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Abstract

This manuscript proposes two novel formulations for the manufacturable

stacking sequence retrieval of laminated composite structures. Detailed siz-

ing of composite structures is commonly tackled by a two-stage optimisation

approach, the first stage being a weight minimisation resulting in a contin-

uous thickness and stiffness distribution of the structure. The second stage,

which is the focus of the current paper, aims at retrieving stacking sequences

that match the optimised target thickness and stiffness characteristics of the

first stage, while also fulfilling a set of predefined design and manufactur-

ing rules, with blending being one of the most crucial ones. The problem

of retrieving layered designs that meet all of the prescribed composite rules

is formulated as two Mixed Integer Linear Programming instances which
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mainly differ in how the blending is treated. Using either of the two for-

mulations, mathematical programming algorithms can be employed to solve

the problem to global optimality. Results show that both formulations can

produce manufacturable solutions that fulfil the imposed composite rules.

High-quality solutions can be obtained consistently, while benefiting from

increased design freedom concerning the blending formulation.
Keywords: Integer Programming, Blending, Stacking Sequence

Optimisation

1. Introduction

Composite materials, such as fibre-reinforced plastics, find application

in many high-end products such as aeronautical or automotive structures,

wind turbines, sports equipment and more because they offer reduced weight

and enhanced mechanical characteristics. Aside from this, composites are

generally anisotropic materials, providing the engineer with increased design

freedom when compared to the classic metallic materials. However, the prob-

lem that arises is that with increased design freedom, the complexity of sizing

the structure in detail also increases.

Most high performance aircraft structures are produced by laying unidi-

rectional tapes of polymer pre-impregnated fibres one next to each other to

form a lamina or ply with a specific fibre orientation. More plies are added on

top, in such a way that their orientation and number forms a laminate which

satisfies the stiffness and thickness requirements of the part. Large-scale

structures are discretised in so-called patches across their span to address

the local requirements and therefore the stacking sequence varies between
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the patches.

During the optimisation process, a large set of constraints must be taken

into account. First of all, design rules regulating the stacking characteristics

of each patch in the structure should be followed. Secondly, to ensure struc-

tural integrity and manufacturability, the stacking sequence of neighbouring

patches needs to be integrated into a design that follows specific rules, re-

ferred to as manufacturing rules, in which blending or continuity of the plies

is of significant importance. Finally, the structure needs to fulfil a large set

of physical constraints, related to strength, buckling, aeroelasticity, damage

tolerance and other requirements.

The problem of composite stacking sequence optimisation has been stud-

ied thoroughly by many researchers over the last decades. A review of dif-

ferent approaches to stacking sequence optimisation can be found in Ghiasi

et al. [13, 12]. Two particularities of the problem dominate the nature of the

proposed optimisation approaches. Firstly, the problem contains mostly inte-

ger design variables but both discrete and continuous constraints. Secondly,

many of the continuous constraints require computationally expensive Finite

Element (FE) model evaluations. Therefore, although metaheuristics have

been widely employed to perform the optimisation [24, 44, 32, 9, 4, 40, 20, 3],

their usage becomes prohibitive for large-scale problems due to the increased

number of optimisation cycles required, combined with the computational

expense of the FE evaluations. Furthermore, gradient-based optimisation

methods [43, 29, 42, 6, 11, 23] are very well suited for the continuous part of

the problem, combined with the solution cost of the FE model, but fail to

efficiently handle the discrete part of the problem.
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In an attempt to incorporate the benefits and eliminate the drawbacks

of both gradient and stochastic algorithms, a two-stage optimisation process

has been employed by several researchers, previously. During the first stage,

a weight minimisation is performed [16, 34] using either lamination [17, 30]

or polar parameters [33, 35] to describe the structural stiffness. The result

of this stage is an optimal, continuous distribution of thickness and stiffness

characteristics. The continuous thickness is usually rounded up to the near-

est integer number of layers in order to achieve a manufacturable design.

This discretisation is performed since the thickness of the pre-impregnated

tape that will be used in manufacturing, is decided a priori and is treated as

a constant parameter during the sizing optimisation. This discrete thickness

and the aforementioned stiffness distribution, can be used as targets by the

second stage of the optimisation process which is usually a stochastic algo-

rithm [26, 18, 7, 21] that can handle design and manufacturing rules more

efficiently.

The principal novelty of this work is the formulation of the composite

manufacturing rules as two different Mixed Integer Linear Programming

(MILP) models. Although potential structural engineering applications of

operational research have been identified [25], a complete MILP formulation

of the stacking sequence optimisation has not yet been presented to the best

of the authors’ knowledge with the exception of some composite design rules

which have been previously formulated in such a way [2]. Additionally, Kang

& Blom [22] have worked towards that direction, having however treated the

blending rules in the context of compliance with pre-computed laminates,

which is not the case for the present study. Other studies focusing on tree
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structures and branch and bound algorithms [38, 37, 48, 27, 28], are algo-

rithmic approaches built around the specific nature of the stacking sequence

optimisation problem in question. In this work, two complete formulations

accounting for all composite design and manufacturing rules which can be

used in any optimisation solver able to handle a MILP problem formulation

are presented.

The rest of this paper is structured as follows: In Section 2 composite

guidelines relevant to the stacking sequence retrieval for aeronautical struc-

tures are presented. The two MILP formulations of the blended stacking

sequence optimisation are formulated in Section 3. Results from the two

formulations are demonstrated in Section 4 and the findings of this work are

summarised in Section 5.

2. Composite rules

Besides physical constraints such as buckling, strength, maximum al-

lowable displacements etc., that naturally govern the optimisation problem,

there are also several rules, which are commonly used in the aerospace indus-

try when designing composite structures. These rules serve as guidelines for

manufacturing laminates, which are less prone to high stress concentration

and unwanted mechanical coupling effects. Most of these rules have also been

presented in previous works [19, 5]. Below, the composite rules implemented

and used in this work are summarised.

The composite rules are grouped into two categories, i.e. design and

manufacturing rules. Design rules regulate the stacking sequence of a single

uniform laminate.
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1. Symmetry. Symmetric laminates about the mid-plane are commonly

used to avoid bending-extension coupling.

2. Balance. Balanced laminates consist of equal +θ and −θ orientations

(θ , 0o, 90o), in order to eliminate shear-extension coupling.

3. Minimum percentage. A minimum percentage of all fibre orientations

used in a laminate might be enforced to minimise matrix degradation

and favour a fibre-dominated failure mode instead.

4. Damage tolerance. External plies should never be in the direction of

the main load path. Commonly, a 45o or −45o layer is placed in the

outermost part of the laminate.

5. Contiguity. The maximum grouping of equally oriented layers is limited

in order to minimise interlaminar stresses and ensure a homogeneous

stress distribution.

6. Grouping. Grouping +θ and −θ layers might be applied to reduce

bending-twist coupling.

7. Disorientation. The difference in fibre orientation between two adjacent

layers might be limited to 45o to minimise inter-laminar shear effects.

It should be noted that although grouping and disorientation design rules

may both be advisable for a structure, their requirements are contradictory

and hence cannot be applied simultaneously.

The manufacturing rules consider the transitioning between laminates

placed in neighbouring patches.
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1. Continuity/blending. Continuity, also commonly referred to as blend-

ing, ensures manufacturability and structural integrity of the laminated

composite. Various definitions of blending are available in the litera-

ture. Adams et al. [1] used two simplified blending definitions, i.e.

outward (Fig. 1a) and inward (Fig. 1b) blending, in which only out-

ermost or innermost plies, respectively, are allowed to be dropped. A

ply-drop indicates that a ply stops and does not continue on to the next

patch of the structure. Campen et al. [8] introduced generalised (Fig.

1c and Fig. 1d) and relaxed generalised (Fig. 1e) blending. These two

definitions allow for significantly greater design freedom since they do

not limit the ply drop position to an outer or inner ply. Generalised

blending requires all plies in a thinner patch to continue in the adjacent

thicker panels, while in relaxed generalised blending two neighbouring

panels are considered to be blended if no dropped edges are in physi-

cal contact. In the current work, generalised blending is used instead

of the relaxed generalised blending, as the latter leads to high stress

concentrations.

2. Maximum dropping. The maximum number of plies dropped in transi-

tions between neighbouring laminates is limited to ensure smooth load

distribution throughout the structure.

3. External covering ply. At least one of the outer plies in a laminate is

not allowed to be dropped in order to ensure structural integrity.

4. Internal covering ply. Not more than a certain number of consecu-

tive plies are allowed to be dropped simultaneously so that potential
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delamination initiation zones are avoided.

Other manufacturing rules concerning the exact transitions within the taper

area are not considered, because this level of detail is not in the scope of the

current work. It should be mentioned that the taper area refers to the zone

formed by the plies of two neighbouring patches merging into each other.

The full potential of the generalised blending definition is exploited in the

current work (Fig. 1d), in a sense that the set of plies used in the thinnest

patch must not necessarily extend to the rest of the patches in the struc-

ture. This is not the case for other implementations of generalised blending,

such as the Stacking Sequence Tables (SSTs) [19], the Global Shared Layer

Blending [21] or the modified Shepard’s method [31], in which plies present

in the thinnest patch must be continued across all other patches and not only

the neighbouring ones (Fig. 1c). However, it should be noted that recent

studies using the Ply Drop Sequence concept [47], multiple SSTs [49] and a

general resolution scheme [36] have managed to eliminate some or all of the

aforementioned drawbacks, offering increased design freedom.

3. Stacking sequence retrieval

In this study, a two-stage optimisation process for the detailed sizing of

aerospace composite structures is investigated. First, a weight minimisation

of the structure is performed using a gradient-based optimisation algorithm,

the result of which is a continuous thickness and stiffness distribution. A

given structure is manually discretised into patches, which represent areas

that will be considered as individual laminates during the optimisation. This

gradient-based optimisation is part of the multidisciplinary optimisation tool,
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(a) Outward blending (b) Inward blending

(c) Generalised blending example 1 (d) Generalised blending example 2

(e) Relaxed generalised blending

Figure 1: Blending examples between 3 patches.

referred to as LAGRANGE [39], developed in-house at Airbus. In the second

stage of the process, which is the focus of this work, the stacking and blending

optimisation problem is formulated as two different MILP models, which are

solved using Gurobi [15]. The resultant stacking sequence, fulfils all design

and manufacturing rules by matching the optimal stiffness characteristics

calculated during the first optimisation stage. These stiffness characteristics

are provided to the second stage of the optimisation in the form of lamination

parameters.

9



3.1. Lamination parameters

Lamination parameters were first introduced by Tsai & Pagano [45].

They can be used to decouple the stacking-sequence-dependent part from

the material-dependent part of a laminate’s stiffness matrix. In the general

case of an anisotropic laminate, 12 lamination parameters and 5 material

parameters fully define the stiffness matrix. The extensional stiffness A,

bending extension coupling stiffness B and bending stiffness D matrices are

formulated as:



A11

A22

A12

A66

A16

A26



= h



1 ξA1 ξA3 0 0

1 −ξA1 ξA3 0 0

0 0 −ξA3 1 0

0 0 −ξA3 0 1

0 ξA2 /2 ξA4 0 0

0 ξA2 /2 −ξA4 0 0





U1

U2

U3

U4

U5


(1)



B11

B22

B12

B66

B16

B26



= h2

4



0 ξB1 ξB3 0 0

0 −ξB1 ξB3 0 0

0 0 −ξB3 0 0

0 0 −ξB3 0 0

0 ξB2 /2 ξB4 0 0

0 ξB2 /2 −ξB4 0 0





U1

U2

U3

U4

U5


(2)
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

D11

D22

D12

D66

D16

D26



= h3

12



1 ξD1 ξD3 0 0

1 −ξD1 ξD3 0 0

0 0 −ξD3 1 0

0 0 −ξD3 0 1

0 ξD2 /2 ξD4 0 0

0 ξD2 /2 −ξD4 0 0





U1

U2

U3

U4

U5


(3)

In the above equations, U denotes the material constants and h the thickness

of the laminate. The lamination parameters are defined as:

ξA[1,2,3,4] = 1
h

∫ zi
2

− zi
2

[cos(2θ), sin(2θ), cos(4θ), sin(4θ)]dz (4)

ξB[1,2,3,4] = 4
h2

∫ zi
2

− zi
2

[cos(2θ), sin(2θ), cos(4θ), sin(4θ)]zdz (5)

ξD[1,2,3,4] = 12
h3

∫ zi
2

− zi
2

[cos(2θ), sin(2θ), cos(4θ), sin(4θ)]z2dz (6)

where − zi

2 and zi

2 stand for the distance of the bottom and top surface of the

ith ply with respect to the midplane of the laminate.

3.2. Mixed Integer Linear Programming (MILP) formulation

The input for the stacking sequence calculation is a simple geometric

definition of the patches, together with the optimal number of the total lay-

ers and lamination parameters for each patch. The MILP formulation of this

problem is discussed in this section. Two distinct formulations of the blended

stacking sequence optimisation, namely explicit and implicit, have been de-

veloped. As far as the design rules are concerned, their expression does not
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fundamentally differ between the two formulations. The distinctive difference

between the two is how blending and ply-drops are modelled. Nevertheless,

both the explicit and implicit formulation make use of the same principles of

generalised blending described in Section 2. Therefore, the resulting struc-

ture from each formulation is expected to be the same if the same input and

constraints are used for each optimisation.

In brief, the explicit formulation considers all patches having the same

number of layers, with that number being equal to the number of layers in

the thickest patch of the structure. Since each patch has a different optimum

number of layers, some of the patches will consist of plies that correspond to

ply-voids as displayed in Fig. 2a. The implicit formulation demonstrated in

Fig. 2b takes into account the fact that each patch has a different, known

number of optimum layers, and defines the appropriate number of layers for

each individual patch. The benefit of the explicit formulation is that the

blending of the structure is rather straightforward, as continuity is ensured

by placing plies of the same orientation one next to the other. The disadvan-

tage of this formulation is that the locations of the ply drops are not known

and therefore there are many possible ‘positions’ one specific ply could have

within the laminate. Therefore, since the order at which plies will appear is

not known, the calculation of the lamination parameters for such a stack is

cumbersome. The advantage of the implicit formulation is that the calcula-

tion of lamination parameters is straightforward as the position of each ply is

clearly defined. The downside of the method is the fact that formulating the

manufacturing rules and most importantly the continuity of the structure is

more challenging.
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(a) Schematic representation of the explicit formu-

lation.

(b) Schematic representation of the implicit formu-

lation.

Figure 2: An illustrative example of the same blended stack for two neighbouring patches

as represented by the explicit and implicit formulation. Each colour represents a different

fibre orientation, ply-voids are illustrated using hatched plies and arrows indicate ply

continuity.

3.2.1. Explicit formulation

Various design variables are introduced in order to formulate the blended

stacking sequence problem. Each set of design variables, i.e. x, y, b, c, d, z, u,

g, f contains many individual members. The number of members for each set

depends on the usage of the design variable and different indexes are used to

distinguish between the individual members of each set of design variables.

Index i ∈ {1, 2, ..., I} is used to denote the exact layer in a specific patch

j ∈ {1, 2, ..., J}. It is important to mention that the range of i is constant for

all patches j, even if most of the patches are expected to have less layers than

I which is the number of layers for the thickest patch in the structure. Index

θ ∈ {1, 2, ...,Θ} denotes the different available fibre orientations. Finally,

k ∈ {1, 2, 3, 4} distinguishes between the lamination parameter which is of

interest. A summary of the indexes employed to differentiate between the

members of each design variable set is given in Table 1.

The objective is to minimise the deviation from the optimal values of
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Table 1: Summary of indexes used to denote the various design variables in the explicit

formulation.

Name Description

i Layer

j Patch

θ Fibre orientation

k Lamination parameter

lamination parameters as formulated below:

min
J∑
j=1

wA,B,Dk |ξA,B,Dkj − (ξA,B,Dkj )optimal| ∀k (7)

where ξA,B,Dkj ∈ [−1, 1] are the lamination parameters calculated for a spe-

cific stack, whereas, (ξA,B,Dkj )optimal are the optimal parameters delivered by

the gradient-based optimisation. Weight coefficients wA,B,Dk may be used

to emphasise specific parts of the objective function. Two new sets of de-

sign variables need to be introduced to assist with the linear formulation of

the objective function. The first one is gA,B,Dkj ∈ [0, 1], defined as gA,B,Dkj =

|ξA,B,Dkj − (ξA,B,Dkj )optimal|. The objective function is not linear in its current

form, because of the absolute value, therefore, a simple linearisation needs

to be performed. The additional set of design variables fA,B,Dkj ∈ {0, 1}, is

also introduced to enable the linearisation described by the following set of

equations
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ξA,B,Dkj − (ξA,B,Dkj )optimal ≤ fA,B,Dkj ∀j, k

(ξA,B,Dkj )optimal − ξA,B,Dkj ≤ 1− fA,B,Dkj ∀j, k

ξA,B,Dkj − (ξA,B,Dkj )optimal ≤ gA,B,Dkj ∀j, k

(ξA,B,Dkj )optimal − ξA,B,Dkj ≤ gA,B,Dkj ∀j, k

gA,B,Dkj ≤ ξA,B,Dkj − (ξA,B,Dkj )optimal + 2(1− fA,B,Dkj ) ∀j, k

gA,B,Dkj ≤ (ξA,B,Dkj )optimal − ξA,B,Dkj + 2fA,B,Dkj ∀j, k

(8)

To make the formulation of the problem possible, the binary design vari-

ables xijθ ∈ {0, 1} defining the orientation of a specific layer within a certain

patch are introduced. More specifically, every layer consists of Θ design vari-

ables, each one representing whether the corresponding fibre orientation is

used or not. Each layer may only have one orientation, or none, in the case

the ply is dropped. Therefore, the following feasibility constraints need to

be defined.

Θ∑
θ=1

xijθ ≤ 1 ∀i, j (9)

Additionally, the number of layers in a patch must be equal to the optimum

discretised thickness (nj) which originates from the continuous optimisation

and remains fixed throughout the discrete optimisation.

I∑
i=1

Θ∑
θ=1

xijθ = nj ∀j (10)

In many cases, laminates are designed to be symmetric. Whenever sym-

metry is required, the following constraints need to be incorporated in the

optimisation model.
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xijθ = x(I−i+1)jθ ∀i{1, 2, ..., I/2}, j, θ (11)

Balanced laminates can be extracted from the optimisation by including the

following constraints.

I∑
i=1

xijθ1 =
I∑
i=1

xijθ2 ∀i, j, θ1 = −θ2 , {0, 90} (12)

The minimum percentage (p) design rule is implemented as:

I∑
i=1

xijθ ≥ pnj ∀j, θ (13)

The damage tolerance rule is demonstrated below for the case that the outer-

most ply is equal to 45o. This layer also has to be continuous over all patches

according to the external covering ply manufacturing rule. The following

constraints fulfill both requirements.

x1jθ1 = 1 ∀j, θ1 = 45 (14)

The grouping design rule for the case of symmetric laminates is formulated

as:

xijθ1 ≤ xijθ2 ∀i ∈ {1, 2, ..., I/2}, j, θ1 = −θ2 , {0, 90} (15)

For non symmetric laminates, the i range needs to be modified accordingly.

The contiguity and disorientation constraints cannot be easily implemented

in the explicit formulation and are hence only going to be presented for the

implicit formulation in the next section.
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In order to define the continuity manufacturing constraint between neigh-

bouring patches, further design variables need to be introduced. A set of

them is yij ∈ {0, 1}, defining the presence or absence of a specific ply within

a patch. The continuity constraint is expressed as:

xij2θ = xij1θyij2 ∀i, j, θ. (16)

Because the constraint presented above is non-linear, it needs to be linearised

in order to be handled by a MILP solver. The linearisation constraints for

the product of two binary variables [10] are now introduced.

xij2θ ≤ xij1θ ∀i, j, θ

xij2θ ≤ yij2 ∀i, j, θ

xij2θ ≥ xij1θ + yij2 − 1 ∀i, j, θ

(17)

In the above equation, patches j1 and j2 denote two neighbouring patches

within the structure. An additional constraint which is not necessary, but

has been observed to assist the convergence of the optimisation, is used to

define the number of ply drops per patch based on the known number of

layers for each patch.

I∑
i=1

yij = nj ∀j (18)

Before moving on to the definition of the rest of the constraints, it is worth

formulating the lamination parameter values in a way that serves the specific

approach to the problem. The formal definition of lamination parameters has

already been presented in the previous section (equations 4-6).
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ξA,B,Dkj =
I∑
i=1

4∑
θ

skθa
A,B,D
ij xijθ ∀j, k (19)

Coefficients skθ take into consideration the influence of the trigonometric

terms, depending on which θ design variable is used out of xijθ. Additionally,

coefficients aA,B,Dij depend on whether A, B or D lamination parameters are

considered and on the position of the ply within the laminate. Due to the fact

that ply drops are included in the problem formulation as design variables,

the distance of each ply from the mid-surface of the laminate is not known a

priori. Another set of design variables bij ∈ {0, 1, 2, ...,M1} is used for that

purpose, where the upper bound is M1 = i + 1 The definition of bij is as

follows:

bij =
i∑

m=1
ymj ∀i, j (20)

In summary, the aforementioned coefficients aA,B,Dij depend on the bij design

variables and are defined as:

aAij = 1
nj

∀i, j (21)

aBij = − 4
(nj)2 bij + 2nj + 2

(nj)2 ∀i, j (22)

aDij = 12
(nj)3 (bij)2 − 12nj + 12

(nj)3 bij + 3(nj)3 + 6nj + 4
(nj)3 ∀i, j (23)

The term (bij)2 in equation 23 is not linear and therefore needs to be lin-

earised. Due to the fact that the linearisation of a product of two bounded
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integer variables is cumbersome and involves piecewise linearisations, a trick

is employed to calculate cij ∈ {0, 1, 2, ..., (M1)2} as:

(bij)2 = cij = (
i∑

m=1
2dmj)− bij ∀i, j (24)

In the above equation, a new set of design variables dij ∈ {0, 1, 2, ...,M1}

was introduced. These are defined as dij = bijyij and once again need to be

linearised. The linearisation of the product of two variables, one of which

is binary and the other an integer with an upper bound of M1 and a lower

bound of 0, is defined by the following four inequalities [14].

dij ≤M1yij ∀i, j

dij ≤ bij ∀i, j

dij ≥ bij − (1− yij)M1 ∀i, j

dij ≥ 0 ∀i, j

(25)

Finally, due to the fact that the product of aB,Dij xijθ appears in equation 19,

two new sets of design variables uijθ ∈ {0, 1, 2, ...,M1}, zijθ ∈ {0, 1, 2, ..., (M1)2}

need to be introduced and are defined as uijθ = bijxijθ and zijθ = cijxijθ. The

linearisation of these design variables follows the principles of equation 25.

The lamination parameter values can eventually be expressed as:

(ξBkj) =
I∑
i=1

4∑
θ=1

skθ(−
4

(nj)2uijθ + 2nj + 2
(nj)2 xijθ) ∀k, j (26)

(ξDkj) =
I∑
i=1

4∑
θ=1

skθ(
12

(nj)3 zijθ −
12nj + 12

(nj)3 uijθ + 3(nj)3 + 6nj + 4
(nj)3 xijθ) ∀k, j

(27)
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The internal covering ply manufacturing constraint is formulated using

the bij design variables as:

b(i+K)j1 − b(i+K)j2 − (bij1 − bij1) ≤ K − 1 (28)

where j1 and j2 denote two neighbouring patches and K the number of

maximum consecutive ply drops. The maximum dropping manufacturing

rule is explicitly satisfied due to the fixed number of layers provided as an

input to the optimisation and therefore does not require further constraints.

3.2.2. Implicit formulation

Similarly to the explicit formulation, various design variables need to

be introduced. Each set of design variables, i.e. x, r, t, g, f , contains many

individual members. Once again, index i ∈ {1, 2, ..., Ij} is used to denote

the exact layer in a specific patch j ∈ {1, 2, ..., J}. The range of i is not

constant for all patches j, but rather takes a maximum value of Ij according

to the patch of interest. Index h ∈ {1, 2, ..., H} accounts for all interfaces

between neighbouring patches and index p ∈ {1, 2, ..., Ph} takes into account

the different blending combinations between neighbouring patches. A more

detailed explanation of these two indexes will be presented in the following

paragraphs. Finally, indices θ and k follow the definition of the explicit

formulation and denote fibre orientations and lamination parameter which is

of interest respectively.

The formulation of the objective function is exactly the same as the one

presented in equation 7 and the same goes for the set of design variables

gDkj ∈ [0, 1] and fDkj ∈ {0, 1}. The definition of the xijθ ∈ {0, 1} set of

design variables follows the same logic with the exception that in the implicit
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formulation, each patch is assigned with as many Ij layers as needed. All

design rules (equations 11-15) are formulated similarly with the only thing

changing being the number of maximum layers per patch Ij. An additional

minor alternation applies for equation 9 in which the inequality sign needs

to be replaced by the equality one, since the design variables xijθ in this

approach cannot correspond to a ply-drop.

Additionally, the two design rules which have not been formulated for

the explicit approach can now be implemented. The contiguity constraint

limits the number of consecutive layers having the same fibre orientation to

a maximum of N . In a mathematical formulation this is expressed as:

xijθ + x(i+1)jθ + . . .+ x(i+N)jθ ≤ N ∀i ∈ {1, 2, ..., Ij −N}, j, θ (29)

The disorientation constraint is expressed as:

xijθ1 + x(i+1)jθ2 ≤ 1 ∀i, j, |θ1 − θ2| ≥ 45 (30)

The calculation of lamination parameter values is now trivial. Equation

19 is once again used except this time, coefficients aB,Dij can be easily pre-

calculated due to the fact that ply-drops have already been taken into account

by using an exact number (Ij) of xijθ design variables for each patch.

The part of this second approach that becomes cumbersome is formulating

the continuity between neighbouring patches. A new set of binary design

variables tihp ∈ {0, 1} is introduced and is used to regulate and keep track

of whether a specific ply within a patch will be blended with one of the p

possible neighbouring plies. The number of possibilities p per ply depends on
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the interface h examined and can easily be determined during the setup of

the optimisation problem. A representation of the different plies that could

blend between two patches is given in Fig. 3a. More specifically, for any of

the interfaces h, the maximum number of possibilities per ply (Ph) can be

calculated as:

Ph = |nj1 − nj2|+1 (31)

In the above equation, patches j1 and j2 denote the two patches which con-

stitute an interface h, with j1 being the thickest of the two, in case there

is a difference in thickness between them. The number of interfaces H is

easily calculated prior to setting up the optimisation problem based on the

arrangement of the patches. In Fig. 3b, an example of the interfaces between

a specific patch geometry is given.

(a) Knowing the number of ply drops between two neigh-

bouring patches, the different blending possibilities can be

determined for each ply independently.

(b) The interfaces between patches are

marked with red ticks for the given patch

geometry.

Figure 3: Illustrative examples showing the usage of indexes p and h.

Finally, a new set of design variables rihθp ∈ {0, 1} is defined as rihθp =

x(i+p−1)j1θtihp. Because the definition of rihθp is non-linear, a standard lin-

earisation needs to be performed. This linearisation of the product of two
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binary variables is similar to the one presented in equation 17.

The continuity manufacturing rule is then defined as:

xij2θ =
Ph∑
p

rihθp (32)

This constraint alone is not enough to ensure manufacturable composite

patches. Three further sets of constraints need to be defined to ensure the

blending between individual layers is achieved in a meaningful manner. First

of all, a left hand-side ply must blend with only one of the right hand-

side plies. References to left and right hand-side plies follow the example

illustrated in Fig. 3a.

Ph∑
p

t(i−p+1)h(Ph−p+1) ≤ 1 ∀i, h (33)

Secondly, a right hand-side ply must blend with exactly one of the left hand-

side plies.

Ph∑
p

tihp = 1 ∀i, h (34)

Thirdly, in order to avoid unmanufacturable designs that lead to plies inter-

secting (e.g. right hand-side 1 ply matched with left hand-side 2 and left

hand-side 2 matched with right hand-side 1) the third constraint is defined.

Ph∑
p

t(i−1)hp(Ph − p+ 1) ≤
Ph∑
p

tihp(Ph − p+ 1) ∀i, h (35)

Finally, the internal covering ply rule is formulated as:

j1+N∑
j1

Ph∑
p

t(i−p+1)h(Ph−p+1) ≤ 1 ∀i, h (36)
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The presented set of equations is implemented using the Python interface of

Gurobi.

3.3. Problem decomposition strategy

Both formulations presented in the previous sections solve the stacking

and blending optimisation problem considering all patches and constraints

simultaneously. In this section, a decomposition strategy is presented for the

implicit formulation of the optimisation problem. The reason for choosing

implicit instead of explicit is because the strategy can be applied with greater

freedom to any patch in the structure. This is due to the lack of ply-voids in

the implicit formulation.

The flowchart of the decomposition strategy is presented in Fig. 4. The

user needs to define a path or a set of paths containing all of the patches

in the structure. Starting from a specific patch, one neighbouring patch is

added at a time, until all patches have been included within the path. For

each of the paths defined by the user, the first sub-problem to be optimised

only includes the first two patches in the path. These two patches are opti-

mised only considering design rules applied on them and manufacturing rules

applied between their interface. Once the optimisation of this sub-problem

is converged, the next neighbouring patch defined in the path is included

in the optimisation sub-problem. This time, the stacking sequences of the

previously optimised patches are fixed by using equality constraints. If the

optimisation is carried out successfully, the patch which was added last is

fixed and the next neighbouring patch is added in the structure along with

all the relevant design and manufacturing rules. In cases where the newly

added patch borders two or more of the pre-existing patches whose stacking
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sequence is fixed, the optimisation problem might become infeasible. Conse-

quently, the fixation constraints applied to the patch being the latest addi-

tion, are removed. This operation is repeated until a feasible solution can be

retrieved by the optimisation. Once all of the patches have been introduced

in the optimisation sub-problem, the procedure is applied for the next user-

defined path. The decomposition method based on the path which resulted

to the stacking sequence with the lowest objective function value is used to

initialise the complete optimisation problem which considers all constraints

simultaneously without the stacking sequence of any of the patches being

fixed.

Even if all possible paths are considered in this decomposition strategy,

there is no guarantee that the optimal solution will be obtained in the end.

A way to improve the quality of this local minimum would be to add two or

more patches in each sub-problem at a time, instead of one. This increased

overlapping allows the optimisation process to overcome the issue of getting

stuck at local minima, since stiffness requirements of more ‘free’ patches

would be considered in the objective function of each sub-problem. The

drawback of this strategy would be the increased computational time for

each sub-problem, since the number of plies free to change and the number

of interfaces between the patches increases. It should also be noted that

the quality of the solution achieved by the decomposition strategy highly

depends on the target stiffnesses provided by the gradient-based optimisation

algorithm applied in the first stage. The accuracy of the formulation of the

composite rules, especially the formulation of the blending rule in the first

stage, highly impacts how close the resultant solution obtained from the
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Figure 4: Flowchart of the optimisation using decomposition developed for the implicit

formulation.

decomposition strategy would be to the the global optimum.

4. Numerical case studies

Initially, the explicit and implicit formulations are studied using some

illustrative cases and then a well studied benchmark problem from the scien-

tific literature is used to assess the proposed discrete optimisation approach.

Moreover, the MILP formulations are also compared against two previous
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approaches.

4.1. Explicit and implicit formulations

Both explicit and implicit formulations for discrete optimisation were able

to produce fully blended composite designs satisfying all specified design and

blending rules. In this section, we first present the results applying the ap-

proaches to some methodology demonstration problems. More specifically,

blended stacking sequences that fulfil a prescribed set of design and manufac-

turing rules are manually defined and the accordant lamination parameters,

which are used as target values during the optimisation, are calculated for

each individual patch. Therefore the optimal objective function value for this

set of problem instances is known a priori and is equal to zero. All design

and manufacturing rules described in Section 2 are used, with the exception

of contiguity, and disorientation which is omitted because grouping is used

instead. The fibre orientations for the demonstration cases are limited to

0o, 90o,±45o. The demonstration problem instances are comprised of a dif-

ferent number of patches (2 or 4), maximum number of layers in the thickest

patch (40 or 80) and number of ply drops between adjacent patches (4 or

8). In all demonstration cases, patches are placed sequentially one after the

other.

In Table 2, the final MILP problem size in terms of the number of de-

sign variables, constraints and percentage of non-zero elements in the MILP

optimisation matrix is presented for a subset of the cases. The final MILP

size does not directly correspond to the size one would theoretically calculate

given the problem definition, because Gurobi, like other commercial solvers,

applies pre-solve algorithms that might reduce the size of the problem. It can
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Table 2: Comparison of the MILP size for selected demo problems between the explicit

and implicit formulation.

Description Explicit formulation Implicit formulation

Patches Layers Ply drops Constr. Design var. Non-zeros (%) Constr. Design var. Non-zeros (%)

2 40 4 868 368 1.3 911 393 1.1

2 40 8 868 368 1.3 1146 492 0.9

2 80 8 1852 772 0.6 2745 1163 0.3

4 80 8 5071 1990 0.2 6823 2789 0.1

be observed that the size grows significantly for large instances, as expected.

Moreover, using the implicit formulation results in slightly larger problem

instances. Finally, it is worth noting that an increased number of ply drops

increases the problem size of the implicit formulation, while the size of the

explicit formulation stays the same. This is due to the fact that the design

variables and therefore the constraints of the implicit formulation depend on

the number of blending possibilities between neighbouring patches, which is

analogous to the number of ply drops.

In Fig. 5, the runtimes of the two approaches for all the different demon-

stration problem instances are presented. The individual runtimes are de-

picted using half circles of logarithmically scaled radiuses. More specifically,

the maximum radius in Fig. 5 represents a runtime of 442s while the smallest

one 0.8s. All runs have been performed on a PC with an Intel Core i5-8250U

@1.60GHz (4 cores, 8 threads) CPU. The algorithm is stopped if an objective

value less than 10−2×(number of patches) is found.

Results presented in Fig. 5, highlight the expected increase in run-time

as the number of layers and patches increase. The implicit approach is better

than the explicit approach for small sized problems, however, as the problem
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Figure 5: Illustration of run-times for the implicit and explicit formulations for the initial

set of problem instances as the number of patches, layers and ply-drops change.

size increases the explicit formulation is either comparable or better than

the implicit one in terms of time, as expected. Finally, the runtime of the

implicit formulation strongly depends on the number of ply drops between

adjacent patches, with more ply drops resulting in higher runtimes, while the

explicit formulation does not necessarily depend on the number of ply drops.

This can be explained by the fact that more design variables and constraints

need to be introduced in the implicit formulation to account for more ply

drops.

Fig. 6 illustrates the 18 panel horseshoe benchmark problem. Nx and

Ny force resultants are given in lbf/in (×175.1 to convert into N/m). The

modulus of elasticity across the fibre direction is E1 = 141GPa and E2 =

9.03GPa across the transverse direction, the shear modulus is G12 = 4.27GPa

and the principal Poisson’s ratio is ν12 = 0.32. The ply thickness is 0.191mm.
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Figure 6: Definition of the 18 panel horseshoe blending problem [41].

In Fig. 7 the convergence plots of the two different MILP formulations

are given for the horseshoe problem [41]. The ‘best known objective’ in Fig.

7 corresponds to the smallest objective function value of a solution satisfying

the constraints of the optimisation, while ‘best possible objective’ refers to

the minimum discovered bound for the value of the objective function which

is known due to the the branch and bound based algorithm being employed.

Optimality of the solution is proven when the value of the best possible

objective is equal to that of the best known objective. The optimisation is

stopped after 600s because proving optimality becomes time consuming. As

observed earlier, the implicit formulation outperforms the explicit one, since

the maximum number of layers is rather small for this problem, as shown in
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Table 3. This is not necessarily the case for larger problems for which the

explicit approach can converge to better solutions in less computational time.

The disadvantage of the explicit formulation though is the lack of providing

a good theoretical bound for the objective (Fig. 7), which in turn results in

bigger computational times until proving convergence.
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Figure 7: Convergence comparison between the explicit and implicit formulation for the

18 panel horseshoe problem.

Table 3: Number of layers for the patches of the 18-panel horseshoe problem.

Patch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Layers 34 28 22 20 16 22 20 26 38 36 30 28 22 20 26 32 20 22

Next, a comparison between the convergence of the decomposition strat-

egy and the non-decomposed implicit formulation is performed for the 18

panel horseshoe problem. Three different paths, representing patch sequences,

31



are defined to test the decomposition strategy as shown in Table 4. The first

path begins from panel 5 in the top right of the horseshoe pattern and moves

counterclockwise to patch number 18 in the bottom right following a specific

pattern. The second path is built up starting from the thinnest patch in

the structure and by gradually adding the thinnest possible neighbour each

time. The third path is constructed by starting from the thickest patch in

the structure and by choosing the thickest neighbour to add each time.

Table 4: Paths containing the sequence of patches used for the optimisation using decom-

position of the 18 panel horseshoe problem.

Path Patch sequence

1 [5,8,7,4,3,6,2,1,10,9,11,12,13,14,15,16,17,18]

2 [5,4,3,7,8,6,2,1,10,9,12,11,13,14,17,18,15,16]

3 [9,10,1,2,3,6,4,7,8,5,11,12,16,13,14,17,15,18]

Fig. 8 illustrates the progress plot for the objective value using the ap-

proaches with and without decomposition, where the three triangles mark the

objective value of each local minimum discovered by using the three different

paths. The one used to initialise the optimisation without the decomposition

is that of the best found solution which corresponds to the second path. For

the specific manufacturing rules used, the average run-time of each individ-

ual run for the different paths is approximately 10 seconds, including the

overhead of setting up each of the many sub-problems.

The fact that the path which resulted to the best solution of the optimisa-

tion with the decomposition is the one starting from the thinnest patch and

moving to the thinnest neighbour is not incidental. This can be attributed
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Figure 8: Convergence comparison between the implicit formulation and the decomposition

strategy for the 18 panel horseshoe problem.

to the fact that in thinner patches, the placement of a layer influences the

stiffness more compared to a thicker panel. Therefore, allowing the thinner

patches to be optimised first can prevent the decomposition from getting

stuck at a local minimum favouring some of the thickest patches. Finally,

as for the actual convergence, no significant speed up is observed for the ex-

amined case. The optimisation with no decomposition actually converges to

what appears to be a global minimum faster than the optimisation approach

using decomposition. However, the benefit of using decomposition becomes

more evident as the size of a problem grows which is the case for realistic

aircraft structures.

To demonstrate this effect, the loads applied to the original formulation

of the horseshoe panel problem are multiplied by a factor of 8. The material

and dimensions of the panels remain the same. After performing the first
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optimisation stage again, this increase in loads leads to a doubling of the pan-

els’ thicknesses. Fig. 9 depicts the improvement of the value of the objective

function with respect to time, for the modified horseshoe problem when ap-

plying the optimisation with and without the decomposition technique. For

this bigger optimisation problem, applying the optimisation with the decom-

position yields a much better solution in a considerably shorter time frame.

A second observation is that each of the 3 different paths now requires an

average of approximately 30 seconds to optimise compared to 10 in the orig-

inal problem definition. This is expected, since the number of layers have

doubled and the size of the optimisation problem has increased accordingly.

As the number of layers increases, the design space of the laminate becomes

wider. A wider design space also means that the current thinnest patch in

the structure does not influence the quality of the decomposition that much.

Indeed, in the this modified problem, the path which results to the lowest

objective function is the third one which starts from the thickest patch in the

structure. What is more, the deviation between the objective function val-

ues of the three paths is now considerably smaller compared to the original.

Finally, because the layers increase, the potential to match the same target

stiffness increases which leads to a lower global optimum for this modified

problem.

Overall, both the explicit and implicit formulations provide stacking se-

quences that are fully compliant with respect to the specified design and

manufacturing rules. Based on the observations and experience gained up

to now, the explicit formulation can outperform the implicit one for large

industrial problems. However, the explicit formulation still lacks the im-
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Figure 9: Convergence comparison between the implicit formulation and the decomposi-

tion strategy for the modified 18 panel horseshoe problem in which the applied loads are

multiplied by a factor of 8.

plementation of the disorientation and contiguity constraint as well as the

decomposition technique.

4.2. Comparison against relevant work

Liu et al. [27] introduced a logic-based method which is a combination of

the branch and bound and global layerwise techniques, developed to retrieve

stacking sequences that optimally match some given lamination parameters

for single patches. Table 5 compares the results obtained from the presented

methodology against the published results for various problems introduced

by Liu et al. [27]. Each example uses a different set of design rules when

matching the lamination parameters. In Liu et al. [27] two runtimes are

provided for each instance; one is the time when the optimum solution (t. to
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Table 5: Single patch optimisation results, comparison against the work of Liu et al. [27].

Results from [27] MILP Implicit formulation

Example t. to opt.(s) Total t.(s) Obj. t.(s) Obj.

1 4.77 3600+ 0.0806 3.83 0.0794

2 0.52 7.10 0.1729 0.13 0.1729

10 3.76 3600+ 0.0892 1.69 0.0892

11 0.23 5.95 0.0984 0.16 0.0984

13 0.19 0.90 0.3828 0.14 0.3828

14 0.97 1.59 0.3776 0.18 0.3776

15 6.40 9.06 0.1120 0.10 0.1120

opt.) is found and the other one is the time (Total time) until the search of

the tree is completed and hence optimality is proven. The time shown for

the implicit MILP formulation of this work is the time spent until optimality

is proven. In the overall, using a mathematical programming algorithm to

achieve the same task is shown to outperform the logic-based method. This

is due to the fact that a search of the entire tree is not necessary to prove

optimality and because more sophisticated techniques such as presolving,

cutting planes and heuristics are used to assist the optimisation convergence.

It should also be noted that for example 1 in Table 5, an objective function

with a lower value was calculated using Gurobi. The provided runtimes for

the current work have been produced using 1 thread on a 1.6GHz computer

compared to a 4GHz computer used in the work of Liu et al. [27].

Finally, the open source genetic algorithm developed by Vicente [46] is

used to optimise the horseshoe problem described in the previous section.
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Table 6: Settings used in the genetic algorithm of Vicente [46].

Parameter Value

Population size 200

Maximum number of generations 1000

Elitism percentage 4%

Probability of mutation 15%

Probability of crossover 75%

The genetic algorithm uses the Stacking Sequence Table encoding. All de-

sign and manufacturing rules are used, except for the grouping rule, because

the disorientation design rule is activated instead. The settings used for the

runs of the genetic algorithm are summarised in Table 6. The convergence

history of various genetic algorithm runs and of the implicit formulation are

presented in Fig. 10. All algorithm runs have been performed on the same

1.6GHz CPU using only one core. The implicit formulation converges to a

much better solution. This can be attributed to two reasons. First of all,

the blending formulation in this work allows for more design freedom, as

explained in section 2, which leads to a smaller feasible objective function.

Secondly, the mathematical programming algorithm used to solve the prob-

lem formulation, as presented in the current work, can consistently lead to

the optimal value of the objective function, while the genetic algorithm gets

trapped in different local minima, based on the contextual random number

generator seed. However, the genetic algorithm is able to provide decent

feasible solutions in less time.
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Figure 10: Convergence comparison between the implicit formulation and a guide-based

genetic algorithm [46] for the 18 panel horseshoe problem.

5. Conclusions

a Both formulations can be used in conjunction with mathematical pro-

gramming algorithms and are able to retrieve laminated composite structures

which fulfil a set of prescribed design and manufacturing rules. The objec-

tive function of this optimisation involves the minimisation of the absolute

difference between the stiffness of the computed design and a set of target

stiffness characteristics provided by the first stage of the optimisation.

The derived formulations, namely explicit and implicit, mainly differ in

the way blending is treated. The explicit formulation offers a much more

direct approach to the representation of blending, which however increases

the complexity of defining the objective as a linear function of the available

design variables. The derivation of blending constraints for the implicit for-
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mulation is more complex, however other composite rules and the objective

function can be easily derived. Finally, a decomposition technique has been

developed for the implicit formulation to assist with the discovery of good

local optima in a much shorter time frame.

The results presented show that both formulations are able to tackle a

widely used benchmark in a reasonable time frame. The explicit formula-

tion is able to tackle problems of larger size in a shorter time. However,

the utilisation of the decomposition technique on the implicit formulation is

very promising for applications in industrial composite parts of much larger

scales. Compared to an open-source genetic algorithm, the current formu-

lations lead to better discrete stacks in a given time frame. This can be

partly attributed to the fact that the current formulations offer more design

freedom than most available blending representations and partly to mathe-

matical programming algorithms, offering a more robust convergence towards

the global optimum compared to heuristics. Comparison of the current MILP

formulation against a custom-made Branch and Bound algorithm focusing on

the stacking sequence optimisation of single patches, shows that optimality

of the solution can be proven faster for all examined cases.

The present paper offers two novel formulations of the thoroughly exam-

ined discrete blending and stacking sequence optimisation problem. Future

work may involve the incorporation of manufacturing cost requirements and

objectives in the formulation. The explicit formulation might be better suited

for such an addition, but the drawbacks of its implementation must first be

dealt with. Improvements on the quality of the solution retrieved by the de-

composition technique can also be achieved by overlapping more patches for
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each sub-problem at an extra computational cost, or by exploring more ad-

vanced techniques of removing fixation constraints is the case a sub-problem

becomes infeasible.
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