
L2AE-D: Learning to Aggregate Embeddings for
Few-shot Learning with Meta-level Dropout

Heda Songa,∗, Mercedes Torres Torresb, Ender Özcana, Isaac Trigueroa

aComputational Optimisation and Learning Lab, School of Computer Science, University of
Nottingham, Nottingham NG8 1BB, United Kingdom

bComputer Vision Laboratory, School of Computer Science, University of Nottingham,
Nottingham, UK

Abstract

Few-shot learning focuses on learning a new visual concept with very limited la-
belled examples. A successful approach to tackle this problem is to compare the
similarity between examples in a learned metric space based on convolutional
neural networks. However, existing methods typically suffer from meta-level
overfitting due to the limited amount of training tasks and do not normally con-
sider the importance of the convolutional features of different examples within
the same channel. To address these limitations, we make the following two
contributions: (a) We propose a novel meta-learning approach for aggregating
useful convolutional features and suppressing noisy ones based on a channel-wise
attention mechanism to improve class representations. The proposed model does
not require fine-tuning and can be trained in an end-to-end manner. The main
novelty lies in incorporating a shared weight generation module that learns to
assign different weights to the feature maps of different examples within the
same channel. (b) We also introduce a simple meta-level dropout technique
that reduces meta-level overfitting in several few-shot learning approaches. In
our experiments, we find that this simple technique significantly improves the
performance of the proposed method as well as various state-of-the-art meta-
learning algorithms. Applying our method to few-shot image recognition using
Omniglot and miniImageNet datasets shows that it is capable of delivering a
state-of-the-art classification performance.

Keywords: Few-shot learning, Meta-learning, Metric-learning, Embedding
aggregation, Attention mechanism, Meta-level dropout

1. Introduction

In recent years, deep learning techniques have dramatically been developed
achieving high classification accuracy on visual recognition systems [1, 2]. These

∗Corresponding author
Email address: heda.song@nottingham.ac.uk (Heda Song)

Preprint submitted to Neurocomputing February 13, 2021

techniques usually require a large amount of labelled data to learn an appropri-
ate model while they struggle when provided with very few data. However, in5

many real-world visual recognition tasks, such as images of new species or rare
diseases, it is impractical to collect much labelled data. This highly restricts
the successful application of deep learning. In addition, their learning style is
typically not consistent with a human visual system that can generalise a new
visual concept after seeing a few images based on previous experience. To ad-10

dress these issues, the computer vision community has raised enthusiasm for the
challenge of learning from very few data, also known as few-shot learning [3, 4].

Few-shot learning typically aims to learn a new visual concept from a limited
number of labelled examples. Overfitting can easily occur using conventional
machine learning algorithms in such few-shot regime. To avoid this, we need15

a learning approach with a high generalisation ability. Inspired by the way
humans are capable of quickly learning based on accumulated experience, many
meta-learning approaches for few-shot learning have recently been proposed. In
general, these methods learn a meta-learner to extract meta-knowledge from
a distribution of few-shot learning tasks and further use it to assist unseen20

tasks. The extracted meta-knowledge can be represented by different algorithm
components, such as a general feature extractor [5, 6, 7], a distance metric [8],
promising initial model parameters [9, 10, 11, 12], optimisation strategies [13],
a model parameter predictor [14, 15, 16], a example generator [17, 18, 19], scale
and/or shift vectors for activation adaptation [20], or label propagation [21, 22,25

23].
Although these approaches achieve a good performance, they still suffer from

several issues. Some methods need to fine-tune the base model when executing
target tasks [9, 10, 11, 12, 13]. Others introduce complex model architectures or
external memory, which require more computing resources [22, 21, 23, 14, 16].30

Generative model-based approaches learn to generate more artificial examples,
but they may create some non-informative examples when provided with noisy
training examples [17, 18, 19]. Metric learning based approaches are straight-
forward and efficient [7]. They use Convolutional Neural Networks (CNNs) to
extract the embeddings of examples, which are represented by a set of feature35

maps, and make predictions by comparing the similarities between embeddings.
However, they seldom consider outliers in a class or borrow useful features from
other classes [5, 6, 7, 8]. Due to the limited amount of data in few-shot learning,
as presented in 1Fig. 1, the training examples may inherently contain uncer-
tainties, such as the outliers shown in Fig. 1(a). If we simply use the mean40

of each class’s embeddings as the class representative, as performed in [7], the
possible outliers may force the representative to deviate from the class centre
in the embedding space. Therefore, it is necessary to appropriately handle the
effect of outliers. However, an outlier may actually contain some useful features,
which could help strengthen part of the class representative. Similarly, even the45

examples of different classes may share some similar features as shown in Fig.
1(b), which could be used to help them to be distinguished from other classes in
multi-class classification, particularly in 1-shot cases. An concrete illustration
can be found in Figure 2, which shows a 5-classes (5-way) classification task that

2

fig:motivation_1
fig:motivation_1
fig:motivation_1
fig:motivation_1

Figure 1: An illustration of the motivation of this study. Each embedding (rounded rectangle)
consists of three feature maps (coloured squares), with outliers shown in dashed borders. (a)
Binary classification with five training examples per class. We show the real class centres in
the embedding space (solid circles) and the mean of each class’ embeddings (hollow circle). (b)
4-class classification with one training example per class. Dashed arrows link similar feature
maps in the embeddings from different classes.

targets at distinguishing ‘goose’, ‘bird’, ‘bus’, ‘crab’ and ‘jellyfish’. From the50

given five training examples, we can see that the shape of heads of ‘goose’ and
‘bird’ are similar. Assuming that one of the channels in the last convolutional
layer corresponds to the shape of head, weighted aggregating the feature maps
of ‘goose’ and ‘bird’ in that channel could help ‘goose’ and ‘bird’ to be better
distinguished from ‘bus’, ‘crab’ or ‘jellyfish’. Overall, our goal is to reduce the55

impact of outliers and use as much as useful information as possible in few-shot
learning.

In addition, these meta-learners may also suffer from overfitting. Although,
meta-learners are trained on different few-shot learning tasks, they may consist
of overlapped classes, because there are limited number of classes in the meta-60

training dataset and some of them are similar. For example, there are only 100
classes of objects in miniImageNet [13] and some of them are different breeds
of dogs. Thus, meta-learners could be trained to perform well on meta-training
tasks and not generalise well on meta-testing tasks comprised of unseen classes.

To tackle the above issues, we propose L2AE-D (Learning to Aggregate Em-65

beddings with Meta-level Dropout), a novel meta-learning approach for few-shot
learning that learns to aggregate embeddings with meta-level dropout. L2AE-D
learns a CNNs based feature extractor and a channel-wise attention mechanism
in an end-to-end manner. The feature extractor is used to transform the input
images into discriminative embeddings. The channel-wise attention mechanism70

is learned to assign larger weights to useful feature maps and smaller weights
to noisy ones of different embeddings within the same channel. We propose dif-
ferent learning strategies for one-shot and few-shot tasks aiming to effectively
exploit the few training embeddings. We also introduce a meta-level dropout
technique into the meta-training process to prevent meta-level overfitting. We75

test this technique in several representative meta-learning approaches and it
significantly improves their performance. We evaluate the proposed method on

3

Omniglot [4] and miniImageNet [13] datasets, and it achieves either competitive
or state-of-the-art performance on various few-shot learning tasks.

The remainder of this paper is organised as follow. Section 2 provides an80

investigation of the recent progress in few-shot learning and some related works
on attention and dropout. Section 3 describes our proposed method. The
experimental results are shown in Section 4. The conclusion is discussed in
Section 5.

2. Related Work and Motivation85

Our method falls into the research field of few-shot learning. Section 2.1
investigates the recent progress in this field, and explains our motivations. Be-
sides, L2AE-D is based on an attention mechanism and dropout. We briefly
review these techniques used in image classification in Section 2.2 and Section
2.3, respectively.90

2.1. Few-shot Learning approaches

Most recent works tackle few-shot learning by meta-learning due to its high
generalisation ability. In general, they learn a meta-learner to extract meta-
knowledge from a number of few-shot learning tasks and use it to assist in
unseen ones. Depending on the type of meta-knowledge, these methods can be95

broadly classified into three categories.

• Fast parametrisation based approaches: Approaches in this class aim
to learn a fast parametrisation strategy for quickly fine-tuning the base
learner to adapt to new few-shot learning tasks. The most representative
method, Model-Agnostic Meta-Learning (MAML) [9], learns the model’s100

initial parameters that can be adapted to task-specific model parameters
by a few gradient descent steps based on few examples. MAML has been
extended in various ways, such as introducing a first-order gradient to
reduce the computational burden [10], learning model’s initial parameters
together with optimisation strategies (Meta-learner-LSTM [13]), to further105

accelerate the fine-tuning process, choosing a subset of model parameters
to fine-tune in order to make the model more task-specific [12], modelling a
distribution of prior model parameters to handle the inherent uncertainty
of few-shot learning [11]. Rather than fine-tune the base model, some
other methods learn a meta-learner to directly predict the parameters of110

the base model [14, 16, 15]. One of them learns to predict the parameters of
the fully-connected layer from the activations (Activation2Weights) [15].
These methods can be faster while some of them use external memory,
which require more resources to store the adequate historical information.
Instead, our approach executes target few-shot tasks in a feed-forward115

manner without external memory, which is quick and does not require
additional resources.

4

• Generative model based approaches: These approaches learn to gen-
erate artificial examples to compensate the lack of training data. The
Neural Statistician approach learns to produce statistics of a dataset, such120

as mean or variance, which are used to specify a Gaussian distribution for
generating data [17]. Other methods introduce generative adversarial net-
works to learn sharper decision boundaries (MetaGAN) [18] or model the
latent distribution of novel classes [19]. These meta-learners generate fake
examples to assist few-shot learning tasks. However, these examples could125

be non-informative when the few training examples are not representative.
Conversely, our method learns to aggregate useful information and sup-
press noisy information, which can be more stable.

• Metric learning approaches: The approaches in this class learn to
compare the similarity between examples in a learned metric space. Most130

approaches learn a general feature extractor, which is usually represented
by CNNs [5, 6, 7, 8, 22, 21, 23, 24], to transform examples into embed-
dings and then compute the similarity between each pair of training and
query embeddings based on weighted L1 distance (Siamese Nets [5]), cosine
distance (Matching Nets [6]), Euclidean distance (Prototypical Networks135

(ProtoNets) [7]) or a learned distance metric (Relation Network (RN) [8]).
Finally, the queries can be classified by a linear [5, 8], a k-nearest neigh-
bours [7] or a weighted k-nearest neighbours [6] classifier. Some other
approaches in this branch propagate label information from training exam-
ples to unlabelled query examples based on similarity [22, 21, 23]. Specif-140

ically, Transductive Propagation Network (TPN) [23] and Graph Neural
Networks (GNNs) [22] learn a graph construction module and propagate
labels within the graph. Another approach combines temporal convolu-
tions and soft attention to propagate label information [21]. Improved Pro-
totypical Networks (IPN) [25] improves ProtoNets by considering intra-145

class importance and adopting a distance scaling strategy. These methods
also aggregate embeddings, but they treat each embedding as a whole. In-
stead, we aggregate feature maps in each channel, which could make use
of more information, even from an outlier or an example from different
classes. Some other methods hybridise the metric learning and fast pa-150

rameterisation approaches [26, 27], which combines the strengths of these
two approaches while also inherits the weaknesses of them.

2.2. Attention Mechanisms

An attention mechanism aims to tell a machine learner where to focus, which
is inspired by the human perception system. It has been extensively studied155

these years and applied to various machine learning tasks, such as machine
translation [28] or image caption [29]. Recently, a few works have introduced
attention mechanisms to CNNs for computer vision tasks [30, 31, 2, 29]. Our
method is related to the ones presented in [31, 2, 29], which learn a channel-wise
attention module. Our attention module is different from theirs in four aspects.160

First, they target standard learning tasks, in which training and testing sets

5

include the same classes. Whereas, we aim to address more challenging few-
shot learning problems in which there is no overlap between the classes in meta-
training and meta-testing set. Second, their aim is to emphasise useful features
by refining feature maps, while our goal is to handle uncertainty and fully use165

the few training examples by aggregating feature maps. Third, we carry out
an attention mechanism along a different dimension. Specifically, they feed the
whole embedding of a sample into the attention module and generate channel-
wise weights for this particular sample. Instead, we feed the feature maps in
a specific channel of different training samples and generate weights for that170

channel of different samples. Fourth, they apply multi-layer perceptrons to
learn to assign weights, while we use CNNs as a meta-learner. It is noteworthy
that several meta-learning approaches also introduce the attention mechanism to
tackle few-shot learning problems [6, 21, 16]. However, we use it in different ways
and for different purposes. The approaches in [6, 21] use attention to propagate175

labels based on the similarities between a query and training examples. The
method in [16] use attention to generate a classifier’s weights for unseen classes.
In contrast, our attention mechanism is used to assign different weights to the
feature maps of different examples, aiming at handling uncertainty and fully
using the few training examples.180

2.3. Dropout

Dropout is a simple way to prevent neural networks from overfitting [32].
The key idea is to randomly drop part of the units of neural networks during
training and use the whole networks for testing, which can also be seen as a form
of model averaging. Although it has been widely used in neural networks train-185

ing, it is seldom applied to convolutional layers in CNNs. The reason is that the
shared-filter architecture dramatically reduces the number of model parameters
which reduce the model’s capacity to overfit [32]. Still, the experimental results
in [32] show performing dropout in convolutional layers can prevent overfit-
ting and further improve the performance on image recognition tasks. Another190

method proposes a specific dropout technique called SpatialDropout for CNNs
by randomly dropping the entire feature maps [33]. Different from applying
dropout on common machine learning tasks, we aim at adapting dropout to the
meta-learning framework to prevent the meta-learner from overperforming on
some particular tasks rather than samples, so that the learned meta-knowledge195

could generalise well on unseen tasks during meta-testing. Since each task in
meta-training includes a whole base learning process that extracts knowledge
from the training examples and infers the labels of testing examples, we perform
dropout on CNNs for each task at the meta-level by randomly dropping part
of neurons for both training and testing examples during meta-training. The200

meta-learner is fixed during meta-testing.

3. Methodology

In this section, we describe the proposed learning to aggregate embeddings
with meta-level dropout (L2AE-D) method. We define the problem of few-shot

6

learning in Section 3.1. Then, Section 3.2 describes our model consisting of an205

embedding, attention and distance module. The specific model architecture is
discussed in Section 3.3. Finally, Section 3.4 presents how we perform meta-level
dropout.

3.1. Problem Set-Up

210

Few-shot classification problems [3] aim to classify testing examples into one
of C unique classes based on K labelled training examples for each of C class,
which is called C-way K-shot classification. For each C-way K-shot classifi-
cation task, the training set D

train
= {(xi, yi)}K×C

i=1 contains K × C training
examples and the testing set D

test
contains n testing examples that share the215

same label space with D
train

. In conventional machine learning, we could train
a learner to predict the label for each testing example in Dtest based on Dtrain .
However, the learner cannot be trained effectively based on such few training
examples.

A number of approaches including our method tackle the problem by meta-220

learning. Typically, we have three meta-sets, meta-training set Dmeta−train,
meta-validation set Dmeta−validation and meta-testing set Dmeta−test. Their re-
spective label space is disjoint from each other. The meta-training setDmeta−train
is used for training a meta-learner that generalises well across a distribution of

few shot learning tasks, which is represented asDmeta−train =
{(
Dj
train, D

j
test

)}N
j=1

.225

The Dmeta−validation set is used to select suitable hyper-parameters of the meta-
learner. We can evaluate the meta-learner on the Dmeta−test set.

Since the Dmeta−train set includes a large amount of different few shot clas-
sification tasks, it is best to train the meta-learner in an episode-based manner
as proposed in [6]. In each meta-training iteration, a single few shot classifica-230

tion (
(
Dj
train, D

j
test

)
, j ∈ [1, N]) is sampled to train the meta-learner based on

its performance on Dj
test. We can also introduce the strategy of batch meta-

training as done in [9]. Thus, in each meta-training iteration, we sample a batch
of few shot classification to train the meta-learner.

3.2. The L2AE-D Model235

L2AE-D can be divided into three modules: embedding module fϕ, at-
tention module gφ and distance module as shown in Fig. 2 and Fig. 3. The
attention module is different for the 1-shot and K-shot cases. Fig. 2 shows
our strategy for C-way 1-shot classification and Fig. 3 depicts our strategy for
C-way K-shot classification. Pseudocode for the training process of L2AE-D is240

provided in Algorithm 1.

• Embedding module: This module aims to extract features of each in-
put image and transform it into embeddings. For each input example xi
belonging to the c-th class, we feed it into the embedding module fϕ to

7

fig:model_1
fig:model_2
fig:model_1
fig:model_2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

w0,0(0)

w0,0(1)

w0,0(2)

w0,0(3)

w0,0(4)

Training examples

Query example

0

1

0

0

0

Embedding module Distance module

Attention module

Feature map aggregation of different classes

Class 0

Class 1

Class 2

Class 3

Class 4

W0,0: aggregation weights for
0-th channel and 0-th class

Figure 2: 5-way 1-shot classification with L2AE-D: (1) Training samples are transformed by
fϕ into embeddings (set of feature maps shown in coloured squares); (2) To strengthen the first
feature map for the first class, we put it in the first channel and the other feature maps in the
others, then we feed the concatenated 5-channel feature maps into gφ to generate aggregation
weights; (3) The 5 feature maps are aggregated based on the generated weights; (4) To make
predictions, we feed a query into fϕ, then compare its embedding with the aggregated training
embeddings in the distance module. This outputs a one-hot vector representing the predicted
label of the query.

generate an embedding Ei,c =
{
e1i,c, e

2
i,c, ..., e

n
i,c

}
, which comprises n fea-245

ture maps eki,c ∈ Rl×l with the size of l× l. Then, the training embeddings
are fed into the attention module.

• Attention module: This module is used for generating aggregation
weights of the feature maps in a channel-wise manner as shown in Fig. 4.
Also, it is shared among different channels. We use two different strategies250

to do aggregation for 1-shot and K-shot tasks as shown in Fig. 2 and Fig.
3, respectively. For K-shot C-way tasks, we aggregate the feature maps of
K training embeddings in the same class to be the class-representative fea-
ture maps. For the k-th channel, we join the corresponding feature maps
of K training embeddings in the c-th class as Fk,c =

{
ek1,c, e

k
2,c, ..., e

k
K,c

}
.255

For C-way 1-shot tasks, we aggregate the feature maps of C training em-
beddings from different classes, since there is only one training embedding
in each class. To generate aggregation weights for the c-th class in the k-
th channel, we concatenate the corresponding feature maps of C training
embeddings from different classes as Fk,c =

{
ek1,c, e

k
1,1, ..., e

k
1,C

}
. Note that260

we locate ek1,c in the first channel and other C − 1 feature maps behind
randomly in Fk,c.

Next, the concatenated feature maps are inputted into CNNs based at-
tention networks gφ, which produce the aggregation weights wk,c ∈ RK

8

fig:model_3
fig:model_1
fig:model_2
fig:model_2
fig:model_2

Algorithm 1 The training of L2AE-D

Require: Meta-training set Dmeta−train
Require: The number of classes C and the number of training exampels K in

each task, the number of the channels n in the last convolutional layer of
the Embedding module, the metric-based classifier M

1: randomly initialize ϕ and φ
2: while not done do
3: Dtrain, Dtest ← randomly sample from Dmeta−train, D

train
=

{(xi, yi)}K×C
i=1 , Dtest = {(xi, yi)}mi=1

4: for i = 1 to K do
5: for c = 1 to C do
6: Ei,c = fϕ(x), x from D

train
, Ei,c =

{
e1i,c, e

2
i,c, ..., e

n
i,c

}
7: end for
8: end for
9: for c = 1 to C do

10: for k = 1 to n do
11: if K==1 then
12: Fk,c =

{
ek1,c, e

k
1,1, ..., e

k
1,C

}
13: else
14: Fk,c =

{
ek1,c, e

k
2,c, ..., e

k
K,c

}
15: end if
16: wk,c = gφ(Fk,c)
17: ẽkc = wk,c · Fk,c
18: end for
19: Ẽc =

{
ẽ1c , ẽ

2
c , ..., ẽ

n
c

}
20: end for
21: Ẽ =

{
Ẽ1, Ẽ2, ..., Ẽc

}
22: for q = 1 to m do
23: Eq = fϕ(xq), xq from D

test

24: end for
25: Ltest =

∑m
q=1 L(M(Ẽ, Eq), yq)

26: Update ϕ and φ based on 5ϕ,φLtest
27: end while

for K-shot tasks or wk,c ∈ RC for 1-shot tasks. After that, we can ag-265

gregate the feature maps Fk,c based on the weights wk,c. The aggre-
gated feature map of the c-th class in the k-th channel is represented by
ẽkc = wk,c ·Fk,c ∈ Rl×l. In the end, we concatenate the aggregated feature

maps in all channels and obtain a new embedding Ẽc =
{
ẽ1c , ẽ

2
c , ..., ẽ

n
c

}
for the c-th class. The new training embedding set is then represented by270

Ẽtrain =
{
Ẽc

}C
c=1

, in which Ẽc can be seen as a class representative.

• Distance module: This module is used to measure the distance between
the embeddings of query examples, Eq = fϕ (xq), and the aggregated

9

...
...

...
...

...
...

...
...

...
...

...
...

Training examples Embedding module

Attention module

Feature map aggregation for the same class

Class c

Class c

Class c

Class c

Class c

w0,c(0)

w0,c(1)

w0,c(2)

w0,c(3)

w0,c(4)

W0,c: aggregation weights for
0-th channel and c-th class

Figure 3: C-way 5-shot classification with our approach. L2AE-D aggregates embeddings for
each class: (1) The training examples are transformed by fϕ into embeddings represented by
a set of feature maps; (2) For each channel, we collect the feature maps and feed them into the
attention module; (3) The feature maps are concatenated in depth and fed into gφ to generate
aggregation weights; (4) The feature maps are then aggregated based on the generated weights
to represent a feature for this class.

embeddings Ẽtrain. Following [7], we choose the Euclidean distance as
the distance function d() : RM × RM → [0,+∞). Thus, the distance275

between Eq and Ẽc is computed by d(Eq, Ẽc).

• Loss function: We consider cross-entropy loss to train our model. First,
the softmax function is applied over the negative distance between the
query embeddings and aggregated training embeddings as follows:

pϕ,φ(y = c | xq) =
exp(−d(Eq, Ẽc))∑
c′ exp(−d(Eq, Ẽc′))

Then the loss function can be formulated as280

L(ϕ, φ) = −
Nq∑
q=1

C∑
c=1

log pϕ,φ(y = c | xq)

where Nq is the number of query examples in each training epoch.

3.3. Model Architecture

L2AE-D follows the same architecture as the embedding module in prior
approaches [6, 7], which contain 4 convolutional blocks. Each block is composed
of a 3×3 convolution with 64 filters, followed by batch normalisation (BN) [34],285

a ReLU nonlinearity and a 2× 2 max-pooling. For Omniglot, due to the small

10

Attention networks
wk,c(0)

wk,c(1)

wk,c(2)

.

.

.

wk,c(K/C)

Feature maps of different examples
within the same channel

Concatenate

3 3 conv, 32 filters
batch norm

ReLU

3 3 conv, 32 filters
batch norm

ReLU

FC Layer

wk,c: aggregation weights for
k-th channel and c-th class

Figure 4: The architecture of the attention module.

size of the input images, we feed the embeddings into the CNNs based atten-
tion module and we remove the max-pooling layer from the last convolutional
block. The architecture of our attention module showed in Fig. 4 consists of 2
convolutional blocks and a fully connected (FC) layer. Each convolutional block290

in this module comprises a 3× 3 convolution with 32 filters, followed by batch
normalisation, a ReLU nonlinearity. The FC layer results in a m-dimensional
output, which represent the aggregation weights for the m feature maps. For
K-shot tasks, we use the softmax function after the FC layer since we aim to
assign positive weights, whose sum is 1, to the m embeddings of the same class.295

3.4. Meta-level Dropout

Most meta-learning approaches use multi-layer CNNs to extract features on
few-shot learning. As discussed before, we incorporate the dropout technique in
the meta-level to tackle meta-level overfitting. Specifically, we randomly drop
part of units of CNNs for both the training and testing examples in each few-300

shot learning task during meta-training. During meta-testing, we use the whole
trained CNNs to extract features on both training and testing examples. Note
that the dropout in the convolutional layers works in a different way from that in
the fully connected layers, because the kernel weights are shared with the units
at different spatial positions, so that, the weights would still be updated by back-305

propagation even if part of units are dropped. The actual effect of performing
dropout in the convolutional layers is to scale the learning rate [33], which can
also help with preventing overfitting. We find this technique can improve several
meta-learning approaches significantly according to the experimental results in
Section 4.4.310

4. Experiments

This section evaluates our method on the widely studied datasets Om-
niglot [4] and miniImageNet [13]. The experimental setup is provided in Section

11

fig:model_3

4.1. Section 4.2 and 4.3 analyse the results on Omniglot and miniImageNet,
respectively. We also introduce a meta-level dropout technique into several315

promising few-shot learning approaches and we test its behaviour on miniIm-
ageNet in Section 4.4. Section 4.5 visualises the working of L2AE-D based
on T-distributed Stochastic Neighbor Embedding (t-SNE) [35]. The code for
L2AE-D is available online1.

4.1. Experimental setup320

This section introduces the details of the two used datasets and the config-
urations followed to test the behaviour of L2AE-D against the state-of-the-art.

• Omniglot consists of 1,623 handwritten characters collected from 50 al-
phabets. There are 20 examples of each character, which are drawn by
different people. We augmented the datasets with rotations with multi-325

ple 90 degrees as proposed by [36] to get 6492 classes. Following [9], we
randomly select 1,200 classes (4,800 classes after augmentation) for meta-
training, 100 classes (400 classes after augmentation) for meta-validation,
and the remaining 323 (1292 classes after augmentation) for meta-testing.
All the input images are resized to 28 × 28 as suggested by [6] to get a330

suitable sized embedding.

• miniImageNet was proposed by [6] derived from the original ILSVRC-
12 dataset [37]. It comprises 100 classes of colour images with 600 of
each (60,000 in total). In our experiments, we use the widely used splits
proposed by [13], which divides the 100 classes into 64 for meta-training,335

16 for meta-validation and 20 for meta-testing. All the input images are
resized to 84 × 84 as done by most few-shot learning approaches [13, 7,
9]. Note that the existing approaches use different tools to resize the
images in miniImageNet. We use the library provided by OPENCV [38]
following [23].340

To allow for fair comparisons with the current state-of-the-art, we maintain
the different experimental setups reported on Omniglot (20-way 5-shot, 20-way
1-shot, 5-way 5-shot, 5-way 1-shot) and miniImageNet (5-way 5-shot, 5-way
1-shot). All experiments are performed using TensorFlow [39] on a Titan V
GPU.345

• Meta-training: Following most existing methods [7, 9, 8], we train our
model in an episode-based manner and use a meta-batch size of 4, which
means in each episode we randomly sample 4 C-way K-shot classification
tasks to train the model. For each few-shot task, besides the C × K
training examples, we randomly sample 5 or 15 query examples per class350

to compute the loss for Omniglot and miniImageNet, respectively. We
train our model with Adam [40] with a initial learning rate of 0.001 in an

1github.com/Heda-Song/L2AE-D

12

github.com/Heda-Song/L2AE-D

end-to-end manner [7, 8]. We cut the learning rate in half every 20,000
episodes to stabilise training and use meta-validation set to choose the
best-performing model for meta-testing. It is noteworthy that existing355

methods conduct BN in different ways. As pointed out in [13], there
would be a bad impact on performance if we use the global BN statistics
accumulated from meta-training set to normalise batches of examples in
meta-testing set, since there is no overlap between the classes in these two
sets. Thus, we perform BN on each batch of examples following [9, 8].360

Specifically, for each task during both meta-training and meta-testing, we
use each batch’s statistics to normalise the training or query examples,
which can be seen as a transductive way.

• Meta-testing: To be consistent with the existing few-shot learning ap-
proaches, we evaluate our model on 1,000 or 600 randomly sampled C-way365

K-shot classification tasks, which consist of C ×K training examples and
5 or 15 query examples per class, for Omniglot and miniImageNet, respec-
tively. We report the average accuracy on these tasks with 95% confidence
intervals. However, we find that most previous methods only use a single
seed to randomly sample a batch of testing tasks and report the average ac-370

curacy. Since there are a large number of tasks in meta-testing, they may
sample a large proportion of easy-to-classify or difficult-to-classify tasks
using different seeds, which would lead to a result with high variance. To
get a more reliable result, we use 10 different seeds to randomly sample
different batches of testing tasks for 10 times and report the best, worst375

and average accuracy. Note that the existing methods are not strictly
comparable since their experimental settings are not consistent with each
other.

4.2. Analysis of the Results on Omniglot

We compare our approach against state-of-the-art methods from each fam-380

ily of few-shot learning approaches that provide experimental results on Om-
niglot. They are MAML [9] from fast-parametrisation based approaches, Neural
Statistician [17] and MetaGAN [18] from generative model based approaches,
and Siamese Nets [5], Matching Nets [6], ProtoNets [7], GNN [22] and RN [8]
as metric learning approaches. Their reported experimental results and ours385

are shown in Table 1. In general, all the methods perform worse on 20-way
tasks than 5-way tasks, which shows 20-way tasks are more difficult. L2AE-D
achieves state-of-the-art performance on 20-way tasks even in the worst case
and competitive results on 5-way tasks. Besides, our results are very stable,
since the differences between the best and worst accuracies for all the tasks are390

no more than 0.2%. On 5-way 5-shot and 20-way 1-shot tasks, L2AE-D mostly
obtains the best performance on different batches of tasks (using different seeds)
since the average and best accuracy are the same. MetaGAN performs better
on 5-way tasks by generating more examples to assist RN while it improves
marginally upon RN.395

13

tab:omni

M
o
d
e
l

F
T

5
-w

a
y
A
c
c
.

2
0
-w

a
y
A
c
c
.

1
-s

h
o
t

5
-s

h
o
t

1
-s

h
ot

5
-s

h
o
t

S
ia
m
e
se

N
e
ts

[5
]

N
9
6
.7

%
9
8
.4

%
8
8
.0

%
9
6
.5

%
M

a
tc
h
in
g
N
e
ts

[6
]

N
9
8
.1

%
9
8
.9

%
9
3
.8

%
9
8
.5

%
N
e
u
ra

l
S
ta

ti
st
ic
ia
n

[1
7]

N
9
8
.1

%
9
9
.5

%
9
3
.2

%
9
8
.1

%
P
ro

to
N
e
ts

[7
]

N
9
8
.8

%
9
9
.7

%
9
6
.0

%
9
8
.9

%
G
N
N

[2
2]

N
9
9
.2

%
9
9
.7

%
9
7
.4

%
9
9
.0

%
M

A
M

L
[9

]
Y

9
8
.7
±

0
.4

%
9
9
.9
±
0
.1
%

9
5
.8
±

0.
3
%

9
8
.9
±

0
.2

%
R
N

[8
]

N
9
9
.6
±

0
.2

%
9
9
.8
±

0
.1

%
9
7
.6
±

0
.2

%
9
9
.1
±

0
.1

%
M

e
ta

G
A
N

[1
8]

+
R
N

[8
]

N
9
9
.6
7
±
0
.1
8
%

9
9
.8

6±
0
.1

1
%

9
7
.6

4
±

0.
1
7
%

9
9
.2
1
±
0
.1
%

L
2
A
E
-D

(w
o
rs
t)

N
9
9
.2
±

0
.2

%
9
9
.7
±

0
.1

%
9
7
.7
±
0
.2
%

9
9
.2
±
0
.1
%

L
2
A
E
-D

(a
v
e
ra

g
e
)

N
9
9
.3
±

0
.2

%
9
9
.8
±

0
.1

%
9
7
.8
±
0
.2
%

9
9
.2
±
0
.1
%

L
2
A
E
-D

(b
e
st
)

N
9
9
.4
±

0
.2

%
9
9
.8
±

0
.1

%
9
7
.8
±
0
.2
%

9
9
.3
±
0
.1
%

T
a
b

le
1
:

F
ew

sh
o
t

cl
a
ss

ifi
ca

ti
o
n

re
su

lt
s

o
n

O
m

n
ig

lo
t

a
v
er

a
g
ed

o
v
er

1
,0

0
0

te
st

in
g

ta
sk

s.
It

is
n

o
te

w
o
rt

h
y

w
e

o
n

ly
co

m
p

a
re

o
u

r
m

et
h

o
d

w
it

h
p

ri
o
r

a
p

p
ro

a
ch

es
th

a
t

a
re

b
a
se

d
o
n

th
e

sa
m

e
ty

p
e

o
f

m
o
d

el
,

4
-l

a
y
er

C
N

N
s.

T
h

e
±

sh
o
w

s
9
5
%

co
n

fi
d

en
ce

o
v
er

ta
sk

s.
F

T
st

a
n

d
s

fo
r

fi
n

e-
tu

n
in

g
.

T
h

e
b

es
t-

p
er

fo
rm

in
g

re
su

lt
s

a
re

h
ig

h
li
g
h
te

d
in

b
o
ld

.
A

ll
th

e
re

su
lt

s
a
re

ro
u

n
d

ed
to

1
d

ec
im

a
l

p
la

ce
o
th

er
th

a
n

M
et

a
G

A
N

’s
th

a
t

a
re

re
p

o
rt

ed
w

it
h

2
d

ec
im

a
l

p
la

ce
s.

14

4.3. Analysis of the Results on miniImageNet

The existing few-shot learning approaches typically use two types of models
to extract features, 4-layer CNNs [9, 7, 8] and deep residual networks [21, 19, 20].
Deep residual network [1] is a kind of neural network with skip connections
and more hidden layers, which has a more complex architecture but better400

representation capability compared to 4-layer CNNs. For a fair comparison,
we compare our method with prior approaches that are based on the same
type of model, 4-layer CNNs. As before, we choose state-of-the-art methods
from each family that provide experimental results on miniImageNet. They
are Meta-learner-LSTM [13], MAML [9] and Activation2Weights [15] from fast-405

parameterisation based approaches, MetaGAN [18] from generative model based
approaches, Matching Nets [6], ProtoNets [7], GNN [22], RN [8] and TPN [23]
from metric learning approaches. Their reported experimental results and ours
are shown in Table 2. L2AE-D achieves state-of-the-art performance on 5-way
5-shot classification even in the worst case. On 5-way 1-shot classification,410

L2AE-D (average) provides the second best result, which is slightly worse than
Activations2Weights. However, the feature extractor of Activations2Weights is
trained with more classes (higher ways) and more queries in each meta-training
episode. In contrast, our model is trained on 5-way classification with 15 queries
per episode, which is consistent with the setting of most existing approaches.415

Besides, TPN obtains very competitive results on 1-shot and 5-shot classifica-
tion. However, TPN is a transductive method that requires unlabelled data to
propagate labels and its performance is affected by the number of query exam-
ples. Even though we use query batch statistics to normalise the query examples
in a transductive way, we can simply modify it into an inductive way by using420

training batch statistics to normalise the query data without decreasing the
performance much.

4.4. Analysis of the e�ect of Meta-level Dropout

Since the augmented Omniglot dataset includes much more classes (4,800)
than miniImageNet (64) in the meta-training set, the meta-learners do not suffer425

much from meta-level overfitting on Omniglot. Therefore, we focus on miniIm-
agent to analyse the effect of meta-level dropout through 5-way 1-shot tasks.
We introduce meta-level dropout into several representative meta-learning ap-
proaches, including MAML [9], ProtoNets [7] and RN [8]. Specifically, we use
their provided code and add dropout in the middle two convolutional layers430

before max-pooling with the keep probability of 0.5, because there is more co-

tab:imagenet
tab:drop

Table 2: Few-shot classification results on miniImageNet averaged over 600 tests based on
4-layer CNNs. It is noteworthy we only compare our method with prior approaches that are
based on the same type of model, 4-layer CNNs. The ± shows 95% confidence over tasks. FT
stands for fine-tuning. The best-performing results are highlighted in bold.

Model FT 5-way Acc.
1-shot 5-shot

Matching Nets [6] N 43.56 ± 0.84% 55.31 ± 0.73%
Meta-Learner-LSTM [13] N 43.44 ± 0.77% 60.60 ± 0.71%
MAML (1 query) [9] Y 48.70 ± 1.84% 63.11 ± 0.92%
ProtoNets [7] N 49.42 ± 0.78% 68.20 ± 0.66%
GNN [22] N 50.33 ± 0.36% 66.41 ± 0.63%
RN [8] N 50.44 ± 0.82% 65.32 ± 0.70%
MetaGAN [18]+RN [8] N 52.71 ± 0.64% 68.63 ± 0.67%
TPN [23] N 53.75 ± 0.86% 69.43 ± 0.67%
Activations2Weights [15] N 54.53 ± 0.40% 67.87 ± 0.70%
L2AE-D (worst) N 53.03 ± 0.84% 69.53 ± 0.65%
L2AE-D (average) N 53.85 ± 0.85% 70.16 ± 0.65%
L2AE-D (best) N 54.26 ± 0.87% 70.76 ± 0.67%

Table 3: Few shot classification results on miniImageNet with or without dropout averaged
over 600 testing tasks. The ± shows 95% confidence over tasks. ∗ denotes MAML uses 64
filters and tests on 15 queries per class.

Model 5-way 1-shot Acc.
without dropout with dropout

MAML∗ [9] 47.71 ± 0.84% 50.43 ± 0.87%
ProtoNets [7] 49.42 ± 0.78% 52.08 ± 0.81%
RN [8] 50.44 ± 0.82% 52.40 ± 0.85%
L2AE 51.55 ± 0.82% 53.85 ± 0.85% (L2AE-D)

as well as ours. It can also be seen that, even without dropout, L2AE also440

outperforms those representative few-shot learning approaches. Since the pro-
posed L2AE algorithm improves upon ProtoNets, Table 3 presents an ablation
analysis. The only difference between ProtoNets and L2AE is that L2AE adds
our proposed attention based aggregation module upon ProtoNets. Both of our
results with and without dropout outperform ProtoNets by around 2%, which445

demonstrates that adding our channel-wise attention based aggregation module
is effective for few-shot learning.

4.5. Visualisation of the working of L2AE-D

To further show how our approach works, we visualise the aggregated em-
beddings for the unseen few-shot classification tasks in the meta-testing set450

based on t-SNE [35]. t-SNE is a technique for dimensionality reduction that is
particularly well suited for the visualisation of high-dimensional datasets [35].
Fig. 5(a) shows the visualisation of the aggregated embeddings for an unseen

16

fig:tsne-visualisation

Figure 5: t-SNE visualisation of the aggregated embeddings of unseen classes for a 5-way
1-shot classification task on Omniglot (a) and a 5-way 5-shot task on miniImagenet (b). The
embeddings of training samples are shown as points. Aggregated embeddings are shown as
triangles. The embeddings of regular examples are shown as crosses. The Means of training
embeddings are shown as diamonds.

5-way 1-shot classification task on Omniglot. The embeddings aggregated from
different classes tend to move away from their own cluster and be farther from455

the clusters of other classes.
Fig. 5(b) shows the visualisation of the aggregated embeddings for an unseen

5-way 5-shot classification task on miniImagenet. Compared to the embeddings
of Omniglot in Fig. 5(a), we can see that the embeddings of miniImagenet are
much messier and consist of more unrepresentative examples. This indicates460

the difficulty of few-shot learning on miniImagenet and the necessity to reduce
the impact of outliers for a method. When there are unrepresentative examples
in the training set, such as the outliers (the bottom red point) and the example
located near the boundary of a cluster (the rightmost blue point), the mean of
training embeddings [7] deviates from a good position that represents a class in465

the embedding space. However, our aggregated embeddings stick to a represen-
tative position in the embedding space and are much more stable regardless of
unrepresentative examples, which can lead to a more robust decision boundary.

5. Conclusion

In this paper, we propose a novel meta-learning approach for aggregating470

useful convolutional features and suppressing noisy ones based on a channel-
wise attention mechanism. We propose two different learning strategies for
one-shot and few-shot tasks aiming to fully and effectively use the few train-
ing examples. Our model does not require any fine-tuning and can be trained
in an end-to-end manner. In addition, we tackle the problem of meta-level475

overfitting by introducing a meta-level dropout technique. This technique sig-
nificantly improve several well-known meta-learning approaches as well as ours.
Furthermore, we achieve state-of-the-art performance over 20-way classification
tasks on Omniglot and 5-way tasks on miniImageNet, which demonstrate the

17

fig:tsne-visualisation
fig:tsne-visualisation

effectiveness and competitiveness of our method.480

Acknowledgement

We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan Xp GPU used for this research.

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-485

nition, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[2] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 7132–7141.490

[3] L. Fei-Fei, R. Fergus, P. Perona, One-shot learning of object categories,
IEEE transactions on pattern analysis and machine intelligence 28 (4)
(2006) 594–611.

[4] B. Lake, R. Salakhutdinov, J. Gross, J. Tenenbaum, One shot learning
of simple visual concepts, in: Proceedings of the Annual Meeting of the495

Cognitive Science Society, Vol. 33, 2011.

[5] G. Koch, R. Zemel, R. Salakhutdinov, Siamese neural networks for one-shot
image recognition, in: Proceedings of the 32th International Conference on
Machine Learning, deep learning workshop, 2015.

[6] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., Matching net-500

works for one shot learning, in: Advances in neural information processing
systems, 2016, pp. 3630–3638.

[7] J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning,
in: Advances in Neural Information Processing Systems, 2017, pp. 4077–
4087.505

[8] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, T. M. Hospedales, Learn-
ing to compare: Relation network for few-shot learning, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 1199–1208.

[9] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adap-510

tation of deep networks, in: Proceedings of the 34th International Confer-
ence on Machine Learning, 2017, pp. 1126–1135.

[10] N. Alex, A. Joshua, S. John, On first-order meta-learning algorithms, arXiv
preprint arXiv:1803.02999.

18

[11] C. Finn, K. Xu, S. Levine, Probabilistic model-agnostic meta-learning, in:515

Advances in Neural Information Processing Systems, 2018, pp. 9537–9548.

[12] Y. Lee, S. Choi, Gradient-based meta-learning with learned layerwise met-
ric and subspace, in: International Conference on Machine Learning, 2018,
pp. 2933–2942.

[13] S. Ravi, H. Larochelle, Optimization as a model for few-shot learning, in:520

International Conference on Learning Representations, 2017.

[14] T. Munkhdalai, H. Yu, Meta networks, in: Proceedings of the 34th Inter-
national Conference on Machine Learning, 2017, pp. 2554–2563.

[15] S. Qiao, C. Liu, W. Shen, A. L. Yuille, Few-shot image recognition by
predicting parameters from activations, in: Proceedings of the IEEE Con-525

ference on Computer Vision and Pattern Recognition, 2018, pp. 7229–7238.

[16] S. Gidaris, N. Komodakis, Dynamic few-shot visual learning without for-
getting, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4367–4375.

[17] H. Edwards, A. Storkey, Towards a neural statistician, in: International530

Conference on Learning Representations, 2017.

[18] R. Zhang, T. Che, Z. Ghahramani, Y. Bengio, Y. Song, Metagan: An ad-
versarial approach to few-shot learning, in: Advances in Neural Information
Processing Systems, 2018, pp. 2371–2380.

[19] H. Gao, Z. Shou, A. Zareian, H. Zhang, S.-F. Chang, Low-shot learning via535

covariance-preserving adversarial augmentation networks, in: Advances in
Neural Information Processing Systems, 2018, pp. 983–993.

[20] B. Oreshkin, P. R. López, A. Lacoste, Tadam: Task dependent adaptive
metric for improved few-shot learning, in: Advances in Neural Information
Processing Systems, 2018, pp. 719–729.540

[21] N. Mishra, M. Rohaninejad, X. Chen, P. Abbeel, A simple neural attentive
meta-learner, in: International Conference on Learning Representations,
2018.

[22] V. Garcia, J. Bruna, Few-shot learning with graph neural networks, in:
International Conference on Learning Representations, 2018.545

[23] Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. J. Hwang, Y. Yang, Learning to
propagate labels: Transductive propagation network for few-shot learning,
in: International Conference on Learning Representations, 2019.

[24] Z. Ji, X. Liu, Y. Pang, X. Li, Sgap-net: Semantic-guided attentive proto-
types network for few-shot human-object interaction recognition., in: Pro-550

ceedings of the 34th AAAI Conference on Artificial Intelligence, 2020, pp.
11085–11092.

19

[25] Z. Ji, X. Chai, Y. Yu, Y. Pang, Z. Zhang, Improved prototypical networks
for few-shot learning, Pattern Recognition Letters 140 (2020) 81–87.

[26] D. Wang, Y. Cheng, M. Yu, X. Guo, T. Zhang, A hybrid approach with555

optimization-based and metric-based meta-learner for few-shot learning,
Neurocomputing 349 (2019) 202–211.

[27] E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, K. Xu, R. Goroshin,
C. Gelada, K. Swersky, P.-A. Manzagol, H. Larochelle, Meta-dataset: A
dataset of datasets for learning to learn from few examples, arXiv preprint560

arXiv:1903.03096.

[28] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly
learning to align and translate, in: International Conference on Learning
Representations, 2015.

[29] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, T.-S. Chua, Sca-565

cnn: Spatial and channel-wise attention in convolutional networks for image
captioning, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 5659–5667.

[30] S. Jetley, N. A. Lord, N. Lee, P. H. Torr, Learn to pay attention, in:
International Conference on Learning Representations, 2018.570

[31] S. Woo, J. Park, J.-Y. Lee, I. So Kweon, CBAM: Convolutional block at-
tention module, in: Proceedings of the European Conference on Computer
Vision, 2018, pp. 3–19.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, The575

Journal of Machine Learning Research 15 (1) (2014) 1929–1958.

[33] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, C. Bregler, Efficient object
localization using convolutional networks, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 648–
656.580

[34] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift, in: International Conference on
Machine Learning, 2015, pp. 448–456.

[35] L. v. d. Maaten, G. Hinton, Visualizing data using t-sne, Journal of machine
learning research 9 (Nov) (2008) 2579–2605.585

[36] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, T. Lillicrap, Meta-
learning with memory-augmented neural networks, in: International con-
ference on machine learning, 2016, pp. 1842–1850.

20

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual590

recognition challenge, International Journal of Computer Vision 115 (3)
(2015) 211–252.

[38] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal of Software Tools.

[39] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, Tensorflow: Large-scale machine learn-595

ing on heterogeneous distributed systems, arXiv preprint arXiv:1603.04467.

[40] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
International Conference on Learning Representations, 2015.

[41] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features
in deep neural networks?, in: Advances in neural information processing600

systems, 2014, pp. 3320–3328.

21

	Introduction
	Related Work and Motivation
	Few-shot Learning approaches
	Attention Mechanisms
	Dropout

	Methodology
	Problem Set-Up
	The L2AE-D Model
	Model Architecture
	Meta-level Dropout

	Experiments
	Experimental setup
	Analysis of the Results on Omniglot
	Analysis of the Results on miniImageNet
	Analysis of the effect of Meta-level Dropout
	Visualisation of the working of L2AE-D

	Conclusion

