
Hyper-heuristics for Performance Optimization of

Simultaneous Multithreaded Processors

İsa Ahmet Güney1, Gürhan Küçük1, Ender Özcan2

1Department of Computer Engineering, Yeditepe University,
Istanbul, Turkey

{iguney,gkucuk}@cse.yeditepe.edu.tr
2School of Computer Science, University of Nottingham, Jubilee

Campus, Nottingham, UK
ender.ozcan@nottingham.ac.uk

Abstract. In Simultaneous Multi-Threaded (SMT) processor datapaths, there
are many datapath resources that are shared by multiple threads. Currently,
there are a few heuristics that distribute these resources among threads for bet-
ter performance. A selection hyper-heuristic is a search method which mixes a
fixed set of heuristics to exploit their strengths while solving a given problem.
In this study, we propose learning selection hyper-heuristics for predicting,
choosing and running the best performing heuristic. Our initial test results show
that hyper-heuristics may improve the performance of the studied workloads by
around 2%, on the average. The peak performance improvement is observed to
be 41% over the best performing heuristic, and more than 15% over all heuris-
tics that are studied. Our best hyper-heuristic performs better than the state-of-
the art heuristics on almost 60% of the simulated workloads.

1 Introduction

Today, the Simultaneous Multi-Threaded (SMT) processors aim to increase the sys-
tem throughput by executing instructions from different threads in a single clock cy-
cle. These processors are widely utilized in both high-end (e.g. Intel core i7) and low-
end (e.g. Intel Atom) computers, and they try to satisfy the high system throughput
requirements in high-end machines and the efficient and effective utilization of sys-
tem resources in low-end machines, together. SMT processors are also utilized in
highly popular contemporary chip multi processors (e.g. Intel Xeon servers).

In SMT processors, there are many datapath resources (Issue Queue, Re-Order
Buffer, Load/Store Queue, Physical Register Files, Arithmetic Logic Units and cache
structures) that are shared by multiple running threads. In an uncontrolled environ-
ment, threads assume that all the shared datapath resources are solely dedicated to
themselves, and, inadvertently, they go into a race for stealing datapath resources
from each other. In such case, a single thread may take over the Issue Queue, pollute
the caches and fill the Physical Register Files by the instructions that are introduced
into the processor from a mispredicted path even though the branch misprediction rate

is known to be high. As a result, today, the throughput obtained from SMT processors
are much lower than the potential throughput that can be actually obtained.

There are various strategies to improve the efficiency of these processors. First,
there are fetch policies that try to regulate the stream of instructions that are intro-
duced to the pipeline. These techniques change the distribution of shared resources,
indirectly. Most famous examples of these are ICOUNT, which gives fetch priority to
threads with less resource occupancy, BCOUNT, which favors threads with the few-
est unresolved branches, MISSCOUNT, which gives priority to threads with fewest
outstanding D-cache misses, STALL, which triggers fetch-lock when a load operation
stays to be outstanding beyond some threshold number of cycles and FLUSH, which
measures resource clog and when it happens recovers by flushing the stalled instruc-
tions [1][2].

Beside these fetch throttling techniques, there are resource partitioning techniques
that directly distribute shared resource partitions among running threads. Basically,
these techniques dynamically decide how a shared resource is to be partitioned and
distributed. The most famous example of these techniques is known as Dynamically
Controlled Resource Allocation (DCRA) [3]. In DCRA, each thread and the datapath
resource are dynamically tracked by a number of hardware counters. For example,
when a thread has a pending cache miss, it is immediately labeled as a slow thread, or
when a resource is not used by a thread for a threshold number of cycles, then the
thread for that resource becomes inactive. Then, the DCRA mechanism tries to give
more resources to the slow threads by stealing from fast or inactive threads.

SMT resource distribution via hill climbing (HILL) is another resource partitioning
mechanism that runs in epochs (periodic intervals) [4]. HILL assumes that there is a
certain optimum in the performance graph and it tries to reach to that peak by dynam-
ically changing resource distributions in a greedy fashion. In the initial trial epochs,
each thread gets its chance to show its performance with extra resources. At the end
of these trial epochs, the performance of each thread is compared and the best per-
forming (and the most deserving) thread is selected for receiving additional resources.
Then, these trial epochs and the consequent resource distribution are done inside an
infinite loop as long as the processor is running.

The Adaptive Resource Partitioning Algorithm (ARPA) introduces efficiency met-
ric into the picture [5]. Similar to HILL, ARPA tries to give more resources to the
most deserving thread by stealing resources from the others. The efficiency metric,
committed instructions per resource entry (CIPRE), is a thread specific metric which
is evaluated at the end of each epoch. When a thread does a great job and commits
many instructions with limited number of resources, its CIPRE value becomes high,
and ARPA gives more resources to that thread. In HILL, a thread can show the best
performance and be chosen to receive more resources every epoch regardless of its
efficiency. As a result, a thread may starve to its death, since it cannot perform better
than some other thread. ARPA solves this issue implicitly by its efficiency metric.
When a thread receives more resources its CIPRE value gets lower and lower if it
commits similar amount of instructions every epoch. In such cases, a thread with
worse performance may get its share, since its efficiency may go up after a while.

Vandierendonck and Seznec [6] propose a new fetch throttling mechanism called
Speculative Instruction Window Weighting. This mechanism fetches instructions
from the thread with least amount of work left in the pipeline. The amount of work
left for each thread is predicted by assigning weights to instructions. These weights
are determined by the instruction type, confidence level of branch instructions and
confidence level, prediction result and memory-level parallelism for memory instruc-
tions. By limiting the maximum amount of work of a thread, distribution of datapath
resources is also achieved.

Another fetch policy by Eyerman and Eeckhout [7] takes memory-level parallelism
into consideration. Their design predicts long-latency loads and the number of in-
structions a thread must go down in the instruction stream in order to exploit memory-
level parallelism. The algorithm stalls fetching if the thread has reached the number of
instructions predicted by the MLP-predictor, or flushes instructions beyond the pre-
dicted number of instructions in case a long-latency load is identified.

Heuristics (meta-heuristics) are problem specific inexact, rule of thumb computa-
tional methods. DCRA, HILL and ARPA are examples of such heuristics. In litera-
ture, different heuristics with different performances for almost all “hard” problems
could be found. It has been observed that each heuristic may be successful in solving
different problem instances. Hyper-heuristics are general methods which search the
space generated by a set of heuristics rather than solutions to directly solve a given
problem. A goal is designing intelligent and automated approaches enabled to com-
bine the strengths of heuristics while avoiding their weaknesses for solving not only
the instances in hand, but also the unseen ones. Hyper-heuristics have been applied to
many static problems, whereas there are a few studies on their applications to dynam-
ic environment problems. In these studies, either a theoretical problem or a bench-
mark function is used, where the changes in the environment can be controlled.

As a result, the heuristics, described up to this point, try to achieve a better perfor-
mance compared to the one that we can observe in a baseline configuration, in which
resource sharing is not regulated at all. The motivation behind this study is very sim-
ple. We show that there is no single algorithm that performs best in all the SMT work-
loads. In some workloads, DCRA works best, in some other workloads HILL works
better than others, and in the rest of the workloads ARPA performs best. Our litera-
ture survey, preliminary studies and the variety of problem instances and the observed
dynamic changes show us that hyper-heuristics are a very suitable choice for the per-
formance optimization on SMT processors. Although, in the literature, there are only
a few heuristics proposed for solving this problem, there is no study showing how
general these heuristics are or providing a thorough performance analyses for the
proposed heuristics. More importantly, there is no real world application of hyper-
heuristics to such a dynamic environment problem in hand.

In this study, we aim to optimize the performance of SMT processors by partition-
ing datapath resources among running threads by using hyper-heuristics. Since, HILL
and ARPA heuristics have similar periodic nature; we studied combining both under
several hyper-heuristics throughout this study.

Figure 1 shows the performance (Instruction Per Cycle) graphs for some of the
workloads that we studied. In art-gcc-mgrid and art-parser-vortex workloads ARPA

performs better than HILL (12% and 8%, respectively). However, there are some
other workloads in which ARPA performs worse than HILL. For instance, in gcc-
mesa-vortex and art-mesa-vortex workloads HILL performs more than 5% better.
Note that while ARPA is successfully running art-parser-vortex workload, when par-
ser benchmark is replaced with mesa benchmark everything changes upside down and
HILL starts to become more successful. This graph shows us that some heuristics can
be successful in some of the workloads and some others can be successful in some
other workloads. To the best of our knowledge, there is no such study that work on
hyper-heuristics to dynamically select the proper heuristic at run time, and, in this
study, we are aiming to fill this gap.

Fig.1. ARPA and HILL performance comparison on a few SMT workloads.

2 Proposed Design

The initial design starts by creating a habitat that may run both ARPA and HILL,
interchangeably. Both ARPA and HILL track down runtime statistics collected by a
number of hardware counters. For instance, both of them require the number of com-
mitted instructions for each thread in time periodic intervals called epochs. They also
need a comparator circuitry to decide if the performance of a trial epoch is greater
than the performance value experienced by the other trial epochs or the CIPRE value
of a thread is greater than the others. The resulting circuitry that runs both heuristics is
less complex than what one may expect.

As shown in Figure 2, our proposed design brings ARPA and HILL SMT parti-
tioning heuristics, together. The job of these heuristics is to favor one of the running

0

0.5

1

1.5

2

2.5

3

3.5

4

ARPA HILLIPC

threads and to award it with more resources. The shared hardware counters keep
runtime statistics that are required by the heuristics’ (and the hyper-heuristic’s) evalu-
ation functions. A few example counters are committed instructions per cycle per
epoch (IPCepochi, for the ith epoch), CIPRE and fetched instructions per cycle per
epoch (FIPCepochi). The main responsibility of our proposed hyper-heuristic is the
careful selection of the heuristic that is to be utilized for the next epoch.

favor favor
…

Fig.2. The proposed design.

There are two types of high level hyper-heuristic methodologies managing a set of
low level heuristics: selection and generation [8]. Selection hyper-heuristics frequent-
ly consist of two successive stages of heuristic selection and move acceptance [9].
Most of the simple selection hyper-heuristic components are introduced in [10]. For
example, random permutation gradient heuristic selection creates a permutation list
of low level heuristics and chooses a low level heuristic in the given order one by one
at each step to apply on the current solution. If a chosen heuristic makes an improve-
ment, the same heuristic is utilized.

There are more elaborate hyper-heuristics making use of machine learning tech-
niques. For example, a reinforcement learning based hyper-heuristic assigns a utility
score for each heuristic which is increased using a rewarding mechanism after im-
provement or decreased as a punishment mechanism after a worsening move [11]. A
heuristic is chosen based on this score which then gets updated at each step. Different
strategies can be utilized for heuristic selection, one of them being selection of the
low level heuristic with maximum score. There is theoretical [12] as well as empirical
evidence [13] that hyper-heuristics are effective solution methodologies.

We investigated different heuristic selection methods and hyper-heuristics. A sim-
plified variant of a reinforcement learning based hyper-heuristic is employed, in this
study. This variant uses different success criteria based on two successive stages and
also different heuristic selection mechanisms to choose a low level heuristic at each
step. The success measure is used as the utility score of a heuristic.
Hyper-Heuristic 1 (HH1): Our first hyper-heuristic is based on committed instruc-
tions per cycle per epoch (IPCepochi) metric. This success measure is a good indica-
tor for the processor performance during an epoch. When this value is decreasing in
the current epoch, we can directly say that something is going wrong. In such cases,

The Proposed
Mechanism

select select

ARPA HILL
Shared HW

counters

Selection

Hyper-Heuristic

Thread 1 Thread 2 Thread 3 Thread n

HH1 punishes the heuristic that is used in the previous epoch and changes it with an
alternative heuristic for the incoming epoch. In our study, we only utilized two heuris-
tics (ARPA and HILL), and, hence, we choose the alternative heuristic in such cases.
Figure 3 shows the pseudo code for this hyper-heuristic.

Fig.3. The pseudo code for HH1.

Hyper-Heuristic 2 (HH2): The second hyper-heuristic is based on a different metric
which we call commit over fetch, as shown in Figure 4. Generally, the number of
instructions that enters the processor may not match the number of instructions that
exits the processor by a successful completion. IPCepochi value can be equal to but
generally much less than the fetched instructions per cycle per epoch (FIPCepochi).
The main reason for this phenomenon is due to the speculative nature of today’s pro-
cessors. To improve the processor throughput, the processors run instructions in an
out of program order and have hardware branch predictors that may fill the processor
pipeline from speculative paths. When the branch outcome is incorrectly predicted,
instructions that are fetched from the wrong path are all flushed. Here, in this metric,
we measure if the number of flushed instructions are increasing. When this happens,
HH2 punishes the previously utilized heuristic by selecting the alternative heuristic.

Hyper-Heuristic 3 (HH3): Our final proposed hyper-heuristic design for perfor-
mance optimization of simultaneous multithreaded processors is based on the random
permutation gradient hyper-heuristic. Here, we propose a slightly complex evaluation
function. First, we check if the IPCepochi improves as we do in HH1 with a minor
twist. By adding a threshold value to the algorithm, we want to tolerate the small
fluctuations in the performance due to external factors (phase changes in threads,
increased cache steals among threads, etc.), which are not related to the performance
of the running heuristic. Secondly, in our study, we observed that the overall perfor-
mance may radically drop in a number of epochs. To stabilize our algorithm further,
we give one more chance to the running heuristic, if it is ARPA, even when the drop
in IPCepochi is below our threshold value. In our experiments, we found that ARPA

Fig.4. The pseudo code for HH2.

IF IPCepoch(i) >= IPCepoch(i-1) THEN

Keep the current heuristic running for the next epoch

ELSE

Change the heuristic

ENDIF

commitOverFetch(i) IPCepoch(i) / FIPCepoch(i)

IF commitOverFetch(i) >= commitOverFetch(i-1) THEN

Keep the current heuristic running for the next epoch

ELSE

Change the heuristic

ENDIF

is a more successful heuristic compared to HILL, and this is for an insurance not to
punish a well-performing heuristic, mistakenly. Finally, as in HH2, we check if the
efficiency of the last epoch is not worse than the efficiency of its predecessor. If this
is the case, then we continue using the same heuristic; otherwise, we change the heu-
ristic. The pseudo code of the algorithm is given in Figure 5.

Fig. 5. The pseudo code for HH3.

3 Computational Experiments

3.1 Processor Specifications

M-Sim [13] is used in our study to simulate the SMT processor. M-Sim is modified to
support ARPA and HILL in any epoch in order to run these heuristics in mixed order.
We arbitrarily chose 7 benchmarks from SPEC2000 benchmark suite in order to eval-
uate our work. We ran our tests for all 35 possible 3-thread mixtures consisting of
these benchmarks. 10M instructions from each thread are skipped before per-cycle
simulation begins and it stops after 5Mcycles. The epoch size is set to 32 Kcycles.

The simulated processor can decode/issue/commit 8 instructions per cycle. Reorder
buffer, issue queue and load/store queue sizes are 64, 40 and 32 entries, respectively.
There are 128 integer and 128 floating point registers. L1 instruction cache is 2-way
with 32KB capacity and L1 data cache is 4-way with 32KB capacity. The L2 cache is
unified; 512KB in size and it is 4-way. All caches use least recently used replacement
policy. Access to L2 cache is 20 cycles. The main memory has 2 ports and access
time is 300 cycles for the first chunk and inter-chunk access delay is 6 cycles.

3.2 Tests and Results

Figure 6 shows the average and peak results of our proposed hyper-heuristics
compared to ARPA. We are not comparing our results to HILL, since its results are

IF IPCepoch(i) / IPCepoch(i-1) > thresholdValue THEN

Keep the current heuristic running for the next epoch

oneMoreChance 0

ELSE

oneMoreChance++

IF oneMoreChance is 1 AND the current heuristic is ARPA THEN

Giving one more chance to the current heuristic

ELSE

commitOverFetch(i) IPCepoch(i) / FIPCepoch(i)

IF commitOverFetch(i) >= commitOverFetch(i-1) THEN

Keep the current heuristic running for the next epoch

ELSE

Change the heuristic

oneMoreChance 0

ENDIF

ENDIF

ENDIF

generally worse than the results of ARPA. As the result clearly indicates, none of the
hyper-heuristic is no worse than ARPA, and, suprisingly, HH3 performs 1.8% better
than ARPA and 2.4% better than HILL (not shown on graph), on the average. The
peak performance values on a few workloads seem to be very promising, as well
(41% IPC gain on art-bzip2-mgrid mixture).

Fig. 6. The worst, the average and the best results of hyper-heuristics over ARPA.

In Figure 7, we show the number of workloads that perform better than ARPA (the
leftmost bar) and number of workloads better than both ARPA and HILL (the
rightmost bar) out of 35 workloads. Again, the best performing hyper-heuristic is
HH3 which performs better on 25 workloads over ARPA, and 20 workloads over both
ARPA and HILL.

Fig. 7. Number of workloads in which hyper-heuristics perform better than heuristics.

4 Conclusion and Future Work

In this study, we investigate the performance of some selection hyper-heuristics that
mix multiple heuristics with different abilities. The results show that best performing
hyper-heuristic is better than the well-known approaches in almost 60% of the studied
workloads. Moreover, it generates as much as 41% of performance improvement in
some workloads with 1.8% to 2.4% over ARPA and HILL on average. The results are
very promising, and we believe that there is still room for research to design better
hyper-heuristics in this area.

0
5

10
15
20
25
30

HH1 HH2 HH3

ARPA

ARPA and HILL

Count

71%

57%

-8%

-3%

2%

7%

12%

17%

HH1 HH2 HH3

Min Average Max 41.0%

-3.9%

15.3%

-4.5% -4.1%

3.7%

-0.17% -0.2%

1.8%

IPC gain

References
1. D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm. Exploiting

choice: instruction fetch and issue on an implementable simultaneous multithreading pro-
cessor. In: 23rd annual International Symposium on Computer Architecture, pages 191-
202, New York, NY, USA, 1996. ACM.

2. D. M. Tullsen, J. A. Brown. Handling long-latency loads in a simultaneous multithreading
processor. In: 34th annual ACM/IEEE International Symposium on Microarchitecture,
pages 318-327, Washington, DC, USA, 2001. IEEE Press.

3. F. J. Cazorla, A. Ramirez, M. Valero, E. Fernandez. Dynamically controlled resource allo-
cation in SMT processors. In: 37th annual IEEE/ACM International Symposium on
Microarchitecrure, pages 171-182, Washington, DC, USA, 2004. IEEE Press.

4. S. Choi, D. Yeung. Learning-based SMT processor resource distribution via hill-climbing.
In: 33rd annual International Symposium on Computer Architecture, pages 239-251,
Washington, DC, USA, 2006. IEEE Press.

5. H. Wang, I. Koren, C. M. Krishna. An adaptive resource partitioning algorithm for SMT
processors. In: 17th International Conference on Parallel Architectures and Compilation
Techniques, pages 230-239, New York, NY, USA, 2008. ACM.

6. H. Vandierendonck, A. Seznec. Managing SMT resource usage through speculative in-
struction window weighting. ACM Trans. on Arch. and Code Opt., 8(3), 2011. ACM.

7. S. Eyerman, L. Eeckhout. Memory-level parallelism aware fetch policies for simultaneous
multithreading processors. ACM Trans. on Arch. and Code Opt., 6(1), 2009. ACM.

8. E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. R. Woodward. A classification
of hyper-heuristic approaches. Handbook of Metaheuristics. Vol. 146 of Intl Series in Op.
Res. and Man. Sci., 2010, pages 449–468, 2010. Springer.

9. E.Özcan, B. Bilgin, and E. E. Korkmaz. A comprehensive analysis of hyper-heuristics.
Intell. Data Anal., 12(1):3–23, 2008.

10. P.Cowling, G. Kendall, E. Soubeiga. A hyperheuristic approach to scheduling a sales
summit. In: Selected papers from the Third International Conference on Practice and The-
ory of Automated Timetabling, pages 176–190, London, UK, 2001. Springer-Verlag.

11. A. Nareyek. Choosing search heuristics by non-stationary reinforcement learning.
In:Metaheuristics: Computer Decision-Making, ch. 9, pages 523–544, 2003.Kluwer

12. P.K. Lehre, E. Özcan. A runtime analysis of simple hyper-heuristics: To mix or not to mix
operators. In: Pre-Conf. Proc. of Foundations of Gen. Algorithms XII, pages 91–98, 2013.

13. E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu. Hyper-
heuristics: A survey of the state of the art. Journal of the Operational Research Society, to
appear, 2013.

14. J. J. Sharkey, D. Ponomarev, K. Ghose. M-SIM: A Flexible, Multithreaded Architectural
Simulation Environment. Department of Computer Science, Binghamton University,
Technical Report No.CS-TR-05-DP01, 2005.

