
Memetic Algorithms for Nurse Rostering

Ender Özcan

Yeditepe University,
Department of Computer Engineering,

Kayisdagi, Istanbul, Turkey
eozcan@cse.yeditepe.edu.tr

Abstract. Nurse rostering problems represent a subclass of scheduling problems
that are hard to solve. The goal is finding high quality shift and resource as-
signments, satisfying the needs and requirements of employees as well as the
employers in healthcare institutions. In this paper, a real case of a nurse roster-
ing problem is introduced. Memetic Algorithms utilizing different type of
promising genetic operators and a self adaptive violation directed hierarchical
hill climbing method are presented based on a previously proposed framework.

1 Introduction

Timetabling problems are well known NP complete problems [15]. As a timetabling
problem, shift scheduling is concerned with the arrangement of employee timetables,
considering the constraints provided by employees, employers and even customers. A
nurse roster is a timetable consisting of shift assignments and rest days of nurses
working at a hospital. In nurse rostering, the ultimate aim is to create high quality time-
tables, taking well-being of nurses as a basis without discarding the concerns of em-
ployers.

There is variety of approaches used for solving nurse rostering problems ([10], [12],
[23]). Increasing number of researchers applies Genetic Algorithms (GAs) or other
metaheuristic approaches, such as, Simulated Annealing, Tabu Search and their hy-
brids to tackle timetabling problems ([5], [6], [14], [17]). Ahmad et. al. [1] applied a
modified version of a GA, named as population-less cooperative genetic algorithm on
a 3-shift problem. Kawanaka et. al. [21] used GA to obtain optimal nurse schedules
satisfying absolute and desirable constraints. Aickelin et. al. [2] utilized a coevolution-
ary pyramidal GA for solving nurse rostering. Each subpopulation attempts to solve
nurse rostering for a set of nurses having either the same grade or a predetermined
combination of them, organized in a hierarchical way as a pyramid for mate selection.
Aickelin et. al. [3] proposed an indirect representation in GA for NRP and three differ-
ent decoders. Recently, research on timetabling started to move towards finding a
good hyper-heuristic ([9], [11], [20]); a heuristic for selecting a heuristic among a set of
them to solve an optimization problem.

Details about nurse rostering, such as, constraint categorizations, models and ap-
proaches can be found in [7], [16] and [27]. In this paper, a set of memetic algorithms
(MAs), combining GAs utilizing a set of genetic operators and a self adaptive violation
directed hierarchical hill climbing method (VDHC) are introduced. MAs are based on
the very same framework proposed by Alkan et. al. [4]. Extensive experiments are per-
formed using randomly generated data and a real one retrieved from a major hospital.
VDHC is a promising approach.

2 Nurse Rostering Problem

Nurse rostering problems (NRPs) are constraint optimization problems that can be
represented by a 3-tuple <V, D, C>. V is a finite set of variables, possibly each repre-
senting a shift of a nurse at a hospital, V = {v1, v2, …, vi, …, vN}, D={ d1, d2, …, di, …,
dN}, is a finite set of domains of variables, where di is the domain of the variable vi. Let
T={ t1, …, tj, …, tM} represent a set of start times for a shift, then a possible domain of
each variable: di⊆T. C is a set of constraints to be satisfied, C={ c1, c2, …, cL}. NRP can
be described as a search for finding the best assignment (vi, tj) for each variable vi∈V,
such that, all constraints are satisfied. The assignment implies that the ith shift of a
nurse at vi starts at tj. Constraints are categorized as hard or soft, where hard con-
straints must be satisfied and soft ones represent preferences.

2.1 Nurse Rostering Problem at Memorial Hospital

Shift schedules in Memorial Hospital (Istanbul, Turkey) are generated manually for all
the departments in the hospital. There are two shift periods per day: day and night. In
order to simplify the timetabling process, the hospital authorities produce a weekly
schedule manually, although a biweekly schedule is preferred. Since the preferences of
nurses are essential and might change in time, schedules are acyclic. There are three
departments and about twenty nurses in the hospital. In some cases, a nurse from a
different department is allowed to work at another department for support . Neverthe-
less, this type of cross duty does not occur often. Each nurse is considered to be
independent belonging to a department. A nurse has a rank assigned from {0, 1, 2}
indicating the level of experience (from lowest to highest). Rank 2 implies an experi-
enced nurse. There are one or two nurses with rank 2 at each department. During the
analysis a set of hard and soft constraints are determined. Hard Constraints:
− Presets (PRC): Presets represent the predetermined shift schedules of nurses.
− Shift Constraint (SHC): At a department, during each shift there must be at least

one nurse.
− Successive Night Shifts Constraint (SNC): A nurse can not be assigned to more

than two successive night shifts.
− Successive Day Shifts Constraint (SDC): A nurse can not be assigned to more than

three successive day shifts.

− Successive Shifts Constraint (SSC): A nurse can not be assigned to two successive
shifts. A day shift in one day and a night shift in the following day are considered
as successive shifts .

− Exclude Night Shifts Constraint (ENC): Night shifts can not be assigned to an
experienced nurse with rank 2.

− On-duty Constraint (ODC): Each nurse can not be assigned less than eight shifts
per two weeks.

Soft Constraints :
− Off-duty Constraint (RDC): Nurses can define at most 3 rest day preferences.

3 Memetic Algorithms for Solving Nurse Rostering Problems

Genetic Algorithms (GAs) were introduced by J. Holland [19], and have been used to
solve many difficult problems [18]. Usefulness of hill climbing in population based
algorithms is emphasized by many researchers ([24, 28, 29]).

The problem described in Section 2 is chosen, due to the similarities with the uni-
versity course scheduling problem, which is described in [25]. Memetic Algorithms
(MAs) are presented for solving nurse rostering problems , based on a violation di-
rected hierarchical hill climbing (VDHC). In most of the timetabling problem instances,
variables are arranged hierarchically. Let a classifier be a subset of variables, then at
each level in the hierarchy; a set of classifiers, representing logical groupings can be
formed. In most of the cases, classifiers at a hierarchy level are collectively exhaustive
in V. Classifiers form a basis for designing of a rich set of operators, discussed in the
following sections. Arrangements can be formed statically or dynamically. A static
arrangement is used during the experiments (Fig. 1). This study is a part of an attempt
to provide a framework for solving different type of timetabling problems using a sin-
gle tool based on Memetic Algorithms. Ozcan proposed an XML standard for time-
tabling problems in [27]. The goal is to represent different classes of timetabling prob-
lems using a single format. There are some developers already supporting the XML
standard; schoolTool (http://www.schooltool.org), tablix (http://www.tablix.org).

3.1 Representation

The direct representation is used. Assuming S denotes the total number of nurses in a
hospital, there is a subset of nurses available for duty at each department. Each nurse
has a timetable, having R slots (days) to be filled with a shift type. R is set to 14 for
producing bi-weekly acyclic schedule for each nurse. Each gene denotes the start time
of a shift for a nurse in a day. Additional to day shift (1) and night shift (2), off-duty
(0) allele is used in the individual representation. The representation scheme allows
implementation of different sets of genetic operators.

Shifts of all nurses (variables) are arranged hierarchically in the individual represen-
tation (Fig. 1). Top hierarchy level, denoted as H-level contains a single classifier; V.
There are three more hierarchy levels . D-level, N-level and G-level contain P, S and

N=SxR number of classifiers, respectively, as demonstrated in Fig. 1. Furthermore, each
classifier at a level is a partition of V.

Fig. 1. Individual representation used in MA for solving NRP

3.2 Fitness Function

An optimum nurse roster is the one with no violations. Let NR represent a proposed
schedule of all nurses in the hospital, Ti ∈NR represent the nurse roster of the ith nurse,
pj(.) represent the violation penalties due to the j th constraint for a given nurse roster
and wj to be the associated weight for the corresponding type of constraint. Fitness
accumulates each weighted violation penalty with respect to its constraint type.

() ()j j i
i j

f NR w p T
∀ ∀

= ∑ (1)

3.3 Mutation

Mutation can be applied on all classifiers at the same level, independently. For exa m-
ple, at D-level, the same mutation operator can be applied within all the departments
using an appropriate mutation rate, as if each department is an individual. Similarly, at
N-level, the mutation operator can be applied on each nurse. Swap mutation can be
extended and a part (or whole) of the hierarchy level component can be replaced by a
same size component at the same level. This set of mutations is straightforward to
implement, if hierarchy level components are partitions. Behave as if each partition is a
gene and swap it. For example, two nurse rosters or 3 days of the two nurse rosters
can be swapped using an appropriate mutation rate. Similarly, two department rosters,
or the same number of several nurse rosters in two departments can be swapped. Rep-
resentation allows designing violation directed mutations as well:
− At a hierarchy level, select a classifier (partition or subset) based on the violations
− Apply mutation operator only on the selected classifier

As a different approach, the same or an adaptively selected mutation operator can
be applied on each classifier, separately. Traditional mutation operator (M0) is used in

1 2

 Dept. P

 Nurse 1 Nurse Q

1 2

R

Individual

1

(D)epartment

(N)urse

(G)ene

(H)ospital

 Dept. 1

Hierarchy
Levels

the experiments. M0 randomly perturbs an allele with a mutation rate of
1/length_of_the_part_to_be_mutated. Furthermore, two smart mutation operators are
implemented. M1 and M2 operate in a similar manner on nurses and departments, re-
spectively. Two randomly selected classifiers enter into a tournament. The one caus-
ing higher number of violations is selected for mutation. M0 is applied on the selected
classifier (part of the chromosome). More disruptive mutations are implemented as
well. M3 and M4 apply M0 on each nurse and department, respectively.

3.4 Crossover

Traditional one point crossover (1PTX) and uniform crossover (UX) are used to de-
sign a set of modified crossover operators. Boundary based crossover operators are
applied on the classifiers defined at a hierarchy level. For example, 1PTX_N works at
the N-level and 1PTX is applied as if the set of genes forming a nurse classifier is itself
a gene. Hence, 6 different types of crossover operators are implemented: 1PTX (X1),
UX (X2), 1PTX_D (X3), UX_D (X4), 1PTX_N (X7), and UX_N (X8).

Less disruptive and smart crossovers can be created to operate in two steps:
− Select one of the classifiers based on a strategy
− Apply crossover only within that classifier
As a result , four more crossover operators are implemented, utilizing tournament se-

lection strategy with a tour size of two. A classifier is selected by comparing the total
number of violations in each classifier at a level. 1PTX or UX is used on the selected
classifier: 1PTX_SD (X5), UX_SD (X6), 1PTX_SN (X9), UX_SN (X10).

Additionally, highly disruptive crossover operators are created, applying crossover
on all classifiers at a level, one by one. 1PTX_AD (X11) applies 1PTX on all depart-
ments, while 1PTX_AN (X12) applies 1PTX on all nurses. More crossover techniques
can be generated allowing different crossovers to be operational at each classifier in
the same level. For example, while 1PTX can be applied on the first and fourth nurse
schedules, UX can be applied on the second and third nurse schedules, assuming four
nurses and a single department. Ultimately, this type of strategies might require an
adaptive method to decide which crossover to apply.

3.6 Hill Climbing

Timetabling problems are also formulated as multi-criteria optimization problems. This
formulation would be very useful, especially in the existence of different types of soft
constraints. Several solutions might be obtained having comparable qualities. Obvi-
ously, while attempting to reduce the violations due to a constraint, overall quality of a
suggested solution might worsen. Applying a hill climbing method as a part of a hy-
brid algorithm is computationally expensive in timetabling problems . After each step is
applied, the new configuration has to be evaluated in order to determine whether an
improvement is provided or not. Yet, if the quality of solution increases, a hill climbing
approach might be preferred. A violation directed hierarchical hill climbing method,
denoted as VDHC is proposed as a part of a Memetic Algorithm for solving time-

tabling problems. Hill climbing is applied after mutation. VDHC provides cooperation
of a set of hill climbers.

4 Self Adaptive Violation Directed Hierarchical Hill Climbing

VDHC represents a self adaptive approach which requires iterative application of a hill
climbing method for a selected type of constraint as shown in Fig. 2. First, hierarchy
levels to be used in VDHC are determined with an uppermost level chosen as a starting
level to operate on. VDHC stays at a level as long as current candidate solution im-
proves. It applies a selected hill climbing method, evaluating violations due to each
constraint type, to a selected classifier at a level. If no improvement is confirmed, then
VDHC reduces the area of concern to classifiers at one level down in the hierarchy.
Hence, hierarchy level changes and the same steps of the algorithm repeat. VDHC
terminates whenever a maximum number of steps is exceeded. Violation based selec-
tion methods are suggested.

Fig. 2. Pseudo-code of the VDHC approach

4.1 VDHC for Nurse Rostering

Three hierarchy levels are marked: H-level, D-level and N-level. As a classifier and
constraint selection method a tournament selection is used. At the H-level classifier
selection method always returns the whole chromosome. At the D-level, classifier
selection method computes the violation contribution of each department to the over-
all fitness and selects one of them using tournament. Similarly, at the N-level, classifier
selection method computes the violation contribution of each nurse to the overall
fitness and selects one of them. In order to select a classifier from the N-level, a de-
partment has to be determined. Hence, D-level classifier selection is done first. Then
the violations caused by each constraint type are distinguished. One of the constraint

1. Mark the hierarchy levels to be used
2. Set current level to the top hierarchy level
3. while (terminationCriteria-1 are not satisfied) do

a. while (terminationCriteria-2 are not satisfied)
do
i. Start the traversal from the top until to

the current level and select a classifier
ii. Select a constraint type

iii. Apply hill climbing for the selected con-
straint type within the selected classifier

b. end while
c. Lower the hierarchy level

types is selected, giving a higher chance to the hill climbing step of the related con-
straint type causing more violations. Selected hill climbing is applied to the predeter-
mined classifier to get rid of all the violations due to the related constraint type, pro-
ducing a new individual.

Seven constraint based hill climbing methods are developed corresponding to each
constraint type; SHC_HC, SNC_HC, SDC_HC, SSC_HC, ENC_HC, ODC_HC,
RDC_HC. PRCs are handled by fixing assignments of related nurse shifts; hence, this
constraint does not require application of a hill climbing method. SHC_HC checks
departmental rosters and locates shifts without a nurse assignment. Then a nurse in
the department is selected randomly and assigned to that shift. SNC_HC checks
whether three consecutive shifts are night shifts or not. If they are, one of the shifts is
changed to a day shift or marked as off-duty. SDC_HC checks whether four consecu-
tive shifts are day shifts or not. If they are, one of the shifts is modified to a night shift
or marked as off-duty. SSCs are partially satisfied by the use of the representation. If a
candidate solution contains a successive two day pattern night shift-day shift,
SSC_HC modifies the second day shift as either a night shift or off-duty. ENC_HC
transforms a night shift assigned to a nurse with rank 2 to a day shift or off-duty.
ODC_HC modifies required number of off-duty assignments to either a day or a night
shift. RDC_HC attempts to realize nurse preferences. All choices and modifications in
each hill climbing method are carried out randomly. In the tests the maximum number of
hill climbing steps is a factor of chromosome length.

5 Experiments

A random nurse rostering problem instance generator (RNR) is implemented. 9 problem
instances, produced by RNR, and a real data obtained from Memorial Hospital, labeled
as rnd#id and mhtr, respectively, are used in the experiments. Characteristics of the
data set are summarized in Table 1. All runs are repeated 50 times. Pentium IV 2 GHz.
machines with 256 MB RAM are used. Experiments are performed in three stages . In
the first stage crossover operators are compared using rnd1-6 data. Operators are
compared based on their ranks considering the number of violations of best achieved
solutions averaged over runs. In the second stage, mutation operators are tested with
the top crossover operator on the same data. In the final stage, all the data set is tested
using the best MA. Experimental data can be reached at
http://cse.yeditepe.edu.tr/~eozcan/TTML.

Population is initialized randomly, and its size is a factor of the chromosome length.
As a mate selection method linear ranking strategy is preferred, giving four times
higher chance for the best individual than the worst one to be selected. All the runs
are terminated whenever a fitness value of 0 is achieved, or whenever a maximum num-
ber of generations is exceeded. It is known that an optimal schedule is possible for the
data used in the experiments. Hence, soft and hard constraints are not distinguished.
Weight of each penalty is set to 1. Define success rate (s.r.) indicate the proportion of
the successful runs yielding optimal solutions. As a replacement strategy, trans-

generational MA (TGMA) with weak elitism is preferred, based on our previous ex-
perience ([4], [25], [26], [28]). Two best individuals are inherited to the next generation
and the rest of them are obtained from the offspring pool.

Table 1. Characteristics of the data set used in the experiments. Number of departments and
nurses are denoted as ndep and nnur, respectively. Percentage of nurses from each rank and
average number of off-duty preferences of each nurse is denoted as pnr and avrpr, respectively

label mhtr rnd1 rnd2 rnd3 rnd4 rnd5 rnd6 rnd7 rnd8 rnd9
ndep 4 3 3 3 4 4 4 6 8 6
nnur 20 21 21 21 21 21 21 34 51 66
pnr0 0.33 0.42 0.18 0.28 0.14 0.19 0.13 0.18 0.19 0.36
pnr1 0.48 0.32 0.51 0.42 0.47 0.46 0.47 0.47 0.47 0.35
pnr2 0.19 0.28 0.32 0.32 0.42 0.37 0.42 0.38 0.35 0.30
avrpr 0.55 1.95 0.67 2.19 1.67 2.33 0.95 1.97 1.88 2.09

In the first stage of experiments M0 is fixed as a mutation operator. According to

the results, 1PTX performs better than the rest of the crossover operators (Table 2).
UX is the second best. All crossover operators, other than 1PTX and UX fail to find
the optimal solution. Considering boundary based and smart crossover methods, the
ones operating on N-level perform better. X3 and X4 are the worst crossover methods.
X10, X6, X11, X12 and X9 are the top five crossovers in the given order following the
traditional operators. Whenever these top crossover operators are used, on average
less than 21 violations are left unresolved.

Table 2. Results of the first stage experiments, indicating the rank of each crossover operator

Label X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

rnd1 1 2 11 12 9 4 10 8 7 3 6 5
rnd2 1 1 10 11 8 3 9 7 5 2 4 6
rnd3 1 1 10 11 8 3 9 7 6 2 5 4
rnd4 1 2 11 12 9 4 10 8 7 3 5 6
rnd5 1 2 11 12 9 4 10 6 8 3 5 7
rnd6 1 2 11 12 9 4 10 6 7 3 5 8

In the second stage experiments 1PTX is fixed as a crossover operator. According
to the experimental results, performance of operators are from the best towards the
worst is M0, M1, M2, M4 and M3 (Table 3). M0 and M1 perform approximately the
same, while M3 is the worst mutation operator, failing to find the optimal solution in
most of the cases. In the last generations, a single violation is left to be resolved for all
mutations, except M3. Violation directed smart mutation operators turn out to be more
effective than the crossover operators.

TGMA performs best whenever M0 and X1 are used. TGMA reduces the number of
violations rapidly in few hundreds of generations on average as established in Table 4.

A run of the best MA takes less than 3 minutes on average for all data. Real data turns
out to be the hardest problem instance of all. Genetic Algorithm version of the best
MA without VDHC is applied to the real data. MA outperforms the GA version.

Table 3. Results of the 2nd stage experiments, indicating s.r. of each mutation operator

Label M0 M1 M2 M3 M4

rnd1 0.99 0.96 0.56 0.00 0.48

rnd2 1.00 1.00 1.00 0.08 0.90

rnd3 1.00 1.00 1.00 0.00 0.84

rnd4 0.98 0.98 0.66 0.00 0.52

rnd5 1.00 1.00 0.94 0.00 0.72

rnd6 1.00 1.00 0.98 0.00 0.86

avr 0.99 0.96 0.56 0.00 0.48

Table 4. Results obtained using MA with the best set of operators on the data set

Label s.r. Avr.Gen./Run std. Avr.Eval./Gen. std.

mhtr 0.72 1,736 2,881 1,176 1,178
rnd1 0.99 219 660 1,293 1,293
rnd2 1.00 42 44 1,333 1,333
rnd3 1.00 51 53 1,302 1,302
rnd4 0.98 265 787 1,306 1,306
rnd5 1.00 148 301 1,299 1,299
rnd6 1.00 61 62 1,330 1,330
rnd7 0.99 181 857 2,092 2,092
rnd8 1.00 96 99 3,155 3,155
rnd9 1.00 145 167 3,928 3,928

6 Conclusions

Timetabling is an interdisciplinary research area, containing many subclasses, such as,
nurse rostering, course timetabling, examination timetabling. As an attempt to propose
a general solver for timetabling problems ([4], [25], [26], [27]) a nurse rostering problem
is investigated. A real world data obtained from Memorial Hospital and randomly gen-
erated data set are used as a test bed. Various mutation and crossover operators, in-
cluding boundary oriented and smart genetic operators are presented to be used in
timetabling problems. Several of these operators and proposed self adaptive violation
directed hierarchical hill climbing operator (VDHC) are experimented within Memetic
Algorithms. These operators can be used in other approaches as well.

VDHC and suggested operators exploit the underlying structure of problem in-
stances . VDHC boosts the performance of the GA for nurse rostering as expected.
Using a hierarchy of levels provides means to correct conflicts once and for all, or for a

group of events, or for a single event. Violation directed operators; especially smart
mutations achieve promising performances.

Proposed framework enables researchers to design a variety of operators. Such op-
erators are already used by some researchers. For example, the shake operators sug-
gested in [10] are a subset of genetic operators described for the MAs in Section 3.
Other than static arrangement of data, dynamic arrangement is also possible. For ex-
ample, considering a nurse rostering problem, shift assignments of nurses in the same
period forms a dynamic arrangement. List of nurses might change from one candidate
solution to another. More operators can be designed to work on these dynamic ar-
rangements in a similar manner as discussed for static arrangements. Combining these
operators underneath a hyper-heuristic might yield good solutions. As a future work,
different combinations of hill climbing methods and genetic operators will be investi-
gated. MA with VDHC will be compared to a multimeme strategy [22].

Acknowledgement

Author thanks Özgür Kelemci for modifying GAlib and obtaining the real data.

References

1. Ahmad, J., Yamamoto, M., and Ohuchi, A.: Evolutionary Algorithms for Nurse Scheduling

Problem. Proc. of IEEE Congress on Evolutionary Computation (2000) 196-203.
2. Aickelin, U., and Bull, L.: On the Application of Hierarchical Coevolutionary Genetic Algo-

rithms: Recombination and Evaluation Partners. JASS, 4(2) (2003) 2-17
3. Aickelin, U., and Dowsland, K.: An Indirect Genetic Algorithm for a Nurse Scheduling

Problem. Computers & Operations Research, 31(5) (2003) 761-778
4. Alkan, A., and Ozcan, E.: Memetic Algorithms for Timetabling. Proc. of IEEE Congress on

Evolutionary Computation (2003) 1796-1802
5. Berrada, I., Ferland, J., and Michelon, P.: A Multi-Objective Approach to Nurse Scheduling

eith both Hard and Soft Constraints. Socio-Economic Planning Science. vl. 30(1996)183-193
6. Burke, E.K., De Causmaecker, P., and Vanden Berghe, G.: A Hybrid Tabu Search Algorithm

For the Nurse Rostering Problem, Proc. of the Second Asia-Pasific Conference on Simulated
Evolution and Learning, vol. 1, Applications IV (1998) 187-194

7. Burke, E.K., De Causmaecker, P., and Vanden Berghe, G., Van Landeghem, H.: The State of
the Art of Nurse Rostering, Journal of Scheduling, 7 (2004) 441-499

8. Burke, E.K., Cowling, P.I., De Causmaecker, P., and Vanden Berghe, G.: A Memetic Ap-
proach to the Nurse Rostering Problem, Applied Intelligence, vol 15 (2001) 199-214

9. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S.: Handbook of
metaheuristics, chapter 16, Hyper-heuristics: an emerging direction in modern search tech-
nology, Kluwer Academic Publisher (2003) 457-474

10. Burke, E.K., De Causmaecker, P., Petrovic, S., Vanden Berghe G.: Variable Neighbourhood
Search for Nurse Rostering Problems, in Metaheuristics: Computer Decision-Making (ed-
ited by M.G.C. Resende and J. P. de Sousa), Chapter 7, Kluwer (2003) 153-172

11. Burke, E., and Soubeiga, E.: Scheduling Nurses Using a Tabu-Search Hyperheuristic, Proc.
of the 1st MISTA, vol. 1 (2003) 197-218

12. Chun, A.H.W., Chan, S.H.C., Lam, G.P.S., Tsang, F.M.F., Wong, J., and Yeung, D.W.M.:
Nurse Rostering at the Hospital Authority of Hong Kong, Proc. of 17th National Conference
on AAAI and 12th Conference on IAAI (2000) 951-956

13. Downsland, K.: Nurse Scheduling with Tabu Search and Strategic Oscillation, European
Journal of Operations Research. Vol. 106, 1198 (1998) 393-407

14. Duenas, A., Mort, N., Reeves, C., and Petrovic, D.: Handling Preferences Using Genetic
Algorithms for the Nurse Scheduling Problem, Proc.of the 1st MISTA, vol.1(2003)180-195

15. Even, S., Itai, A., and Shamir, A.: On the Complexity of Timetable and Multicommodity
Flow Problems, SIAM J. Comput., 5(4) (1976) 691-703

16. Fang, H.L. Genetic Algorithms in Timetabling and Scheduling, PhD thesis, Department of
Artificial Intelligence, University of Edinburgh, Scotland (1994)

17. Gendrau, M., Buzon, I., Lapierre, S., Sadr, J., and Soriano, P. A Tabu Search Heuristic to
Generate Shift Schedules, Proc. of the 1st MISTA, vol.2 (2003) 526-528

18. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning, Addi-
son-Wesley, Reading (MA) (1989)

19. Holland, J. H. Adaptation in Natural and Artificial Systems, Univ. Mich. Press (1975)
20. Han, L., and Kendall, G. Application of Genetic Algorithm Based Hyper-heuristic to Per-

sonnel Scheduling Problems, Proc. of the 1st MISTA, vol.2 (2003) 528-537
21. Kawanaka, H., Yamamoto, K., Yoshikawa, T., Shinogi, T., and Tsuruoka, S. Genetic Algo-

rithms with the Constraints for Nurse Scheduling Problem, Proc. of IEEE Congress on Evo-
lutionary Computation (CEC), Seoul (2001) 1123-1130

22. Krasnogor, N. Studies on the Theory and Design Space of Memetic Algorithms, PhD The-
sis, University of the West of England, Bristol, United Kingdom (2002)

23. Li, H., Lim, A., and Rodrigues, B.: A Hybrid AI Approach for Nurse Rostering Problem,
Proc. of the 2003 ACM Symposium on Applied Computing (2003) 730-735

24. Moscato, P., and Norman, M. G.: A Memetic Approach for the Traveling Salesman Prob-
lem Implementation of a Computational Ecology for Combinatorial Optimization on Mes-
sage-Passing Systems, Parallel Computing and Transputer Applications (1992) 177-186

25. Ozcan, E., and Alkan, A.: Solving Time Tabling Problem using Genetic Algorithms, Pro-
ceedings of the 4th International Conference on the Practice and Theory of Automated
Timetabling (2002) 104-107

26. Ozcan, E., Ersoy, E.: Final Exam Scheduler - FES, 2005 IEEE CEC, (2005) to appear
27. Ozcan, E.: Towards an XML based standard for Timetabling Problems: TTML, Multidis-

ciplinary Scheduling: Theory and Applications, Springer Verlag (2005) 163 (24)
28. Ozcan, E., and Onbasioglu E.: Genetic Algorithms for Parallel Code Optimization, Proc. of

2004 IEEE Congress on Evolutionary Computation, vol. 2 (2004) 1775-1781
29. Radcliffe, N. J., and Surry, P.D.: Formal memetic algorithms, Evolutionary Computing:

AISB Workshop, LNCS, vol. 865, Springer Verlag (1994) 1-16
30. Ross, P., Corne, D., and Fang, H-L.: Improving Evolutionary Timetabling with Delta

Evaluation and Directed Mutation, Proc. of PPSN III (1994) 556-565
31. Ross, P., Corne, D., and Fang, H-L.: Fast Practical Evolutionary Timetabling, Proc. of AISB

Workshop on Evolutionary Computation (1994) 250-263
32. De Werra, D.: An introduction to timetabling, European Journal of Operations Research,

19:151-162 (1985)

