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Abstract—In this paper, we combine graph coloring heuristics,
namely largest degree and saturation degree with the concept of a
heuristic modifier under the framework of squeaky wheel
optimization for solving a set of examination timetabling
problems. Both heuristics interact intelligently and adaptively
determine the ordering of examinations to be processed during
each of iteration. A variety of approaches based on different
heuristics and their combinations are investigated. Experimental
results on a set of benchmark problems show that the proposed
approaches can produce high quality solutions comparable to the
other constructive methods. For one problem instance, the best
results based on constructive heuristics provided in the literature
are improved by one of the proposed methods. We conclude that
our approach issimple, yet effective.
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l. INTRODUCTION

Examination timetabling is an NP hard real world problem
[1]. The complexity of the problem arises due to severa
reasons e.g. the introduction of flexible course structures,
increasing student enrolments etc... Further research work is
required to enhance the quality of the timetable in such a
manner as to satisfy both the institutional and personal
preferences. Research in the area of Artificial Intelligence [2]
and Operation Research [3] have been implemented using
various approaches in order to solve this difficult timetabling
problem with the aim to find a more generic and effective
approaches. Generaly, the goal in timetabling is to find a
solution that optimizes some desired objective function based
on a set of given constraints. There are two types of constraints
i.e. hard congtraints and soft constraints. In creating a feasible
solution, the hard constraints must not be disobeyed or
‘broken’ in any circumstances. The soft constraints, on the
other hand, can be broken and the extents of these breaches
determine the quality of the obtained solutions.

A number of research papers formulate examination
timetabling as a graph coloring problem [3] where the vertices
represent the examination, the edges represent the conflict
(students taking both corresponding examinations at one time)
occurring between two examinations and the colors for the
vertices represent the time dots for the examination. The
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incorporation of graph theory is known as one of the earliest
approach applied in examination timetabling [4]. In general,
using this approach a timetable is constructed by using some
sequential strategies which attempts to place the examinations
into time-dots with the aim of providing a feasible solution.
The placement of the examinations is usually related to the
difficulty of examinations to be scheduled, where the most
difficult examination scheduled the first. Reference [5] list the
most commonly used sequential strategies for examination
timetabling, i.e., largest degree, largest weighted degree, color
degree and saturation degree.

Much research in the area of timetabling has utilized meta-
heuristic approaches with great success. These methods begin
with one or more initial solutions and employ search strategies
for the purpose of improvement [6]. Various search strategies
are designed to escape from local minima e.g. tabu search,
simulated annealing, genetic algorithm and ant colony
optimization. Hybrid, meta-heuristics approaches have shown
to be particularly effective. An overview of meta-heuristic
approaches can befound in [7], [6] and [3].

Other methods, based on loca search technique have been
introduced recently. These methods try to escape from local
optima by navigating the search space and exploring the
neighborhood structure that is different from that deployed by
meta-heuristics. Several studies have been implemented using
this idea i.e. large neighborhood search [8], variable
neighborhood search [9] and iterated local search [10]. One
disadvantage of the approaches described isthat there is often a
reliance on parameter tuning in the production of solutions in
particular circumstances. This has motivated the introduction
of hyper-heuristics [11], memetic agorithms using hyper-
heuristics to choose from multiple hill climbers [12], case-
based reasoning [13], fuzzy approaches [14] and constraint-
based reasoning [15] within the timetabling arena.

The early approach of sequential heuristics during the
construction phase continues to have great success [16]. These
sequential heurigtics are proven to be very effective when a
backtracking procedure is employed [17]. The backtracking
procedure is useful in order to ensure that solutions are
feasble. Often some aready placed examinations are
unscheduled in order to place more difficult examinations.



Various heuristics are implemented as part of backtracking
procedures [3]. The current examination is then fixed to the
available time-dot while the recent unscheduled examination
will be scheduled in other available time-slot. It is found that
this procedure can reduce the length of the examination session
by haf compared to sequentia techniques without
backtracking. In particular, it has been shown that saturation
degree is a dynamic ordering and it can produce a good
sequence in ordering the examinations.

Reference [18] introduced fuzzy methodologies for
examination timetabling by combining two heuristics to order
the examinations based on the difficulty of scheduling them.
Three heuristics were used in the experiment i.e. largest degree,
saturation degree and largest enrolment with three
combinations of two heuristics. A fuzzy approach is used to
represent the knowledge from the heuristics (named as input
variables), evaluate them and construct an examination weight
as an input variable. The examinations are then ordered based
on the examination weight values and are scheduled in the
timetable without violating any of the hard constraints. The
‘bumped back’ strategy is employed only if the examination
cannot be scheduled in the timetable. This approach has shown
to produce a competitive result when tested on the Toronto data
sets even though it doesn’t employ any improvement method in
the algorithm. The work shows that tuning procedure is needed
for different combination of heuristics in order to obtain good
result.

In the recent application of examination timetabling,
interest in adaptive approaches has prompted development of
more general techniques that would alow finding the best
initial solution without necessitating a backtracking strategy. In
[19], the adaptive heuristic orderings technique can adapt to
any given problem by adding a heuristic modifier to the basic
heurigtic technique (e.g. largest degree first). It works by
promoting difficult examinations to be schedule first at each of
iteration based on its order. Different consideration of hard
constraints and soft constraints are taken into account in order
to test the application of heuristic modifier. This technique has
introduced a good initidlization strategy for examination
timetabling problems. The results have shown that adaptive
approach could improve the quality of the obtained solution
compared to basic heuristic approach alone and it is faster and
easier to implement. They have proved that this method is
capable of turning poor initial ordering into a good one and at
the same time supplying more independence on the choice of
heurigtic ordering. In other recent study, [20] has also
implemented adaptive approach to examination timetabling by
hybridizing the graph heuristics.

In this study, we investigate the use of adaptive strategies
that order (prioritize) the examinations to be scheduled within a
congtructive approach. These approaches differ from the
previously proposed approaches where we have incorporated a
strategy to choose examination differently from its original
ordering. Additionally, we have incorporated a stochastic
component into the process of assigning a sel ected examination
to atime-dot. In Section 2, we present the proposed intelligent
heuristics algorithm which is inspired from the Squeaky wheel
optimization [21]. Section 3 describes the experimental data
and discusses the results. Finaly, the conclusion is provided in

Section 4. Adaptive Heurigtics Ordering the Examinations
Based on Priorities

The adaptive approaches we propose are based on the
concept of squeaky wheel optimization (SWO) [21]. A squeaky
wheel optimization is an iterative greedy approach that cycles
around three successive processes:. Constructer, Analyzer and
Prioritizer. A candidate solution to a problem at hand is
assumed to consist of elements. Hence, a solution is
congtructed element by element using an initial priority
ordering of the elements at each step. For example, in the
context of examination timetabling, an examination is an
element. Using graph coloring heuristics, an initial ordering
can be obtained for the examinations. Once the constructor
makes an assignment to an element, it goes under an analysis
process to see whether such an assignment generates a problem
or not. For example, an available time-slot might not be found
for a given examination. If a problem occurs, a strategy is used
to increase the priority of the element so that it would be ahead
of the other elements with lower priorities in the next iteration.
In a way, modifying the priorities might change the previous
ordering of elements causing construction of a new candidate
solution in the next iteration. The iterations continue until
certain criteriaare met. Finally, the best solution found so far is
returned.

e Congructor. The constructor generates a solution
iteratively by going over each unscheduled
examination one by one in the provided order. This
order is based on a graph coloring heuristic. At each
step, a given unscheduled examination is assigned to a
time-dot with the least penalty. Eventualy, it is
posshble that some of the examinations will be still
unscheduled at the end.

e Analyzer. A certain value is added to the difficulty for
the unscheduled examination in order to show that the
examination is more difficult to schedule than
expected. This value is alowed to increase at each of
iteration, if the examination cannot be scheduled.

e Prioritizer. The new order of examinations is obtained
based on the difficulty values updated by the Analyzer.

Our approaches adapt the examination orderings based on
two heurigtics in order to schedule them. Each examination has
a priority determined by the chosen graph coloring heuristic.
Such a value can be considered as a default difficulty level of
scheduling for a given examination. If an assignment cannot be
found for a certain examination, then it can be considered to be
more difficult to schedule then expected. This unscheduled
examination is given more priority in the next iteration. Its
difficulty level is modified using a heuristic value added on top
of the value provided by the graph coloring heuristic. This
adaptive approach requires no backtracking strategy, if there
are unscheduled examinations.

We have considered only hard constraint to this problem
i.e. to avoid any conflicts among examinations. A common
objective function for examination timetabling is the proximity
cost penalty function which describes the average penalty per
student. It was introduced by [22] in 1996 in conjunction with
the first acquaintance of benchmark data sets for examination



timetabling problem. This objective function is used in this
study to measure the quality of the obtained solution. Formally,
this cost function represents the spread of students in
examination schedule and it has been formulated as the
mini mization of:

N-1 N
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M

where N is the number of examinations, ¢; is the number of
students entitled for both examination i and j, t; is the assigned
time-dot for examination i, wy; - 4 iS the weight whenever a
student who is entitled for two examinations are scheduled |t; -
tj| apart and M is the number of students. The penalty weight,
W4 iscaculated as2° 9 "lwhere, |t - ti| € {1,2, 3,4, 5}.

This study extends the previous work provided in [19]. We
used the idea of difficulty and heuristic modifier within the
Analyzer.

difficulty;(t) = heuristici(t) + heurmodi(t) )

The heurmod;(t) for examinations i at iteration t gives
priority to examination if only there exist unscheduled
examinations and is added to chosen heuristici(t) at each of
iteration. The difficulty(t) is a discrete variable and will
estimate the priority of the examination after completing the
iteration.

(1)

A. Graph Coloring Heuristics
In this study, we used two types of heuristics ordering:

e Largest Degree. The ordering is based on the largest
number of conflicting examinations and the
heuristici(t) holds the number of conflicting
examinations for examination i. The difficulty;(t) will
be increased at each of iteration t if the examinations
are unscheduled. At this stage, the heuristic(t) remains
unchanged and the heurmod(t) will increased during
the iteration. Priority is given to the highest value of
difficulty.

e Saturation Degree. The ordering is based on the
number of timeslots in conflict where the
examinations with the fewest conflicts will be
scheduled first. Specifically, once we have done an
assignment, if the next examinations are conflicting
with the current examination and the assigned
examinations, so the number of dots for the next
examinations will be reduced by one at each of
assignment. We have initialized the difficulty;(t) for
this heuristic with 1. This value will keep increasing if
examination cannot be scheduled during the iteration
until the maximum number of time-dot. The higher
priority of choosing the examination is given to the
higher value of difficulty.

B. Graph Coloring Heuristics

Different heuristic modifiers are used in order to stress the
priority to the difficult examinations. Equation (3), (4), (5) and

(6) show the description of each characteristic, where c is a
constant and give different value to the difficulty.

e Custom (C). Thisisaconventional heuristic. We made
the heuristic as an adaptive approach and vary the
choice of examinations. If there are severa
examinations to choose with the same heuristic value,
we will choose the examination randomly.

heurmod,(t) = heurmodi (t-1), heurmod,(0)= 0 3

e Additive (AD). The modifier is incrementing by 1 at
each of iteration if unscheduled examination occurred.
This approach does not make much improvement to
the difficulty if the heuristic value is small and it takes
longer time or need more iteration to show that the
examination is very difficult. In other way, this
approach has a modest effect on the problem.

heurmod;(t) = heurmodi(t-1) + 1, heurmod;(0) = 0 4

e  Multiplicative (MP). We have multiplied the modifier
by 2 to show the higher priority for the problematic
examinations.

heurmod;(t) = heurmod(t-1) + ¢, heurmod;(0) =0, c =2 (5)

e Exponential (EX). This modifier will upgrade
significantly the priority if the examination is difficult
since the priority is increased by 2n, where n is the
total number of times the examinations cannot be
scheduled.

heurmod;(t) = ¢- heurmod(t-1), heurmod;(0) =1,c=2 (6)

C. Shuffling the Ordering of Examinations

In order to choose the examination to be scheduled, we
have ordered the examinations based on the difficulty
(priority). Previous results indicate that the measures used for
the difficulty are approximate measures. Making use of such
measures in our approaches, the ordering that we generate
might not be indicating the exact ordering that should be.
Instead of using the ordering of examinations directly, they can
be shuffled and an unscheduled examination can be chosen
based on a shuffling strategy.

As a novel drategy, we have partitioned al ordered
examinations into fixed size of blocks and shuffled al
examinations within each block randomly before making an
assignment. This strategy uses a block size parameter. As an
example, if the block size is fixed as 2, then all examinations
are sorted first with respect to their difficulty of scheduling
using the chosen measure(s) and each 2 consecutive
examinations are either swapped or remain in the same position
based on a coin flip. The examinations are scheduled based on
this new ordering. The technique has also been tested with a
block size of 0, indicating that the measure(s) used directly
determines the difficulty of scheduling an examination for
comparison purposes. The experiments are performed using
different block sizes in order to observe the affect of this
parameter on the performance of the approach. This approach
will be referred to as Block.



For the saturation degree graph colouring heurigtic, it is not
possble to rearrange the examinations using the block
approach due to its dynamic nature. In a previous study [23], it
is suggested that a random examination can be chosen from a
fixed number of top examinations. Notice that, this strategy can
be used with both saturation and largest degree heuristics. An
examination is chosen randomly from a given number of top
examinations, referred to as top window size. After the selected
examination is scheduled, the difficulties are updated and no
rearrangement takes place. For example, if the top window size
is 2, one examination to be scheduled is chosen randomly from
the first 2 unscheduled examinations based on their difficulties.
The difference between this strategy from the previous one is
that in this strategy, there is a chance that (even though thisis a
dlim chance) the most difficult examination might be scheduled
at last. This strategy will be referred to as Top Window. We
have experimented with Block and Top Window with different
sizesin{none, 2, 3,4,5,6, 7,8, 9, 10}.

D. Time-dot Choice

After an unscheduled examination is chosen, it is assigned
to the most suitable time-slot. This assignment decision is
based on the least penalty value obtained considering all time-
dots. In the previous studies, it seems that the first time-slot
that generates the least pendlty is chosen for assignment. It is
possible that there might be several time-dlots that generate the
same least penalty value; hence, we have included an element
of randomness in making this choice. In such a situation, we
introduce the possibility of an examination to be assigned to a
different time-slot during another iteration even though the
order of examinations does not change.

Il.  EXPERIMENTS

Pentium 1V 1.86 GHz. Windows machines having 1.97 Gb
memories were used during the experiments. All runs were
repeated fifty times to generate solution for each combination
of graph coloring heuristic, heuristic modifier, shuffling
strategy and the relevant parameter due to the stochastic nature
of the proposed approaches. A run terminated whenever the
maximum number of iterations was reached. Two different
values, {2000, 4000} were used for the maximum number of
iterations during the experiments.

A. Experimental Data

The characteristics of the experimental data sets are
summarized in Table|. It was introduced by [22] from various
universities with different characteristics and various density of
examinations conflict. These benchmarks are very well known
in the timetabling community. Unfortunately, there are
different versions of these data sets. We adapt the notation used
in [7] to specify the data sets used during our experiments.

B. Experimental Results

The experimental results are provided in Table |1 for the
largest degree and the saturation degree graph colouring
heuristics using different combination of algorithmic choices,
respectively. The tables report the best penalty val ues obtained
out of 50 runs for two graph colouring heuristics (bestLD and

bestSD) for each combination and for each problem instance.
The best result for each problem instances is highlighted in
bold font.

TABLEI. THE CHARACTERISTICS OF THE EXPERIMENTAL DATA SET
Problem N'umber of Nurr_]ber_ of Number of Confl'ict
time-slots | examinations Students Density
car92 | 32 543 18419 0.14
car9l | 35 682 16 925 0.13
ears33 | 24 190 1125 0.27
hec92 | 18 81 2823 0.42
kfu93 20 461 5349 0.06
1se91 18 381 2726 0.06
rye92 23 486 11483 0.08
sta83 | 13 139 611 0.14
tre92 23 261 4360 0.18
utag2 | 35 622 21 266 0.13
ute92 10 184 2750 0.08
yor83 | 21 181 941 0.29
TABLE II. COMPARISON FOR DIFFERENT HEURISTICSWITH DIFFERENT
COMBINATION OF ALGORITHMIC CHOICES
Combination of Algorithmic Choices
{number of iterations, heuristic type, modifier type,
Problem Block/Top Window size}
bestLD bestSD
car92 | 4.56 {4000, LD, EX, 3} 4.38 {2000, SD, EX, none}
car9l | 5.36 {4000, LD, EX, 9} 5.08 {4000, SD, EX, 5}
ears33 | 40.00 {4000, LD, MP, 3} 38.44 {4000, SD, MP, 2}
hec92 | 11.84 {2000, LD, MP, 6} 11.61 {2000, SD, C, 5}
kfu93 15.54 {4000, LD, EX, none} 14.67 {4000, SD, EX, 2}

Ise91 11.78 {4000, LD, EX, 3}
rye92 9.69 {4000, LD, EX, 4}
staB3 | 157.85 {4000, LD, EX, 9}
tre92 8.88{4000, LD, EX, 2}

11.69 {2000, SD, MP, 6}
9.49 {4000, SD, AD, 5}
157.72 {4000, SD, C, none}
8.78 {4000, SD, C, 9}

utad? | 3.66 {4000, LD, EX, 2} 3.55 {4000, SD, EX, 3}
ute92 26.82 {4000, LD, EX, 7} 26.63 {2000, SD, EX, 7}
yor83 | 41,59 {4000, LD, EX, 6} 40.45 {4000, SD, C, 5}

A comparison in Table Il shows that a saturation degree
based approaches provides a better performance as compared
to the largest degree based approaches in all problem
instances. In considering number for iterations, saturation
degree with 4000 iterations has performed better than the 2000
iterations by producing eight best results out of twelve. Thisis
of course by giving more processing time it will give more
chance for the algorithm to search and find good solution.

From Table Il, the best results for saturation degree are
mostly obtained by using the exponential modifier with five
best results and from this result it shows that by upgrading the
modifier in large amount of values it can significantly give
more priority to the difficult examinations and at the same
time give a better new ordering for examinations. It is then
followed by custom modifier approach with four best results
where it does not make use of any heuristic modifier. The
difference of custom approach from previous implementations
is that, we have till utilised the idea of assigning a random
time-dot in case of equal quality possibilities for a given
unscheduled examination. The multiplicative and additive
modifier has obtained two and one respectively, for saturation




degree. The top window size affects the performance of the
approach.

In considering largest degree graph colouring heuristic,
Table Il shows that the exponential heuristic modifier is the
best choice in combination with the largest degree graph
colouring heuristic for changing the order of examinations
based on difficulty. The exponentia heuristic modifier
provided 10 best results for 12 problems, followed by the
multiplicative heuristic modifier with two best results. The
additive heuristic modifier has not delivered a good
performance since it makes small changes in updating the
difficulty value and longer time are needed to show big
changes to the examinations ordering. The block size choice
affects the performance. Considering the average penalty
values, the block size of 6 is the best, but this performance
variation is not significant. The conventional heuristic (with
no block size) in this experiment has shown comparable result
too. It has produced one best result for largest degree using
exponential approach.

TABLE III. COMPARISON FOR DIFFERENT APPROACHES FOR (A)
CONSTRUCTIVE HEURISTICS AND (B) OTHER IMPROVEMENT APPROACHES
Problem [19] [22] [24] [18] bestLD | bestSD
car92 | 4.32 6.2 453 454 4.56 4.38
car9l | 4.97 71 5.36 529 5.36 5.08
ears33 | 36.16 36.4 37.92 37.02 40.00 38.44
hec92 | 11.61 10.8 12.25 11.78 11.84 11.61
kfu93 15.02 14.0 15.2 15.8 15.54 14.67
1se91 10.96 105 11.33 12.09 11.78 11.69
rye92 - 7.3 - 10.38 9.69 9.49
sta83 | 161.9 1615 158.2 160.4 15785 | 157.72
tre92 8.38 9.6 8.92 8.67 8.88 8.78
utad? | 3.36 35 3.88 357 3.66 355
ute9?2 27.41 25.8 28.01 28.07 26.82 26.63
yor83 1 40.77 417 41.37 39.8 41.59 40.45
(A)

Problem [25] [26] [13] [10]

car92 | 45 52 4.6 6.0

car9l | 3.93 4.2 4.0 6.6

ears83 | 337 34.2 328 29.3

hec92 | 10.83 10.2 10.0 9.2

kfuo3 13.82 14.2 13.0 138

Ise91 10.35 11.2 10.0 9.6

rye92 8.53 8.8 - 6.8

sta83 | 158.35 157.2 159.9 158.2

tre92 7.92 8.2 79 9.4

utag | 3.14 3.2 3.2 35

ute92 25.39 252 24.8 24.4

yor83 | 36.35 36.2 373 36.2

(B)
The bold entries indicate the best results for given approaches only, while the bold and italic ones
indicate the best results found so far for the given problem instance

As can be seen in Table I, increasing the block or top
window size does not seem to improve the performance much.
This might be because the arrangement of examinations in
bigger chunks reduces the effectiveness of the approach by
increasing the chance of a move towards a more random
ordering of examinations. As another approach using a graph
colouring heuristic can be considered to execute for different

parametric choices, i.e., for largest degree and saturation
degree using a number of block and top window sizes,
respectively. Since, the parametric choices in both cases is a
congtant factor (2 to 10), it does not affect the overall running
time.

Table 11 reports the best results obtained for each data set
in the literature using both constructive and improvement
approaches. A comparison to previously proposed constructive
approaches reveals that our constructive approach using the
saturation degree heuristic provides new best result for sta83.
For the rest of the problems, the results obtained are till
comparable. Except for ears83 |, the adaptive approach using
saturation degree performs better than at least one approach
for each problem instance. Our approach generates better
results as compared to the approach presented in [24] and [18]
amost for all problem instances, except for ears33 |I.
Reference [18] also performs dlightly better than our approach
for car91 | and yor83 I. One of the best previously approaches
is described in [22] which generates a better performance in 5
out of 12 problems. A comparison to the constructive
approach proposed in [19] shows that ours generates better
results for kfu93, sta83 | and ute92 and a tie for hec92 |.
Additionally, their approach can not even generate a feasible
solution for rye92, while we obtain a good solution. The best
results obtained using improvement approaches can not be
improved further in any case but we have obtained one best
result for car92 | within the improvement approaches. For
only sta83 1, the proposed approaches generate a comparable
result.

I1l.  CONCLUSION

In this paper we investigate the use of adaptive strategies
that order (prioritize) the examinations to be scheduled within a
constructive approach. These approaches differ from the
previously proposed approaches where we have incorporated a
strategy to choose examination differently from its original
ordering. In this study, we have also incorporated a stochastic
component into the process of assigning a selected examination
to a timedot. Our adaptive approaches can produce
comparable solutions to the other approaches. The difficulty
levels generated by combining a graph coloring heurigtic and a
heuristic modifier are used in ordering the examinations for the
timetabling process. We have observed that by increasing the
difficulty in certain ways, we can obtain good approximate
solutions. As a dynamic graph coloring heuristic, saturation
degree has produced most of the best results as compared to the
largest degree heuristic. In considering the appropriate heuristic
modifier, exponential approach is the best for largest degree
and saturation. The block and top window size approach in this
study have varied in certain ways since the incorporation of
stochastic element in our approach. We have identified that the
best block and top window size to use is nine and below. Still,
this approach is simple, very affective and requires less
computational time, hence it has potentia for practical use. In
future work, we intend studying the datasets introduced in
Track on of the 2nd International Timetabling Competition
[27]. This datasets represent real-life data instances with richer
problems and several new requirements and limitations that
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