.

For randomly changing environments, all heuristic
selection schemes performed well and there were no
statistically significant differences between the results.
The results show that for DUF1 and DUF2, in the

tested cyclic environments, Random Permutation per-
forms the best as a heuristic selection method in the
HH-EDA2 framework. For DUF3, Random Permuta-

tion Descent seems to produce better results than Ran-
dom Permutation, however this performance difference
is not statistically significant and actual offline error

values from Random Permutation are close to the ones
produced by Random Permutation Descent. Due to space
limitations, these results are omitted here.

4.2.2 Comparisons to selected approaches from

literature

In this set of experiments, we compare our approach
to some well known and successful previously proposed
approaches from literature as described in Section 4.1.1.

As a result of the experiments in Subsection 4.2.1, we
fixed the heuristic selection component as Random Per-
mutation during these experiments and used the same
problems, change settings and dynamic environment

types as in Subsection 4.2.1.

In a randomly changing environment, HH-EDA2 out-

performs the rest of the previously proposed approaches
on DUF1 and DUF2 regardless of the frequency or
severity of the changes as illustrated in Tables 5 and 6,

based on average offline error values, respectively. The
same phenomenon is observed for DUF3, except for
the low frequency cases (see Table 7). HH-EDA2 per-

forms the best only when the changes occur at a low
frequency and a very high severity on DUF3. On the
other hand, sentinel-based genetic algorithm with 16

sentinels performs the best for the low and high sever-
ity change cases, while memory-based PBIL approaches
with restart perform the best for the changes with medium

severity on DUF3.

In a cyclically changing environment of type 1 with

and without noise, HH-EDA2 again outperforms the
rest of the previously proposed approaches on DUF1
and DUF2 regardless of the cycle length or frequency

of change as illustrated in Tables 8 and 9 based on av-
erage offline error values, respectively. For the Cyclic2
case, HH-EDA2 still performs the best on DUF1, ex-

cept when the changes occur at a high frequency and

A Hybrid Multi-population Framework 11

Table 5 Offline errors generated by different approaches averaged over 100 runs, on the DUF1 for different change severity
and frequency settings in randomly changing environments.

Algorithm
LF MF HF

LS MS HS VHS LS MS HS VHS LS MS HS VHS

Random
HH-EDA2 0.06 0.06 0.08 0.09 0.17 0.25 0.86 0.99 21.94 23.60 26.79 28.26
PBILr 4.13 7.84 16.71 21.75 9.51 16.24 26.68 30.44 27.91 33.91 38.02 38.76
PBIL2r 3.47 7.20 16.16 20.76 9.04 15.80 25.95 29.14 27.56 33.32 37.23 38.11
MPBILr 0.56 0.67 0.91 0.09 1.84 2.21 2.78 1.29 26.88 28.66 30.33 30.41
MPBIL2r 0.67 0.81 1.02 0.11 4.85 4.30 4.32 2.83 26.98 29.70 31.52 31.60
Sentinel8 20.11 20.20 4.40 0.78 22.84 23.00 11.83 9.21 28.29 29.43 32.12 33.91
Sentinel16 7.26 9.10 2.21 1.19 12.35 15.10 12.42 12.36 24.36 27.56 31.91 33.57

Table 6 Offline errors generated by different approaches averaged over 100 runs, on the DUF2 for different change severity
and frequency settings in randomly changing environments.

Algorithm
LF MF HF

LS MS HS VHS LS MS HS VHS LS MS HS VHS

Random

HH-EDA2 0.12 0.16 0.49 0.53 0.43 0.85 4.13 4.54 42.92 45.74 50.86 52.95
PBILr 8.96 18.45 38.93 45.80 20.58 34.65 51.43 54.83 52.69 60.41 65.11 65.70
PBIL2r 7.66 17.29 37.03 42.99 19.51 33.58 49.67 52.67 51.55 59.38 64.05 64.46
MPBILr 0.98 1.23 1.81 1.92 4.81 5.48 6.78 7.07 51.11 53.81 55.77 56.25
MPBIL2r 1.51 1.74 2.14 1.97 12.28 10.50 10.40 10.61 51.50 55.02 57.46 57.94
Sentinel8 39.11 38.87 13.82 3.33 43.52 42.72 27.69 23.73 51.33 52.93 57.52 59.64
Sentinel16 16.00 20.25 8.75 5.08 25.71 30.43 28.11 28.38 45.78 50.67 57.41 59.49

Table 7 Offline errors generated by different approaches averaged over 100 runs, on the DUF3 for different change severity
and frequency settings in randomly changing environments.

Algorithm
LF MF HF

LS MS HS VHS LS MS HS VHS LS MS HS VHS

Random

HH-EDA2 19.44 18.46 16.04 14.18 19.75 18.99 17.26 15.49 38.44 39.99 41.29 40.75
PBILr 25.44 25.85 23.96 19.49 30.06 33.11 35.27 31.56 40.11 44.48 47.18 45.85
PBIL2r 24.98 25.23 23.15 18.55 29.38 32.42 34.37 30.73 39.55 43.66 46.41 45.07
MPBILr 17.10 17.01 17.02 16.91 19.20 19.26 19.34 19.04 44.67 45.78 46.28 46.08
MPBIL2r 18.18 18.04 17.48 17.24 24.07 23.18 21.60 21.87 41.18 44.93 46.49 45.82
Sentinel8 36.98 33.85 17.59 22.54 40.04 36.56 26.88 28.13 43.07 41.79 43.88 41.74
Sentinel16 14.66 20.51 14.05 17.26 31.04 31.22 30.94 27.82 38.94 42.76 46.20 45.59

the cycle length is low (2 and 4). For those problem
instances, PBIL with restart approaches perform bet-

ter. For DUF2 of type Cyclic2, HH-EDA2 is the best
approach when the frequency of change is medium.

HH-EDA2 delivers a poor performance on DUF3 for

all cases, except for the high frequency cases for Cyclic1
with and without noise (see Table 10). The advantage
of combining offline learning and online learning mech-

anisms disappear when the problem being solved is de-
ceptive. The use of sentinels produces a better perfor-
mance on DUF3 for a change type of Cyclic2.

It should be noted that only for the sentinel-based

genetic algorithm schemes and HH-EDA2, cyclic envi-
ronments of type 1 and type 2 are different. In cyclic
environments of type 1, the environment cycles between

environments represented by the masks used in the of-

fline learning stage. These masks are used as sentinels
in the sentinel-based genetic algorithm schemes and the

probability vectors obtained as a result of training on
these masks are used as low level heuristics in HH-
EDA2.

An overall comparison of all approaches are pro-

vided in Tables 11 and 12. HH-EDA2 generates the best
average performance across all dynamic environment
problems (Table 11) performing significantly/slightly

better than the rest for 609/18 instances. The second
best approach is memory-based PBIL using a single
population and restart. Moreover, HH-EDA2 is the top

approach if the median and best performances are con-
sidered as well (see Table 12) based on Formula 1 rank-
ings, scoring 1035 and 998, respectively. The closest

competitor accumulates a score of 711 and 639 for its

12 Uludağ,Kiraz,Etaner-Uyar,Özcan

Table 8 Offline errors generated by different approaches averaged over 100 runs, on the DUF1 for different cycle length and
change frequency settings in different cyclic dynamic environments.

Algorithm
LF MF HF

CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 CL=4 CL=8

Cyclic1

HH-EDA2 0.03 0.02 0.02 0.05 0.04 0.05 14.20 13.82 14.59
PBILr 11.96 14.69 17.09 15.47 19.11 25.64 18.73 20.59 28.65
PBIL2r 10.65 13.78 16.53 12.10 17.76 24.54 19.02 20.44 28.43
MPBILr 0.08 0.08 1.76 1.30 1.29 4.59 30.42 30.39 30.30
MPBIL2r 0.12 0.11 1.98 3.98 3.36 6.18 19.85 21.61 29.53
Sentinel8 2.54 6.02 4.94 19.02 14.05 10.19 23.30 24.21 31.88
Sentinel16 9.04 1.33 3.55 14.81 11.96 13.19 19.37 33.08 32.96

Cyclic1-with-Noise

HH-EDA2 0.02 0.02 0.02 0.05 0.04 0.05 14.48 13.86 14.66
PBILr 11.93 14.59 17.06 15.50 19.09 25.70 18.69 20.57 28.54
PBIL2r 10.64 13.78 16.48 12.03 17.75 24.52 19.12 20.51 28.41
MPBILr 0.08 0.08 1.76 1.29 1.29 4.59 30.40 30.40 30.29
MPBIL2r 0.12 0.11 1.98 3.97 3.36 6.16 19.99 21.50 29.47
Sentinel8 2.49 5.97 4.93 19.11 13.97 10.18 23.23 24.11 31.93
Sentinel16 9.05 1.35 3.59 14.80 11.92 13.24 19.37 33.05 32.93

Cyclic2

HH-EDA2 0.08 0.08 0.08 0.85 0.86 0.89 25.83 26.80 26.98
PBILr 11.67 15.75 17.18 15.16 21.39 25.60 18.39 24.77 30.15
PBIL2r 10.44 14.94 16.63 11.91 20.03 24.36 18.82 24.63 29.85
MPBILr 0.08 0.08 0.08 1.30 1.29 1.30 30.39 30.40 30.43
MPBIL2r 0.12 0.11 0.11 4.03 3.03 2.83 19.54 25.88 30.55
Sentinel8 0.50 4.79 5.11 19.89 17.65 11.81 25.38 28.02 33.17
Sentinel16 1.17 1.31 1.73 14.70 12.08 12.36 22.11 33.36 33.34

Table 9 Offline errors generated by different approaches averaged over 100 runs, on the DUF2 for different cycle length and
change frequency settings in different cyclic dynamic environments.

Algorithm
LF MF HF

CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 CL=4 CL=8

Cyclic1

HH-EDA2 0.04 0.04 0.04 0.09 0.08 0.08 27.33 27.38 26.53
PBILr 23.57 32.85 38.10 25.14 38.31 47.93 29.92 38.36 50.70
PBIL2r 19.97 30.46 35.90 21.67 35.70 45.52 30.76 38.50 50.45
MPBILr 0.23 14.39 6.76 4.39 20.65 11.89 55.93 55.31 55.35
MPBIL2r 0.51 11.68 6.76 12.31 22.22 14.95 32.37 39.73 51.32
Sentinel8 33.16 15.29 10.92 35.72 33.72 23.56 39.09 46.03 57.70
Sentinel16 21.11 6.21 11.01 28.68 27.47 28.85 35.43 58.80 59.14

Cyclic1-with-Noise

HH-EDA2 0.04 0.04 0.05 0.08 0.09 0.09 26.96 26.37 27.34
PBILr 23.56 32.79 38.04 24.86 38.12 47.94 29.63 38.33 50.66
PBIL2r 19.89 30.42 35.85 21.77 35.66 45.64 30.79 38.54 50.35
MPBILr 0.24 14.38 6.77 4.39 20.65 11.96 55.97 55.33 55.36
MPBIL2r 0.53 11.74 6.78 12.30 22.25 14.88 32.57 39.81 51.39
Sentinel8 33.12 15.61 10.93 35.64 33.87 23.58 39.27 45.97 57.65
Sentinel16 21.16 6.24 11.08 28.73 27.54 28.78 35.36 58.79 59.11

Cyclic2

HH-EDA2 0.45 0.46 0.51 3.93 4.06 4.25 49.34 50.82 51.20
PBILr 24.00 34.29 39.54 26.38 41.27 49.84 30.39 43.54 53.57
PBIL2r 20.20 32.08 37.46 22.54 38.68 47.46 31.04 43.69 53.02
MPBILr 0.25 0.24 2.06 4.38 4.38 7.36 55.95 55.92 55.62
MPBIL2r 0.51 0.39 2.36 12.23 8.97 10.87 32.74 45.69 53.97
Sentinel8 4.79 12.58 13.68 37.78 36.54 27.94 41.23 51.41 58.90
Sentinel16 5.04 5.81 7.25 29.84 27.87 28.38 39.86 59.35 59.36

A Hybrid Multi-population Framework 13

Table 10 Offline errors generated by different approaches averaged over 100 runs, on the DUF3 for different cycle length and
change frequency settings in different cyclic dynamic environments.

Algorithm
LF MF HF

CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 CL=4 CL=8

Cyclic1

HH-EDA2 10.09 11.36 11.33 10.35 11.60 11.58 22.23 22.42 22.76
PBILr 24.11 24.34 23.10 29.51 34.91 33.94 26.72 37.40 41.63
PBIL2r 23.37 23.60 22.22 28.41 33.86 33.02 26.43 36.52 40.57
MPBILr 16.76 16.79 16.79 18.87 18.85 18.88 46.64 46.63 46.59
MPBIL2r 17.54 17.25 17.35 24.14 21.60 21.45 27.67 38.32 42.24
Sentinel8 2.51 2.19 3.27 7.32 6.22 9.05 24.22 24.87 24.91
Sentinel16 3.21 3.38 3.41 9.72 10.90 11.04 24.78 24.95 24.93

Cyclic1-with-Noise

HH-EDA2 10.09 11.35 11.34 10.35 11.59 11.59 22.21 23.20 23.20
PBILr 24.05 24.38 23.05 29.65 35.02 33.91 26.71 37.61 41.54
PBIL2r 23.40 23.62 22.24 28.38 33.84 33.00 26.35 36.38 40.53
MPBILr 16.81 16.78 16.82 18.86 18.84 18.86 46.62 46.70 46.60
MPBIL2r 17.50 17.23 17.33 24.08 21.54 21.45 28.13 38.21 42.23
Sentinel8 2.49 2.20 3.28 7.35 6.26 9.11 24.30 24.89 24.90
Sentinel16 3.17 3.39 3.38 9.82 10.99 10.94 24.74 24.95 24.93

Cyclic2

HH-EDA2 16.27 16.60 16.02 17.47 17.73 17.24 40.67 41.19 41.34
PBILr 24.86 24.61 23.68 30.67 35.05 35.22 27.22 37.87 42.89
PBIL2r 24.10 23.86 22.84 29.41 33.85 34.34 27.03 37.23 41.72
MPBILr 16.80 16.80 17.17 18.87 18.86 19.85 46.69 46.67 45.78
MPBIL2r 17.32 17.27 17.64 23.80 21.54 21.96 28.31 38.60 43.25
Sentinel8 2.27 2.24 2.71 6.57 6.46 7.80 24.80 24.90 24.90
Sentinel16 3.36 3.58 3.44 10.71 12.00 11.10 24.89 24.96 24.95

median and best performances, respectively. These re-

sults also indicate that the use of a dual population and
the selection hyper-heuristic both improves the perfor-
mance of the overall algorithm.

Table 11 Overall (s+, s−, ≥ and ≤) counts for the algo-
rithms used

Algorithm s+ s− ≥ ≤
HH-EDA2 609 72 18 3
MPBILr 390 278 20 14
MPBIL2r 367 297 7 31
Sentinel16 335 346 5 16
Sentinel8 298 384 15 5
PBIL2r 236 442 14 10
PBILr 132 548 11 11

4.2.3 Duration of offline learning

In this set of experiments, we look into the effect of

the offline learning phase. In normal operation, for each
problem (DUF1, DUF2 and DUF3 in this paper), be-
fore running the algorithm we execute an offline learn-

ing phase. In the XORing generator, each different en-
vironment is represented with an XOR mask which is
applied to the solution candidate during fitness evalu-

ations. We sample the space of the XOR masks, gener-

Table 12 The overall score according to the Formula 1 rank-
ing based on median, best and average offline error values for
the algorithms used

Algorithm Median Best Average

HH-EDA2 1035 998 1035
MPBILr 711 639 709
MPBIL2r 608 812 611
Sentinel16 606 581 606
Sentinel8 598 583 598
PBIL2r 498 468 497
PBILr 390 365 390

ating M of them which are distributed uniformly over
the landscape. Then for each environment, represented

by each mask, we train an PBIL algorithm for G iter-
ations to learn a good probability vector for that en-
vironment. In this set of experiments, we explore the

effect of the number of iterations G performed during
the offline learning stage. In the experiments we choose
M = 8 masks to represent 8 environments. We train

PBIL for various the number of iteration G settings as:
G = {0, 1, 5, 10, 20, 25, 30, 40, 50, 75, 100, 150, 200, 250,-
500, 1000, 10000}. Then, we execute HH-EDA2 incor-

porating the Random Permutation heuristic selection,
using the set of probability vectors created by each the
number of iteration G setting and record the final of-

fline errors. For these experiments, we use all change

14 Uludağ,Kiraz,Etaner-Uyar,Özcan

frequency and severity settings for the Random type

dynamic environments; we also use all change frequency
and cycle length settings for the Cyclic1 and Cyclic1-
with-Noise type dynamic environments. The tests are

performed using DUF1, DUF2 and DUF3.

If the number of iteration G is 0, then this indicates
that there is no offline learning. Although offline learn-

ing improves the performance of the overall algorithm
slightly for any given problem, the value of the number
of iteration G does not matter much if the environment

changes randomly. Figure 2 illustrates this phenomenon
on the Decomposable Unitation-Based Functions for
medium frequency and medium severity changes (MF-

MS). We can observe that small G values is sufficient
to handle any type of dynamic environment. Figure 3
illustrates that the number of iteration G should be

set larger than or equal to 20 for an improved perfor-
mance to solve DUF1 and DUF2 when the frequency
of change is medium, the type is Cyclic1 and the cycle

length is 4, while the choice of values greater than 50
for the number of iteration G is sufficient on DUF3.
Due to lack of space, the plots for other dynamic envi-

ronment instances are not provided here, however, sim-
ilar observations were made for those cases too. Fig-
ure 4 illustrates the convergence behavior of PBIL on

the stationary versions of the Decomposable Unitation-
Based Functions. The frequency levels corresponding to
low frequency, medium frequency and high frequency

were determined using these plots. It is interesting to
note that the values of the number of iteration G which
are seen to be sufficient for good performance, approx-

imately coincide with our medium frequency settings
for the different Decomposable Unitation-Based Func-
tions. This shows that, since for random type changes,

the value of the number of iteration G does not make
a difference, to achieve a good level of performance, of-
fline learning should be done until PBIL partially con-

verges. This will provide a heuristic way to determine
a good the number of iteration G value for other types
of problems encountered in the future.

4.2.4 Adaptive online learning and mutation rates

During the tests in Uludağ et al (2012b), we experi-
mented with different learning rates α and mutation
rates Pm. The experiments showed that the selection

of these rates are important for algorithm performance.
According to our experiments, a good value for learning
rate α is 0.1 and for Pm is 0.35 for the tested dynamic

environment problems. To be able to decrease the num-
ber of parameters needing to be tuned, thus making our
approach more general, here we propose adaptive ver-

sions for the mutation rate parameter and the learning

rate parameter. We use the same adaptive approach for

both parameters as given in Equation 6 and Equation 7.

αt =


βαt−1 , if ∆E < 0
αt−1 , if ∆E = 0
1
βα

t−1 , if ∆E > 0
(6)

where, Et is the error value for the generation t. ∆E =

Et−Et−1 is the difference between the current and the
former error value. β is the learning factor and γ is the
mutation factor. The lower and upper bounds of the

interval for learning rate α is chosen as 0.25 ≤ α ≤ 0.75
and for mutation rate Pm as 0.05 ≤ Pm ≤ 0.3.

Pm
t =


γPm

t−1 , if ∆E < 0

Pm
t−1 , if ∆E = 0

1
γPm

t−1 , if ∆E > 0
(7)

The initial values of these parameters (t = 0) are
chosen as α0 = 0.75 and P 0

m = 0.3. Throughout the gen-
erations, if the values become less than the lower bound

or greater than the upper bound, learning rate α and
mutation rate Pm are reset to their tuned values (α =
0.35, Pm = 0.1), found in our previous study Uludağ

et al (2012b).

To see the effects of adaptive learning rate α and
adaptive mutation rate Pm separately, we perform the
same set of experiments three times: with only adap-

tive α and fixed mutation rate Pm; with only adaptive
mutation rate Pm and fixed learning rate α; with both
adaptive learning rate α and mutation rate Pm. For the

first set, we fixed the mutation rate value to Pm = 0.1.
For the second set, we fixed the learning rate value to
α = 0.35. For the third set, both parameters are al-

lowed to vary between their predetermined lower and
upper bounds.

For the learning factor β and the mutation factor

γ, we experimented with various setting combinations
between 0.8 and 0.99 and we chose an acceptable one as
being β = 0.99 and γ = 0.99. We did not perform exten-

sive experiments to set these parameters, since we did
not want to fine tune too much, as this would contra-
dict our initial aim of trying to decrease the amount of

fine tuning required. Besides, our results showed that
the settings for these parameters are not very sensi-
tive. For this experiment also, we used the same prob-

lems, change settings and dynamic environment types
as those used in Subsection 4.2.3. The results of these
experiments are provided in Tables 13 and 14.

The results in Table 13 and Table 14 show that hav-

ing only one of the parameters as adaptive decreases
solution quality. However, the cases where both param-
eters are adaptive, produces results which are equiva-

lent to those obtained when the parameters are fixed

A Hybrid Multi-population Framework 15

0 1 5 10 20 25 30 40 50 75 100 150 250 500 100010000
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

O
ffl

in
e

E
rr

or

(a) DUF1

0 1 5 10 20 25 30 40 50 75 100 150 250 500 100010000
0.7

0.75

0.8

0.85

0.9

0.95

1

O
ffl

in
e

E
rr

or

(b) DUF2

0 1 5 10 20 25 30 40 50 75 100 150 250 500 100010000
18.6

18.7

18.8

18.9

19

19.1

19.2

19.3

19.4

19.5

19.6

O
ffl

in
e

E
rr

or

(c) DUF3

Fig. 2 Error bar of different the number of iteration G settings for all Decomposable Unitation-Based Functions in random
environment

0 1 5 10 20 25 30 40 50 75 100 150 250 500 100010000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ffl

in
e

E
rr

or

(a) DUF1

0 1 5 10 20 25 30 40 50 75 100 150 250 500 100010000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

O
ffl

in
e

E
rr

or

(b) DUF2

0 1 5 10 20 25 30 40 50 75 100 150 250 500 100010000
10

11

12

13

14

15

16

17

18

19

O
ffl

in
e

E
rr

or
(c) DUF3

Fig. 3 Error bar of different the number of iteration G settings for all Decomposable Unitation-Based Functions in cyclic
environment

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120 140

M
ea

n
B

es
t F

itn
es

s

Number of generations

DUF1

(a) DUF1

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120 140

M
ea

n
B

es
t F

itn
es

s

Number of generations

DUF2

(b) DUF2

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120 140

M
ea

n
B

es
t F

itn
es

s

Number of generations

DUF3

(c) DUF3

Fig. 4 Convergence of mean (100 runs) of best fitness in each generation for all Decomposable Unitation-Based Functions

as a result of initial fine tuning experiments. This ob-
servation fails for high frequency change cases both for

random and cyclic type of environments. The mutation
rate Pm value is set initially to its upper bound value.
Since the stationary periods between the changes is very

short in the high frequency cases, with a decrease rate
of γ = 0.99, the mutation rate Pm value does not de-
crease much before the environment changes and the

solution quality drops, causing an increase in the mu-
tation rate Pm value. A higher mutation rate seems
to help in high frequency change cases. This needs to

be further explored. However, overall, the results shows
that an adaptive learning rate α and an adaptive mu-

tation rate Pm approach can be used within HH-EDA2
without performance loss.

5 Conclusion and Future Work

In this study, we investigated the performance of a
framework which enables hybridization of EDAs and

selection hyper-heuristics based on online and offline
learning mechanisms for solving dynamic environment
problems (Uludağ et al, 2012a). A dual population ap-

proach is implemented, referred to as HH-EDA2 which
uses PBIL as the EDA. The performance of the over-
all algorithm is tested using different heuristic selection

methods to determine the best one for HH-EDA2. The

16 Uludağ,Kiraz,Etaner-Uyar,Özcan

Table 13 Offline errors generated by HH-EDA2 using the tuned α = 0.35, Pm = 0.1 settings and HH-PBIL2 with the various
adaptive schemes for α and Pm, averaged over 100 runs, on the three Decomposable Unitation-Based Functions for different
change severity and frequency settings in randomly changing environments.

Algorithm
LF MF HF

LS MS HS VHS LS MS HS VHS LS MS HS VHS

DUF1

Tuned 0.06 0.06 0.08 0.09 0.17 0.25 0.86 0.99 21.94 23.60 26.79 28.26
Adp. α & Pm 0.06 0.06 0.08 0.09 0.17 0.26 0.85 0.98 21.92 23.64 26.77 28.24
Adp. α 0.91 0.95 1.03 1.05 2.85 3.19 4.20 4.42 23.67 25.04 27.45 28.70
Adp. Pm 0.07 0.12 0.38 0.41 0.52 1.29 4.02 4.27 7.68 13.96 23.85 25.99

DUF2
Tuned 0.12 0.16 0.49 0.53 0.43 0.85 4.13 4.54 42.92 45.74 50.86 52.95
Adp. α & Pm 0.13 0.16 0.49 0.53 0.43 0.84 4.12 4.53 42.87 45.74 50.83 52.88
Adp. α 1.89 1.99 2.30 2.35 6.30 7.22 10.43 10.99 45.70 47.95 51.87 53.64
Adp. Pm 0.28 1.04 7.15 7.29 1.36 4.27 15.54 16.20 16.33 29.14 45.20 48.23

DUF3
Tuned 19.44 18.46 16.04 14.18 19.75 18.99 17.26 15.49 38.44 39.99 41.29 40.75
Adp. α & Pm 19.46 18.39 16.10 14.17 19.77 18.98 17.29 15.50 38.44 39.98 41.33 40.70
Adp. α 19.77 19.30 17.90 16.56 22.86 23.04 23.04 22.11 42.49 43.43 44.13 43.85
Adp. Pm 22.12 20.93 16.81 14.09 22.44 21.46 18.30 15.62 24.47 26.53 27.97 25.50

Table 14 Offline errors generated by HH-EDA2 using the tuned α = 0.35, Pm = 0.1 settings and HH-EDA2 with the various
adaptive schemes for α and Pm, averaged over 100 runs, on the three Decomposable Unitation-Based Functions for different
change severity and frequency settings in cyclic environments of type 1 (Cyclic1).

Algorithm
LF MF HF

CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 CL=4 CL=8

DUF1

Tuned 0.03 0.02 0.02 0.05 0.04 0.05 14.20 13.82 14.59
Adp. α & Pm 0.03 0.02 0.02 0.05 0.05 0.05 14.20 13.47 14.01
Adp. α 0.43 0.26 0.33 0.95 0.61 0.77 14.58 14.48 15.60
Adp. Pm 0.02 0.02 0.02 0.05 0.04 0.04 8.07 7.76 7.72

DUF2

Tuned 0.04 0.04 0.04 0.09 0.08 0.08 27.33 27.38 26.53
Adp. α & Pm 0.04 0.04 0.04 0.09 0.08 0.09 26.63 28.48 27.13
Adp. α 0.54 0.51 0.62 1.33 1.27 1.50 27.92 28.44 28.70
Adp. Pm 0.04 0.04 0.04 0.08 0.08 0.07 14.37 14.13 14.66

DUF3

Tuned 10.09 11.36 11.33 10.35 11.60 11.58 22.23 22.42 22.76
Adp. α & Pm 10.10 11.36 11.33 10.35 11.61 11.57 22.34 22.49 23.01
Adp. α 11.11 11.99 12.07 12.25 12.72 12.96 24.26 23.97 24.03
Adp. Pm 10.06 11.26 11.26 10.23 11.38 11.37 12.39 13.07 13.21

results revealed that, contrary to our initial intuition,
the heuristic selection mechanism with learning isn’t
the most successful one for the HH-EDA2 framework.

The selection scheme that relies on a fixed permutation
of the underlying low-level heuristics (Random Permu-
tation) is the most successful one. For the cases when

the change period is long enough to allow all the vec-
tors in the permutation to be applied at least once, the
Random Permutation heuristic selection mechanism be-

comes equivalent to Greedy Selection. In HH-EDA2, the
move acceptance stage of a hyper-heuristic is not used.
This is the same as using the Accept All Moves strat-

egy. This move acceptance scheme is known to perform

the best with the Greedy Selection method Kiraz et al
(2011).

HH-EDA2 is in general capable of adapting itself to
the changes rapidly whether the change is random or

cyclic. Even though the hybrid method provides good
performance in the overall, it generates an outstanding
performance particularly in cyclic environments. This is

somewhat expected, since the hybridization technique
based on a dual population acts similar to a mem-
ory scheme, which is already known to be successful in

cyclic dynamic environments Yang and Yao (2008). The
use of offline learning and then the us of online learning
mechanism works and provides sufficient amount of di-

versification needed during the search process even un-

A Hybrid Multi-population Framework 17

der different change dynamics. The overall performance

of the algorithm worsens if the offline learning phase is
ignored. HH-EDA2 outperforms well know approaches
from the literature for almost all cases, except for some

deceptive problems.
As future work, we will experiment with the other

types of more complex EDA based methods, in partic-
ular Bayesian optimization algorithm within the pro-
posed framework. We will also verify our findings in a

real-world problem domain, for example the dynamic
vehicle routing problem.

A Appendix

Table 15 summarizes the list of abbreviations used mostly in
the paper.

Table 15 List of Abbreviations

EDA Estimation of Distribution Algorithms
PBIL Population Based Incremental Learning
PBIL2 Dual Population PBIL
HH-EDA2 Hyper-heuristic Based Dual Population EDA
PBILr PBIL with restart
PBIL2r PBIL2 with restart
MPBILr Memory-based PBIL with restart
MPBIL2r Dual Population Memory-based PBIL with restart
Sentinel8 Sentinel-based Genetic Algorithm with 8 sentinels
Sentinel16 Sentinel-based Genetic Algorithm with 16 sentinels
LF Low Frequency
MF Medium Frequency
HF High Frequency
LS Low Severity
MS Medium Severity
HS High Severity
VHS Very High Severity
CL Cycle Length

Acknowledgements This work is supported in part by the
EPSRC, grant EP/F033214/1 (The LANCS Initiative Post-
doctoral Training Scheme) and Berna Kiraz is supported by
the TUBITAK 2211-National Scholarship Programme for PhD
students.

References

Baluja S (1994) Population-based incremental learning: A
method for integrating genetic search based function op-
timization and competitive learning. Tech. rep., Computer
Science Department, Carnegie Mellon University, Pitts-
burgh, PA, USA

Barlow GJ, Smith SF (2009) Using memory models to im-
prove adaptive efficiency in dynamic problems. In: IEEE
Symposium on Computational Intelligence in Scheduling,
, CISCHED, p 714

Bosman PAN (2005) Learning, anticipation and time-
deception in evolutionary online dynamic optimization. In:
Proc. of the 2005 workshops on genetic and evolutionary
computation, ACM, GECCO ’05, pp 39–47

Branke J (1999) Memory enhanced evolutionary algorithms
for changing optimization problems. In: In Congress on

Evolutionary Computation CEC 99, IEEE, vol 3, pp 1875–
1882

Branke J (2002) Evolutionary optimization in dynamic envi-
ronments. Kluwer

Branke J, Kauler T, Schmidt C, Schmeck H (2000) A multi-
population approach to dynamic optimization problems.
In: 4th Int. Conference on Adaptive Computing in Design
and Manufacture (ACDM 2000), Springer, pp 299–308

Burke E, Kendall G (eds) (2005) Search Methodologies: In-
troductory Tutorials in Optimization and Decision Support
Techniques. Springer

Burke EK, Gendreau M, Hyde MR, Kendall G, Ochoa G,
Özcan E, Qu R (2012) Hyper-heuristics: A survey of the
state of the art. to appear in the Journal of the Operational
Research Society

Cao Y, Luo W (2010) A novel updating strategy for associa-
tive memory scheme in cyclic dynamic environments. In:
Advanced Computational Intelligence (IWACI), 2010 3rd
Int. Workshop on, Suzhou, Jiangsu, pp 32–39

Chakhlevitch K, Cowling P (2008) Hyperheuristics: Recent
developments. In: Cotta C, Sevaux M, Sirensen K (eds)
Adaptive and Multilevel Metaheuristics, Studies in Com-
putational Intelligence, vol 136, Springer, pp 3–29

Cowling PI, Kendall G, Soubeiga E (2000) A hyper-heuristic
approach to scheduling a sales summit. In: Practice and
Theory of Automated Timetabling III : 3rd Int. Confer-
ence, PATAT 2000, Springer, LNCS, vol 2079

Cruz C, Gonzalez J, Pelta D (2011) Optimization in dynamic
environments: a survey on problems, methods and mea-
sures. Soft Computing - A Fusion of Foundations, Method-
ologies and Applications 15:1427–1448

Fernandes CM, Lima C, Rosa AC (2008a) Umdas for dynamic
optimization problems. In: Proc. of the 10th conference on
genetic and evolutionary computation, ACM, GECCO ’08,
pp 399–406

Fernandes CM, Lima C, Rosa AC (2008b) Umdas for dy-
namic optimization problems. In: Proceedings of the 10th
annual conference on Genetic and evolutionary computa-
tion, ACM, New York, NY, USA, GECCO ’08, pp 399–406

Ghosh A, Muehlenbein H (2004) Univariate marginal distri-
bution algorithms for non-stationary optimization prob-
lems. Int J Know-Based Intell Eng Syst 8(3):129–138

Goncalves AR, Zuben FJV (2011) Online learning in estima-
tion of distribution algorithms for dynamic environments.
In: IEEE Congress on Evolutionary Computation, IEEE,
pp 62–69

Kiraz B, Topcuoglu HR (2010) Hyper-heuristic approaches
for the dynamic generalized assignment problem. In: Intel-
ligent Systems Design and Applications (ISDA), 2010 10th
International Conference on, pp 1487–1492

Kiraz B, Şima Uyar, Özcan E (2011) An investigation of se-
lection hyper-heuristics in dynamic environments. In: Proc.
of EvoApplications 2011, Springer, LNCS, vol 6624

Kiraz B, Şima Etaner-Uyar A, Özcan E (2013a) Selection
hyper-heuristics in dynamic environments. Journal of the
Operational Research Society, to appear

Kiraz B, Şima Uyar, Özcan E (2013b) An ant-based selection
hyper-heuristic for dynamic environments. In: EvoAppli-
cations 2013, Under review

Kobliha M, Schwarz J, Očenášek J (2006) Bayesian optimiza-
tion algorithms for dynamic problems. In: EvoWorkshops,
Springer, Lecture Notes in Computer Science, vol 3907, pp
800–804

Larrañaga P, Lozano JA (eds) (2002) Estimation of Distribu-
tion Algorithms: A New Tool for Evolutionary Computa-
tion. Kluwer, Boston, MA

18 Uludağ,Kiraz,Etaner-Uyar,Özcan

Lewis J, Hart E, Ritchie G (1998) A comparison of dominance
mechanisms and simple mutation on nonstationary prob-
lems. In: Proc. of Parallel Problem Solving from Nature,
pp 139–148

Li X, Mabu S, Mainali M, Hirasawa K (2011) Probabilistic
model building genetic network programming using mul-
tiple probability vectors. In: TENCON 2010 - IEEE Re-
gion 10 Conference, IEEE Region Conference, Fukuoka,
pp 1398–1403

Morrison RW (2004) Designing evolutionary algorithms for
dynamic environments. Springer

Nareyek A (2004) Metaheuristics. Kluwer, pp 523–544
Özcan E, Bilgin B, Korkmaz EE (2008) A comprehensive

analysis of hyper-heuristics. Intelligent Data Analysis 12:3–
23

Özcan E, Misir M, Ochoa G, Burke EK (2010) A reinforce-
ment learning - great-deluge hyper-heuristic for examina-
tion timetabling. International Journal of Applied Meta-
heuristic Computing 1(1):39–59

Peng X, Gao X, Yang S (2011) Environment identification-
based memory scheme for estimation of distribution algo-
rithms in dynamic environments. Soft Comput 15:311–326

Ross P (2005) Hyper-heuristics. In: Burke EK, Kendall G
(eds) Search Methodologies: Introductory Tutorials in Op-
timization and Decision Support Techniques, Springer,
chap 17, pp 529–556

Shakya S, Oliveira F, Owusu G (2007) An application of eda
and ga to dynamic pricing. In: Proc. of the 9th annual
conference on Genetic and evolutionary computation, New
York, NY, USA, GECCO ’07, pp 585–592

Simões A, Costa E (2008a) Evolutionary algorithms for dy-
namic environments: Prediction using linear regression and
markov chains. In: Proceedings of the 10th international
conference on Parallel Problem Solving from Nature: PPSN
X, Springer-Verlag, Berlin, Heidelberg, pp 306–315

Simões A, Costa E (2008b) Evolutionary algorithms for dy-
namic environments: Prediction using linear regression and
markov chains. Tech. rep., Coimbra, Portugal

Simões A, Costa E (2009a) Improving prediction in evolution-
ary algorithms for dynamic environments. In: Proceedings
of the 11th Annual conference on Genetic and evolutionary
computation, ACM, New York, NY, USA, GECCO ’09

Simões A, Costa E (2009b) Prediction in evolutionary al-
gorithms for dynamic environments using markov chains
and nonlinear regression. In: Proceedings of the 11th An-
nual conference on Genetic and evolutionary computation,
ACM, New York, NY, USA, GECCO ’09, pp 883–890

Uludağ G, Kiraz B, Şima Etaner Uyar A, Özcan E (2012a)
A framework to hybridise PBIL and a hyper-heuristic
for dynamic environments. In: PPSN 2012: 12th Interna-
tional Conference on Parallel Problem Solving from Na-
ture, Springer, vol 7492, pp 358–367

Uludağ G, Kiraz B, Şima Etaner Uyar A, Özcan E (2012b)
Heuristic selection in a multi-phase hybrid approach for
dynamic environments. In: 12th UK Workshop on Compu-
tational Intelligence, Edinburgh, Scotland, UKCI12

Ursem RK (2000) Multinational GA optimization techniques
in dynamic environments. In: Proc. of the Genetic Evol.
Comput. Conf., pp 19–26

Uyar c, Harmanci E (2005) A new population based adap-
tive domination change mechanism for diploid genetic algo-
rithms in dynamic environments. Soft Comput 9(11):803–
814

Wineberg M, Oppacher F (2000) Enhancing the GA’s Ability
to Cope with Dynamic Environments. In: Whitley (ed) Ge-
netic and Evolutionary Computation Conference, Morgan

Kaufmann, pp 3–10
Wu Y, Wang Y, Liu X (2010a) Multi-population based uni-

variate marginal distribution algorithm for dynamic opti-
mization problems. Journal of Intelligent and Robotic Sys-
tems 59(2):127–144

Wu Y, Wang Y, Liu X, Ye J (2010b) Multi-population and
diffusion umda for dynamic multimodal problems. Journal
of Systems Engineering and Electronics 21(5):777–783

Xingguang P, Demin X, Fubin Z (2011) On the effect of
environment-triggered population diversity compensation
methods for memory enhanced umda. In: Proc. of the 30th
Chinese Control Conference, pp 5430–5435

Yang S (2004) Constructing dynamic test environments for
genetic algorithms based on problem difficulty. In: In Proc.
of the 2004 Congress on Evolutionary Computation, pp
1262–1269

Yang S (2005a) Memory-enhanced univariate marginal distri-
bution algorithms for dynamic optimization problems. In:
Proc. of the 2005 Congress on Evol. Comput, pp 2560–2567

Yang S (2005b) Population-based incremental learning with
memory scheme for changing environments. In: Proceed-
ings of the 2005 conference on Genetic and evolutionary
computation, ACM, New York, NY, USA, GECCO ’05,
pp 711–718

Yang S (2007) Explicit Memory Schemes for Evolutionary
Algorithms in Dynamic Environments. In: Evolutionary
Computation in Dynamic and Uncertain Environments,
chap 1, pp 3–28

Yang S, Richter H (2009) Hyper-learning for population-
based incremental learning in dynamic environments. In:
in Proc. 2009 Congr. Evol. Comput, pp 682–689

Yang S, Yao X (2005) Experimental study on population-
based incremental learning algorithms for dynamic opti-
mization problems. Soft Comput 9(11):815–834

Yang S, Yao X (2008) Population-based incremental learning
with associative memory for dynamic environments. IEEE
Trans on Evolutionary Comp 12:542–561

Yang S, Ong YS, Jin Y (eds) (2007) Evolutionary Computa-
tion in Dynamic and Uncertain Environments, Studies in
Computational Int., vol 51. Springer

Yaochu J, Branke J (2005) Evolutionary optimization in un-
certain environments-a survey. IEEE Trans on Evolution-
ary Comp 9(3):303–317

Yuan B, Orlowska ME, Sadiq SW (2008) Extending a class
of continuous estimation of distribution algorithms to dy-
namic problems. Optimization Letters 2(3):433–443

