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Abstract. Nurse rostering problems represent a subclass of scheduling problems 
that are hard to solve.  The goal is finding high quality shift and resource as-
signments, satisfying the needs and requirements of employees as well as the 
employers in healthcare institutions. In this paper, a real case of a nurse roster-
ing problem is introduced. Memetic Algorithms utilizing different type of 
promising genetic operators and a self adaptive violation directed hierarchical 
hill climbing method are presented based on a previously proposed framework. 

1   Introduction 

Timetabling problems are well known NP complete problems [15]. As a timetabling 
problem, shift scheduling is concerned with the arrangement of employee timetables, 
considering the constraints  provided by employees, employers and even customers. A 
nurse roster is a timetable consisting of shift assignments and rest days of nurses 
working at a hospital. In nurse rostering, the ultimate aim is to create high quality time-
tables, taking well-being of nurses as a basis without discarding the concerns of em-
ployers.  

There is variety of approaches used for solving nurse rostering problems  ([10], [12], 
[23]).  Increasing number of researchers applies Genetic Algorithms  (GAs) or other 
metaheuristic approaches, such as, Simulated Annealing, Tabu Search and their hy-
brids to tackle timetabling problems  ([5], [6], [14], [17]). Ahmad et. al. [1] applied a 
modified version of a GA, named as population-less cooperative genetic algorithm on 
a 3-shift problem. Kawanaka et. al. [21] used GA to obtain optimal nurse schedules 
satisfying absolute and desirable constraints. Aickelin et. al. [2] utilized a coevolution-
ary pyramidal GA for solving nurse rostering. Each subpopulation attempts to solve 
nurse rostering for a set of nurses having either the same grade or a predetermined 
combination of them, organized in a hierarchical way as a pyramid for mate selection. 
Aickelin et. al. [3] proposed an indirect representation in GA for NRP and three differ-
ent decoders. Recently, research on timetabling started to move towards finding a 
good hyper-heuristic ([9], [11], [20]); a heuristic for selecting a heuristic among a set of 
them to solve an optimization problem. 



Details about nurse rostering, such as, constraint categorizations, models and ap-
proaches can be found in [7], [16] and [27]. In this paper, a set of memetic algorithms  
(MAs), combining GAs utilizing a set of genetic operators and a self adaptive violation 
directed hierarchical hill climbing method (VDHC) are introduced. MAs are based on 
the very same framework proposed by Alkan et. al. [4]. Extensive experiments are per-
formed using randomly generated data and a real one retrieved from a major hospital. 
VDHC is a promising approach. 

2   Nurse Rostering Problem 

Nurse rostering problems (NRPs) are constraint optimization problems that can be 
represented by a 3-tuple <V, D, C>. V is a finite set of variables, possibly each repre-
senting a shift of a nurse at a hospital, V = {v1, v2, …, vi, …, vN}, D={ d1, d2, …, di, …, 
dN},  is a finite set of domains of variables, where di is the domain of the variable vi. Let 
T={ t1, …, tj, …, tM} represent a set of start times for a shift, then a possible domain of 
each variable: di⊆T. C is a set of constraints to be satisfied, C={ c1, c2, …, cL}. NRP can 
be described as a search for finding the best assignment (vi, tj) for each variable vi∈V, 
such that, all constraints are satisfied. The assignment implies that the ith shift of a 
nurse at vi starts at tj. Constraints are categorized as hard  or soft, where hard con-
straints must be satisfied and soft ones represent preferences.  

2.1   Nurse Rostering Problem at Memorial Hospital  

Shift schedules in Memorial Hospital (Istanbul, Turkey) are generated manually for all 
the departments in the hospital. There are two shift periods per day: day and night. In 
order to simplify the timetabling process, the hospital authorities produce a weekly 
schedule manually, although a biweekly schedule is preferred. Since the preferences of 
nurses are essential and might change in time, schedules are acyclic. There are three 
departments and about twenty nurses  in the hospital. In some cases, a nurse from a 
different department is allowed to work at another department for support . Neverthe-
less, this type of cross duty does not occur often. Each nurse is considered to be 
independent belonging to a department. A nurse has a rank assigned from {0, 1, 2} 
indicating the level of experience (from lowest to highest). Rank 2 implies an experi-
enced nurse. There are one or two nurses with rank 2 at each department. During the 
analysis a set of hard and soft constraints are determined. Hard Constraints: 
− Presets (PRC): Presets represent the predetermined shift schedules of nurses. 
− Shift Constraint (SHC): At a department, during each shift there must be at least 

one nurse.  
− Successive Night Shifts Constraint (SNC):  A nurse can not be assigned to more 

than two successive night shifts. 
− Successive Day Shifts Constraint (SDC):  A nurse can not be assigned to more than 

three successive day shifts.  



− Successive Shifts Constraint (SSC): A nurse can not be assigned to two successive 
shifts. A day shift in one day and a night shift in the following day are considered 
as successive shifts . 

− Exclude Night Shifts Constraint (ENC): Night shifts can not be assigned to an 
experienced nurse with rank 2. 

− On-duty Constraint (ODC): Each nurse can not be assigned less than eight shifts 
per two weeks. 

Soft Constraints : 
− Off-duty Constraint (RDC): Nurses can define at most 3 rest day preferences.  

3   Memetic Algorithms for Solving Nurse Rostering Problems 

Genetic Algorithms (GAs) were introduced by J. Holland [19], and have been used to 
solve many difficult problems [18]. Usefulness of hill climbing in population based 
algorithms is emphasized by many researchers ([24, 28, 29]).  

The problem described in Section 2 is chosen, due to the similarities with the uni-
versity course scheduling problem, which is described in [25]. Memetic Algorithms 
(MAs) are presented for solving nurse rostering problems , based on a violation di-
rected hierarchical hill climbing (VDHC). In most of the timetabling problem instances, 
variables are arranged hierarchically. Let a classifier be a subset of variables, then at 
each level in the hierarchy; a set of classifiers, representing logical groupings can be 
formed. In most of the cases, classifiers at a hierarchy level are collectively exhaustive 
in V. Classifiers form a basis for designing of a rich set of operators, discussed in the 
following sections. Arrangements can be formed statically or dynamically. A static 
arrangement is used during the experiments (Fig. 1). This study is a part of an attempt 
to provide a framework for solving different type of timetabling problems using a sin-
gle tool based on Memetic Algorithms. Ozcan proposed an XML standard for time-
tabling problems in [27]. The goal is to represent different classes of timetabling prob-
lems using a single format. There are some developers already supporting the XML 
standard; schoolTool (http://www.schooltool.org), tablix (http://www.tablix.org).  

3.1   Representation 

The direct representation is used. Assuming S denotes the total number of nurses in a 
hospital, there is a subset of nurses available for duty at each department. Each nurse 
has a timetable, having R slots (days) to be filled with a shift type. R is set to 14 for 
producing bi-weekly acyclic schedule for each nurse. Each gene denotes the start time 
of a shift for a nurse in a day. Additional to day shift (1) and night shift (2), off-duty 
(0) allele is used in the individual representation. The representation scheme allows 
implementation of different sets of genetic operators. 

Shifts of all nurses (variables) are arranged hierarchically in the individual represen-
tation (Fig. 1). Top hierarchy level, denoted as H-level contains a single classifier; V. 
There are three more hierarchy levels . D-level, N-level and G-level contain P, S and 



N=SxR number of classifiers, respectively, as demonstrated in Fig. 1. Furthermore, each 
classifier at a level is a partition of V. 
 

 
 
 
 
 
 

 

Fig. 1. Individual representation used in MA for solving NRP 

3.2 Fitness Function 

An optimum nurse roster is the one with no violations. Let NR represent a proposed 
schedule of all nurses in the hospital, Ti ∈NR represent the nurse roster of the ith nurse, 
pj(.) represent the violation penalties due to the j th constraint for a given nurse roster 
and wj to be the associated weight for the corresponding type of constraint. Fitness 
accumulates each weighted violation penalty with respect to its constraint type.  
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3.3   Mutation 

Mutation can be applied on all classifiers at the same level, independently. For exa m-
ple, at D-level, the same mutation operator can be applied within all the departments 
using an appropriate mutation rate, as if each department is an individual.  Similarly, at 
N-level, the mutation operator can be applied on each nurse. Swap mutation can be 
extended and a part (or whole) of the hierarchy level component can be replaced by a 
same size component at the same level. This set of mutations is straightforward to 
implement, if hierarchy level components are partitions. Behave as if each partition is a 
gene and swap it. For example, two nurse rosters or 3 days of the two nurse rosters 
can be swapped using an appropriate mutation rate. Similarly, two department rosters, 
or the same number of several nurse rosters in two departments can be swapped. Rep-
resentation allows designing violation directed mutations as well: 
− At a hierarchy level, select a classifier (partition or subset) based on the violations  
− Apply mutation operator only on the selected classifier 

As a different approach, the same or an adaptively selected mutation operator can 
be applied on each classifier, separately. Traditional mutation operator (M0) is used in 
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the experiments. M0 randomly perturbs an allele with a mutation rate of 
1/length_of_the_part_to_be_mutated. Furthermore, two smart mutation operators are 
implemented. M1 and M2 operate in a similar manner on nurses and departments, re-
spectively. Two randomly selected classifiers enter into a tournament. The one caus-
ing higher number of violations is selected for mutation. M0 is applied on the selected 
classifier (part of the chromosome). More disruptive mutations are implemented as 
well. M3 and M4 apply M0 on each nurse and department, respectively. 

3.4 Crossover 

Traditional one point crossover (1PTX) and uniform crossover (UX) are used to de-
sign a set of modified crossover operators. Boundary based crossover operators are 
applied on the classifiers defined at a hierarchy level. For example, 1PTX_N works at 
the N-level and 1PTX is applied as if the set of genes forming a nurse classifier is itself 
a gene. Hence, 6 different types of crossover operators are implemented: 1PTX (X1), 
UX (X2), 1PTX_D (X3), UX_D (X4), 1PTX_N (X7), and UX_N (X8).  

Less disruptive and smart crossovers can be created to operate in two steps: 
− Select one of the classifiers based on a strategy 
− Apply crossover only within that classifier 
As a result , four more crossover operators are implemented, utilizing tournament se-

lection strategy with a tour size of two. A classifier is selected by comparing the total 
number of violations in each classifier at a level. 1PTX or UX is used on the selected 
classifier: 1PTX_SD (X5), UX_SD (X6), 1PTX_SN (X9), UX_SN (X10). 

Additionally, highly disruptive crossover operators are created, applying crossover 
on all classifiers at a level, one by one. 1PTX_AD (X11) applies 1PTX on all depart-
ments, while 1PTX_AN (X12) applies 1PTX on all nurses. More crossover techniques 
can be generated allowing different crossovers to be operational at each classifier in 
the same level. For example, while 1PTX can be applied on the first and fourth nurse 
schedules, UX can be applied on the second and third nurse schedules, assuming four 
nurses and a single department. Ultimately, this type of strategies might require an 
adaptive method to decide which crossover to apply. 

3.6   Hill Climbing 

Timetabling problems are also formulated as multi-criteria optimization problems. This 
formulation would be very useful, especially in the existence of different types of soft 
constraints. Several solutions might be obtained having comparable qualities. Obvi-
ously, while attempting to reduce the violations due to a constraint, overall quality of a 
suggested solution might worsen.  Applying a hill climbing method as a part of a hy-
brid algorithm is computationally expensive in timetabling problems . After each step is 
applied, the new configuration has to be evaluated in order to determine whether an 
improvement is provided or not. Yet, if the quality of solution increases, a hill climbing 
approach might be preferred. A violation directed hierarchical hill climbing method, 
denoted as VDHC is proposed as a part of a Memetic Algorithm for solving time-



tabling problems. Hill climbing is applied after mutation. VDHC provides cooperation 
of a set of hill climbers. 

4   Self Adaptive Violation Directed Hierarchical Hill Climbing 

VDHC represents a self adaptive approach which requires iterative application of a hill 
climbing method for a selected type of constraint as shown in Fig. 2. First, hierarchy 
levels to be used in VDHC are determined with an uppermost level chosen as a starting 
level to operate on. VDHC stays at a level as long as current candidate solution im-
proves. It applies a selected hill climbing method, evaluating violations due to each 
constraint type, to a selected classifier at a level. If no improvement is confirmed, then 
VDHC reduces the area of concern to classifiers at one level down in the hierarchy. 
Hence, hierarchy level changes and the same steps of the algorithm repeat. VDHC 
terminates whenever a maximum number of steps is exceeded. Violation based selec-
tion methods are suggested.  

 

Fig. 2. Pseudo-code of the VDHC approach 

4.1   VDHC for Nurse Rostering 

Three hierarchy levels are marked: H-level, D-level and N-level. As a classifier and 
constraint selection method a tournament selection is used. At the H-level classifier 
selection method always returns the whole chromosome. At the D-level, classifier 
selection method computes the violation contribution of each department to the over-
all fitness and selects one of them using tournament. Similarly, at the N-level, classifier 
selection method computes the violation contribution of each nurse to the overall 
fitness and selects one of them. In order to select a classifier from the N-level, a de-
partment has to be determined. Hence, D-level classifier selection is done first. Then 
the violations caused by each constraint type are distinguished. One of the constraint 

1. Mark the hierarchy levels to be used 
2. Set current level to the top hierarchy level 
3. while (terminationCriteria-1 are not satisfied) do 

a. while (terminationCriteria-2 are not satisfied) 
do 
i. Start the traversal from the top until to 

the current level and select a classifier 
ii. Select a constraint type  

iii. Apply hill climbing for the selected  con-
straint type within the selected classifier 

b. end while 
c. Lower the hierarchy level  



types  is selected, giving a higher chance to the hill climbing step of the related con-
straint type causing more violations. Selected hill climbing is applied to the predeter-
mined classifier to get rid of all the violations due to the related constraint type, pro-
ducing a new individual.  

Seven constraint based hill climbing methods are developed corresponding to each 
constraint type; SHC_HC, SNC_HC, SDC_HC, SSC_HC, ENC_HC, ODC_HC, 
RDC_HC. PRCs are handled by fixing assignments of related nurse shifts; hence, this 
constraint does not require application of a hill climbing method. SHC_HC checks 
departmental rosters and locates shifts without a nurse assignment. Then a nurse in 
the department is selected randomly and assigned to that shift. SNC_HC checks 
whether three consecutive shifts are night shifts or not. If they are, one of the shifts is 
changed to a day shift or marked as off-duty.  SDC_HC checks whether four consecu-
tive shifts are day shifts or not. If they are, one of the shifts is modified to a night shift 
or marked as off-duty.  SSCs are partially satisfied by the use of the representation. If a 
candidate solution contains a successive two day pattern night shift-day shift, 
SSC_HC modifies the second day shift as either a night shift or off-duty. ENC_HC 
transforms  a night shift assigned to a nurse with rank 2 to a day shift or off-duty. 
ODC_HC modifies required number of off-duty assignments  to either a day or a night 
shift. RDC_HC attempts to realize nurse preferences. All choices and modifications in 
each hill climbing method are carried out randomly. In the tests the maximum number of 
hill climbing steps is a factor of chromosome length. 

5   Experiments 

A random nurse rostering problem instance generator (RNR) is implemented. 9 problem 
instances, produced by RNR, and a real data obtained from Memorial Hospital, labeled 
as rnd#id and mhtr, respectively, are used in the experiments. Characteristics of the 
data set are summarized in Table 1. All runs are repeated 50 times. Pentium IV 2 GHz. 
machines with 256 MB RAM are used. Experiments are performed in three stages . In 
the first stage crossover operators are compared using rnd1-6 data. Operators are 
compared based on their ranks considering the number of violations of best achieved 
solutions averaged over runs. In the second stage, mutation operators are tested with 
the top crossover operator on the same data. In the final stage, all the data set is  tested 
using the best MA. Experimental data can be reached at 
http://cse.yeditepe.edu.tr/~eozcan/TTML. 

Population is initialized randomly, and its size is a factor of the chromosome length. 
As a mate selection method linear ranking strategy is preferred, giving four times 
higher chance for the best individual than the worst one to be selected. All the runs 
are terminated whenever a fitness value of 0 is achieved, or whenever a maximum num-
ber of generations is exceeded. It is known that an optimal schedule is possible for the 
data used in the experiments. Hence, soft and hard constraints are not distinguished. 
Weight of each penalty is set to 1. Define success rate (s.r.) indicate the proportion of 
the successful runs yielding optimal solutions. As a replacement strategy, trans-



generational MA (TGMA) with weak elitism is preferred, based on our previous ex-
perience ([4], [25], [26], [28]). Two best individuals are inherited to the next generation 
and the rest of them are obtained from the offspring pool. 

Table 1. Characteristics of the data set used in the experiments. Number of departments and 
nurses are denoted as ndep and nnur, respectively. Percentage of nurses from each rank and 
average number of off-duty preferences of each nurse is denoted as pnr and avrpr, respectively 

label mhtr rnd1 rnd2 rnd3 rnd4 rnd5 rnd6 rnd7 rnd8 rnd9 
ndep  4 3 3 3 4 4 4 6 8 6 
nnur 20 21 21 21 21 21 21 34 51 66 
pnr0 0.33 0.42 0.18 0.28 0.14 0.19 0.13 0.18 0.19 0.36 
pnr1 0.48 0.32 0.51 0.42 0.47 0.46 0.47 0.47 0.47 0.35 
pnr2 0.19 0.28 0.32 0.32 0.42 0.37 0.42 0.38 0.35 0.30 
avrpr 0.55 1.95 0.67 2.19 1.67 2.33 0.95 1.97 1.88 2.09 

 
In the first stage of experiments M0 is fixed as a mutation operator. According to 

the results, 1PTX performs better than the rest of the crossover operators (Table 2). 
UX is the second best. All crossover operators, other than 1PTX and UX fail to find 
the optimal solution. Considering boundary based and smart  crossover methods, the 
ones operating on N-level perform better. X3 and X4 are the worst crossover methods. 
X10, X6, X11, X12 and X9 are the top five crossovers in the given order following the 
traditional operators. Whenever these top crossover operators are used, on average 
less than 21 violations are left unresolved.  

Table 2. Results of the first stage experiments, indicating the rank of each crossover operator 

Label X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

rnd1 1 2 11 12 9 4 10 8 7 3 6 5 
rnd2 1 1 10 11 8 3 9 7 5 2 4 6 
rnd3 1 1 10 11 8 3 9 7 6 2 5 4 
rnd4 1 2 11 12 9 4 10 8 7 3 5 6 
rnd5 1 2 11 12 9 4 10 6 8 3 5 7 
rnd6 1 2 11 12 9 4 10 6 7 3 5 8 

 

In the second stage experiments 1PTX is fixed as a crossover operator. According 
to the experimental results, performance of operators are from the best towards the 
worst is M0, M1, M2, M4 and M3 (Table 3). M0 and M1 perform approximately the 
same, while M3 is the worst mutation operator, failing to find the optimal solution in 
most of the cases. In the last generations, a single violation is  left to be resolved for all 
mutations, except M3. Violation directed smart mutation operators turn out to be more 
effective than the crossover operators. 

TGMA performs best whenever M0 and X1 are used. TGMA reduces the number of 
violations rapidly in few hundreds of generations on average as established in Table 4. 



A run of the best MA takes less than 3 minutes on average for all data. Real data turns 
out to be the hardest problem instance of all. Genetic Algorithm version of the best 
MA without VDHC is applied to the real data. MA outperforms the GA version.  

Table 3. Results of the 2nd stage experiments, indicating s.r. of each mutation operator 

Label M0 M1 M2 M3 M4 

rnd1 0.99 0.96 0.56 0.00 0.48 

rnd2 1.00 1.00 1.00 0.08 0.90 

rnd3 1.00 1.00 1.00 0.00 0.84 

rnd4 0.98 0.98 0.66 0.00 0.52 

rnd5 1.00 1.00 0.94 0.00 0.72 

rnd6 1.00 1.00 0.98 0.00 0.86 

avr 0.99 0.96 0.56 0.00 0.48 

Table 4. Results obtained using MA with the best set of operators on the data set  

Label s.r. Avr.Gen./Run std. Avr.Eval./Gen. std. 

mhtr 0.72 1,736 2,881 1,176 1,178 
rnd1 0.99 219 660 1,293 1,293 
rnd2 1.00 42 44 1,333 1,333 
rnd3 1.00 51 53 1,302 1,302 
rnd4 0.98 265 787 1,306 1,306 
rnd5 1.00 148 301 1,299 1,299 
rnd6 1.00 61 62 1,330 1,330 
rnd7 0.99 181 857 2,092 2,092 
rnd8 1.00 96 99 3,155 3,155 
rnd9 1.00 145 167 3,928 3,928 

6   Conclusions 

Timetabling is an interdisciplinary research area, containing many subclasses, such as, 
nurse rostering, course timetabling, examination timetabling. As an attempt to propose 
a general solver for timetabling problems ([4], [25], [26], [27]) a nurse rostering problem 
is investigated. A real world data obtained from Memorial Hospital and randomly gen-
erated data set are used as a test bed. Various mutation and crossover operators, in-
cluding boundary oriented and smart genetic operators are presented to be used in 
timetabling problems. Several of these operators and proposed self adaptive violation 
directed hierarchical hill climbing operator (VDHC) are experimented within Memetic 
Algorithms. These operators can be used in other approaches as well. 

VDHC and suggested operators exploit the underlying structure of problem in-
stances . VDHC boosts the performance of the GA for nurse rostering as expected. 
Using a hierarchy of levels  provides means to correct conflicts once and for all, or for a 



group of events, or for a single event.  Violation directed operators; especially smart 
mutations achieve promising performances. 

Proposed framework enables researchers to design a variety of operators. Such op-
erators are already used by some researchers. For example, the shake operators sug-
gested in [10] are a subset of genetic operators described for the MAs in Section 3. 
Other than static arrangement of data, dynamic arrangement is also possible. For ex-
ample, considering a nurse rostering problem, shift assignments of nurses in the same 
period forms a dynamic arrangement. List of nurses might change from one candidate 
solution to another. More operators can be designed to work on these dynamic ar-
rangements in a similar manner as discussed for static arrangements. Combining these 
operators underneath a hyper-heuristic might yield good solutions. As a future work, 
different combinations of hill climbing methods and genetic operators will be investi-
gated. MA with VDHC will be compared to a multimeme strategy [22]. 
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