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Abstract Many successful approaches to examination timetabling consist of multiple

stages, in which a constructive approach is used for finding a good initial solution,

and then one or more improvement approaches are employed successively to further

enhance the quality of the solution obtained during the previous stage. Moreover, there

is a growing number of studies describing the success of approaches which make use

of multiple neighbourhood structures. In this study, we investigate the methods of or-

dering neighbourhood structures within a Variable Neighbourhood Search approach

using a great deluge move acceptance method. We also analyse how this approach

performs as an improvement algorithm when combined with different initialisation

strategies while performing multiple runs for examination timetabling. The empirical

results over a well known examination timetabling benchmark show that the perfor-

mance of Variable Neighbourhood Search great deluge performs competitively, ranking

second among previously proposed approaches, with the right choice of initialisation

and neighbourhood ordering methods.
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1 Introduction

Examination timetabling is a well known computationally difficult real-world combina-

torial optimisation problem ([32], [19]). Constructing a solution requires the assignment

of a set of examinations to a limited number of time-slots subject to certain constraints

which are frequently classified as hard and soft. The hard constraints must be satis-

fied for a solution to be considered feasible. A standard example of a hard constraint

is the requirement that students cannot sit two examinations at the same time. Soft

constraints, such as allowing students free time between examinations represent what

are commonly referred to as preferences. An examination timetabling solution method

aims to reduce the number of violations of such constraints while producing feasible

high quality solutions.

As an indication of the inherent difficulty of examination timetabling, one of the

largest problem instances solved to optimality as a real world problem Yeditepe Univer-

sity is reported in [34]. It has thirty-eight scheduled examinations. Due to the size of real

world instances, it is therefore not surprising that the goal of examination timetabling

is frequently defined as finding a high quality schedule for a given set of examina-

tions subject to various institutional and individual preferences. The approaches to

examination timetabling are mostly based on two search paradigms: construction and

improvement [13]. A constructive approach starts with an empty solution and incre-

mentally builds towards a complete solution. For example, graph colouring heuristics

are commonly used as construction heuristics in examination timetabling. On the other

hand, an improvement approach uses a complete or feasible solution and is concerned

with further refining the quality of that initial solution. In the work presented here, we

use an iterative framework which employs a set of mutational neighbourhood structures

making random modifications and using local search.

Solution methods for examination timetabling problems have been widely inves-

tigated over the last decade or so. These methods include exact ([38]), constraint-

based ([29]), heuristic ([5]), meta-heuristic ([14]), hyper-heuristic ([12], [22]) and multi-

objective ([33]) approaches. Meta-heuristic techniques can be thought of as usually

comprising two major classes of methodology i.e. stochastic local search-based tech-

niques that deal with a single candidate solution at each iteration, and population-

based techniques that maintain a set of candidate solutions during the search process.

The stochastic local search-based techniques include tabu search ([23]), simulated an-

nealing ([9]), iterated local search ([17]), large neighbourhood search ([1]) and variable

neighbourhood search ([11]), whilst the population-based techniques include genetic al-

gorithms ([18]), memetic algorithms ([22])and ant algorithm ([21]). Some other recent

approaches applied to timetabling are hyper-heuristics ([15], [36]), case-based reasoning

([41]), fuzzy-based methods([7]), granular modeling ([4]), the developmental approach

([35]) and a harmony search algorithm ([6]). A review of the major approaches in

examination timetabling can be found in [19] and [37].

Many successful approaches to examination timetabling, for example [17] and [31],

consist of multiple stages, in which a constructive approach is used for finding a good

quality initial solution, and then one or more improvement approaches are employed

successively to further improve the quality of solution obtained during the previous

stage. In most of the cases in which single point based search is performed, there are

two main stages. An approach is used to build an initial solution which is fed into an

improvement algorithm. For example, the winning approach in the 2007 International

Timetabling Competition (ITC2007), uses constraint programming to build a solution
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which is then passed to a stochastic local search algorithm for improvement ([31]). If a

deterministic approach is used to construct an initial solution and the improvement al-

gorithm is a stochastic algorithm, then for each trial of the improvement algorithm for

a given instance, the same initial solution has to be used. If the initialisation approach

employs randomness within, then the improvement approach can use a different initial

solution produced by that approach at each trial. The main objective of this study

is to investigate the influence of various initialisation strategies on a stochastic con-

structive approach which is used in the first stage and the influence on neighbourhood

ordering methods on the performance of variable neighbourhood search (VNS) algo-

rithm which is used in the succeeding stage. Within the later stage, VNS is combined

with a great deluge acceptance method, allowing the acceptance of some worsening

solutions for solving the examination timetabling problem. A range of methods man-

aging different neighbourhood structures were tested as a part of this approach. The

influence of initialization strategies within the construction phase and neighbourhood

orderings within the VNS during the second phase are investigated in terms of the

quality of resultant solutions across the Toronto benchmark instances ([20]). As part of

further work, it is intended to further apply the technique to the examination datasets

associated with the ITC2007 competition ([27])

The components of the VNS approach for examination timetabling are described

in Section 2, with a focus on the algorithmic components, neighbourhood structures,

neighbourhood ordering, initialisations and acceptance criteria. Section 3 provides the

experimental results and remarks. Finally, the conclusion is presented in Section 4.

2 VNS for Examination Timetabling

It is a common problem that the the search process guided solely by a local search

method could get trapped at a local optimum. The use of a different neighbourhood

structure could potentially lead to a different local optimum ([30], [24]). Therefore,

the use of multiple neighbourhood structures were introduced in [30] with the aim of

ensuring that the search process is able to continue to explore the local solution space

without becoming trapped and therefore stagnating. Variable neighbourhood search

(VNS) performs an iterative search over candidate solutions from one neighbourhood

structure to another whenever necessary. This algorithm can be considered as a sin-

gle point-based selection hyper-heuristic [13] which manages multiple neighbourhood

structures.

2.1 Neighbourhood Structures

It is known that the choice of neighbourhood structure influences the search process

in VNS ([30], [24]). The purpose of employing more than one neighbourhood structure

is to be able to combine the strengths of multiple operators during the search process

dynamically. If one neighbourhood structure fails to improve the current solution, then

the other neighbourhood structures might still have a chance for a better exploitation.

Similarly, if the search gets stuck at a local optimum, the step size of the mutation

operator in use could be small to overcome the trap, but another operator which

supports a larger step size could provide the diversification needed to explore the space

better.
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Recently, Kempe-chain moves have been successfully employed in solving timetabling

problems ([11], [3]). A standard neighbourhood structure as discussed in [39] is formed

by a single move neighbourhood which consists of choosing an examination randomly

and rescheduling it into a new feasible time-slot. In this study, along with this simple

neighbourhood structure, Kempe-chain moves are introduced.

In a general implementation, the Kempe-chain move operates over two subsets of

examinations by swapping between two feasible time-slots. Each subset of examinations

is connected by edges to represent conflict between the examinations. In this study,

the neighbourhood structures allow for infeasible moves. In the case of the Kempe-

chain neighbourhood, the infeasible move may be due to more examinations from

different time-slots being connected to the chosen examination. One of the aims of

using multiple neighbourhood structures in VNS is to shake the current solution in

various ways. In this case, the neighbourhood structures shake the current solution by

allowing an infeasible move. In order to treat this infeasibility, a repair mechanism is

used by the VNS algorithm.

Fifteen neighbourhood structures for examination timetabling are considered in

this study. Traditionally, neighborhood structures are ordered in increasing step size

used to perturb a candidate solution. The biased neighbourhood structures (referred

to as number 8, 9, 11 and 12 below) were also used as described in [11] and [2] which

choose the examination generating the highest penalty value for rescheduling from

a number of randomly selected examinations. The aim is to repair an examination

that contributes a large value to the cost function. Experiments using different sets

of neighbourhood structures would also be useful. The implemented neighbourhood

structures are ordered as follows by choosing:

1. One examination at random and move to a new random feasible time-slot.

2. Two examinations at random and move each examination to a new random feasible

time-slot.

3. Two examinations at random and swap the time-slots between these two examina-

tions. The feasibility of the two examinations is maintained.

4. Three examinations at random and move each examination to a new random fea-

sible time-slot.

5. Four examinations at random and move each examination to a new random feasible

time-slot.

6. Five examinations at random and move each examination to a new random feasible

time-slot.

7. One move of Kempe-chain with one random examination.

8. One move of Kempe-chain with one examination selected randomly from 10% se-

lection of examinations that give highest penalty.

9. One move of Kempe-chain with one examination selected randomly from 20% se-

lection of examinations that give highest penalty.

10. Two moves of Kempe-chain with one random examination.

11. Two moves of Kempe-chain with one examination selected randomly from 10%

selection of examinations that give highest penalty.

12. Two moves of Kempe-chain with one examination selected randomly from 20%

selection of examinations that give highest penalty.

13. Two time-slots at random and swap between them.

14. One time-slot at random and move to a new feasible time-slot.

15. Shuffle all time-slots at random.
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2.2 Ordering of Neighbourhood Structures

The studies by [24], [10], [8] and [2] have shown that the ordering of neighbourhood

structures within the VNS framework could considerably influence the solution quality

obtained at the end. The neighbourhood structures are frequently ordered on the basis

of a pre-defined sequence with increasing step size, to achieve a better solution quality

at the end of a run. [10], Burke et al. introduced a parameter successk to penalise a

non-improving neighbourhood structure. In the case that an improvement in the so-

lution quality is detected, search always starts using the first neighbourhood with the

smallest size. Any neighbourhood that has successk value which is less than 1, cannot

have priority in the next iteration, since this indicates that the neighbourhood cannot

improve the solution quality. In another study, [8] observed that a combination of three

different neighbourhood structures yielded an improved performance. Nevertheless, a

recent study by [11] showed that fixing the ordering of neighbourhood structures was

not essential. The study demonstrated that VNS and a hybridisation with a genetic

algorithm could produce a good quality solution. Since the solution quality was depen-

dent on the selection of the neighbourhood, the genetic algorithm worked intelligently

by selecting a neighbourhood structure from the VNS framework.

Motivated from these studies, an investigation has been undertaken into the or-

dering of neighbourhood structures, in which five variants of neighbourhood ordering

strategies are explored. The first and second variants are the ordering of neighbourhood

structures based on an increasing step size, as proposed in [10] and [2], respectively.

The first variant is a basic VNS where the neighbourhood structure starts with k = 1.

The solution search continues with the next neighbourhood k if the improvement to

the solution quality can not be found. Once an improvement to the solution quality is

found, the search starts back with k = 1; the second variant is related with the neigh-

bourhood structure used in the previous iteration. In this variant, a neighbourhood k

that has been used to improve the solution quality in the previous iteration is used in

the next iteration for finding good solution quality. These variants of neighbourhood

orderings are represented as ‘basic VNS’ and ‘start-k’, respectively.

The third variant of neighbourhood ordering is based on a strategy adapted from

squeaky wheel optimisation [25], by assigning and increasing the penalty under a pa-

rameter (called ‘priority’) of a neigbourhood structure yielding a worsening move. If

there is no improvement in the solution quality while using the current neighbourhood,

then the neighbourhood with lowest priority is chosen next. This ordering strategy is

denoted as ‘adaptive I’. A variant of ‘adaptive I’ considers the effect of neighbourhood

structures using a small step size which is a faster operation than the third ordering

strategy, but this gives relatively greater priority to neighbourhood structures using a

small step size, which is referred to as ‘adaptive II’. In the case of ties, where more

than one neighbourhood has the same priority value, then the neighbourhood structure

with the smallest step size is chosen in the next iteration.

The neighbourhood structures are first classified with respect to the step size used

in a move, as small and large. For example, a neighbourhood operator with a small step

size consists of a single move of an examination to a new feasible time-slot, whilst a

neighbourhood operator with a large step size consists of a number of examinations to

be moved and might incur large differences in the solution quality when the chosen move

takes place, for instance, when allocations in two time-slots are swapped at random.

This neighbourhood structure involves all examinations in one time-slot to be swapped

with all examinations in the other time-slot.

6th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2013) 
27-29 August 2010, Gent, Belgium

- 532 -



As the fifth variant of neighbourhood ordering, a reinforcement learning mecha-

nism is also investigated. Reinforcement learning (‘RL’) is a mechanism that interacts

with the behaviour of an environment by assigning punishments and rewards based on

its performance. In this case, a neighbourhood operator is given a reward if there is

improvement in the solution quality after its application, while a punishment is given

if the move fails to improve the current solution.

2.3 Initialisation Strategies

This study is concerned with improving the initial solution obtained from the construc-

tive approaches presented in a previous study. The main objective is to understand the

influence of different kinds of initialisation strategies on the solution quality when an

improvement approach is employed in searching the landscape starting from that initial

solution which is locally optimal. Several studies showed that good initial solutions can

ultimately translate to a further improvement in the solution quality within a short

time ([16]). Starting from a different random point (solution) in the search space at

each trial frequently helps, particularly if a stochastic local search algorithm is used

for solving a given problem. In many cases, the initial solutions are extremely poor.

Recent studies indicate the success of multi-stage hybrid algorithms in which an al-

ready improved solution is constructed and then it is further improved by another

algorithm. While testing a two-stage stochastic local search algorithm, certain choices

can be made. The algorithm dealing with the second stage will not receive a totally

random initial solution and will be improving upon the solution generated in the first

stage which will potentially be a locally optimal solution. Three different variants of

initial solutions are considered to be used in the second stage of our algorithm, i.e.

poor, good and multiple. The good initial solution is the best one obtained using the

previously proposed constructive approaches, while a poor initial solution has a quality

level which is at least 20% worse than the solution quality of that good initial solu-

tion. During the multiple trials of our stochastic local search algorithm for solving a

given instance, good and poor initial solutions are used separately as an initial solution

during all runs, while multiple initial solutions are used individually at each trial. It

is possible that some of the multiple solutions are not feasible and can be dealt with

during the improvement phase with a repair mechanism that is incorporated into the

VNS-GD algorithm. The initial solutions are obtained from the constructive approach

of Adaptive Heuristic Orderings described in [5].

2.4 Acceptance Criteria of VNS

Algorithm 1 illustrates the pseudo-code of the VNS algorithm using the great deluge

algorithm for acceptance criteria. The great deluge algorithm is a local search approach

that accepts a worsening solution based on an acceptance level of quality, denoted as

B which is decreased with a certain amount called the decay rate, denoted as β. This

approach has demonstrated a good performance for timetabling ([28], [40]). Variants

of the decay rate have been investigated by [40], [26] and [28].

The decay rate, β for this study is set as 0.001. This value is chosen as a result of

some initial tests which are not reported in this paper due to space restrictions. B is

initialised using the initial solution quality. In Algorithm 1, let s be an initial solution
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and is set as the best solution, sbest, obtained so far. The quality of solution s, f(s)

is set as f(sbest). While the algorithm starts the search, a solution s′ is generated

randomly by visiting the kth neighbourhood sequentially until a local optimum s′′ is

found. The solution s′′ is accepted whenever the solution quality of s′′, f(s′′) is better

than f(sbest). Otherwise, if f(s′′) is better than B, then the solution s′′ is accepted.

Afterwards, B is reduced proportional to β. Every time the solution quality, f(s) is

accepted, the search will continue with the next k that is identified based on an ordering

strategy of neighbourhood structure described in Section 2.2.

Algorithm 1 Variable Neighbourhood Search - Great Deluge

Select the set of neighbourhood structures Nk, k = 1, ..., kmax, to be used in the search;
choose stopping condition;
set initial solution s; sbest ← s; f(sbest ← f(s));
Estimate the acceptance level of quality to be accepted, B = f(s); set the decay rate, β;
Repeat until stopping criteria is satisfied:
1. Set k := 1;
2. Until k = kmax, repeat:
(a) Shaking: Generate a point s′ at random from the kth neighbourhood of s(s′ ∈ Nk(s));
Repair mechanism:
(b) Local Search: Apply a local search method with s′ as initial solution until local optimum
s′′ is obtained.
(c) Move or not:
Calculate f(s′′)
Great deluge acceptance criteria:
if f(s′′) is better than f(sbest) then
s← s′′

sbest ← s′′

else
if f(s′′) is better than B then
s← s′′

end if
end if
B = B − β
Continue the search with identified k.

The proposed approach is incorporated with a repair mechanism since infeasible

moves can happen. The pseudo-code of the repair mechanism for the Toronto bench-

mark datasets is shown in Algorithm 2. Delta evaluation is always applied for fast

execution of the proposed algorithm. An examination is checked against all possible

values of delta cost obtained by an assignment to each possible time-slot. Once the

lowest delta cost is found, the examination, ibest is moved to that best time-slot, jbest,

and the process continues until there is no improvement in the solution quality.

3 Experiments and Results

The experiments in this study are performed using the examination timetabling datasets

from various universities, introduced by [20]1. The version I of the datasets as intro-

duced in [37] is employed as a test bed for the proposed approaches. The objective for

the Toronto benchmark problem is to create a feasible timetable so that no student is

1 It can be accessed at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/
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Algorithm 2 Repair mechanism for the Toronto benchmark datasets

Repair mechanism:
while the delta cost > 0 do

for i = 1 to number of examinations do
for j = 1 to number of slots do

Find the lowest delta cost;
ibest ← i;
jbest ← j;

end for
end for
Move ibest to jbest

end while

required to sit two examinations at any one time. To achieve a high quality timetable,

the soft constraints need to be satisfied as much as possible. Thus, during the timetable

construction, it is required that student’s examinations are assigned as far apart as pos-

sible. The proximity cost function introduced in [20] in conjunction with the introduced

datasets was used in order to measure the quality of the obtained timetable and to

describe the average penalty of students distributed in the examination schedule.

Pentium IV 1.86 GHz. Windows machines having 1.97 Gb memory were used dur-

ing the experiments. The stopping conditions for the experiments were set as 50000

iterations. However, the running time for the initial solutions is not included during

the improvement phase because of the challenge of comparing the performance of the

algorithm using different initial solution values. 100 runs were obtained for each dataset

tested with three different initial solutions and with different types of neighbourhood

orderings. The results are provided in the tables below, each table representing the re-

sults for each initial solution tested with different neighbourhood orderings. The best

solution for each dataset is represented in bold font.

Tables 1, 2 and 3 illustrate the results of poor, good and multiple initial solutions

respectively, tested with different neighbourhood orderings for the Toronto benchmark

datasets. The initial values of the poor and good solutions for each of the datasets

are also provided in the tables. It is intended that these values will be improved using

the VNS-GD algorithm, repeating each value for a hundred runs. However, since the

multiple initial solution is generated at each run before proceeding to the improvement

phase, only the average value of all generated initial solutions is provided.

The overall results with poor initial solution are presented in Table 1. They show

that the basic VNS that always starts with k = 1 whenever there is improvement to

the solution quality, generates most of the best solutions with four best results and two

ties for kfu93 and sta83 I. With other neighbourhood orderings, start-k obtained four

best results with one tie, adaptive I obtained one best result and one tie with other

types of neighbourhood orderings, adaptive II obtained one best result but tied with

basic VNS. RL obtained one best result and a tie for sta83 I. The standard deviation

(of less than one) for different neighbourhood orderings is relatively small.

The results generated using the good initial solutions indicate the same pattern as

for the poor initial solutions, where the basic VNS obtained the best results for six

problems and a tie for sta83 I. On the other hand, the other neighbourhood ordering

types obtained three best results for start-k and one best result for the adaptive II

and RL. The rest of the neighbourhood orderings are tied for sta83 I. Considering the

standard deviation value, the good initial solution provides less than the poor initial

solution. The poor initial solution contributes a higher standard deviation as expected
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Table 1 The results of poor initial solutions tested with different neighbourhood orderings for
the Toronto benchmark datasets (RL = reinforcement learning, stdev. = standard deviation,
Av. t(m) = average running time in minutes)

One poor initial solution
Initial Basic Adaptive Adaptive Av.

Problem value Start-k VNS I II RL t(m) Best
car91 6.35 4.95 4.89 4.97 4.97 4.97 518.95 4.89
stdev. 0.06 0.06 0.06 0.07 0.07
car92 5.43 4.19 4.18 4.14 4.15 4.18 274.76 4.14
stdev. 0.07 0.06 0.06 0.05 0.05
ear83 I 47.85 33.45 33.55 33.52 33.63 33.60 18.56 33.45
stdev. 0.52 0.59 0.51 0.51 0.55
hec92 I 13.91 10.29 10.21 10.25 10.38 10.33 1.33 10.21
stdev. 0.15 0.14 0.14 0.14 0.14
kfu93 18.03 13.48 13.46 13.56 13.46 13.52 68.87 13.46
stdev. 0.15 0.15 0.15 0.15 0.14
lse91 14.29 10.53 10.55 10.60 10.57 10.55 57.30 10.53
stdev. 0.19 0.19 0.15 0.17 0.19
rye93 11.71 8.37 8.45 8.57 8.50 8.61 120.96 8.37
stdev. 0.10 0.10 0.10 0.11 0.11
sta83 I 196.68 157.06 157.06 157.06 157.07 157.06 1.06 157.06
stdev. 0.06 0.05 0.06 0.06 0.05
uta92 I 4.40 3.41 3.40 3.44 3.43 3.42 485.08 3.40
stdev. 0.05 0.04 0.03 0.04 0.04
ute92 32.80 25.04 24.96 25.08 25.06 24.96 4.06 24.96
stdev. 0.10 0.10 0.11 0.11 0.10
tre92 10.91 8.18 8.26 8.32 8.28 8.29 38.08 8.18
stdev. 0.11 0.13 0.09 0.10 0.10
yor83 I 50.48 36.22 36.77 36.23 36.71 36.05 10.32 36.05
stdev. 0.40 0.40 0.39 0.36 0.44

and this is due to the poor starting-point which tends to generate a variation in the

final solution quality.

The results from the multiple initial solutions also appear to work well with this

approach, indicating the same pattern when the solutions are generated. The basic VNS

shows great success with the best solutions for six problems, while start-k, adaptive I

and RL, each obtained one best result respectively while adaptive II obtained two best

results. The rest of the neighbourhood orderings are tied for the sta83 I problem. The

standard deviation among the neighbourhood orderings is clearly about the same, but

there are some significant differences when different types of initialisation strategies

are compared.

Among the problems, sta83 I shows almost no differences when employed with

different types of neighbourhood ordering. Even when sta83 I is addressed with different

initial solutions, the move is tended to get stuck at local optimum and no further

improvement could be obtained. This may be due to the incorporation of the repair

mechanism that checked and moved each examination and time-slot which could reduce

the least penalty cost to the lowest level. Although there are variations in the standard

deviation values for different initial solutions used for the sta83 I problem, the start

with good initial solution shows that the standard deviations (less than 0.004) are very

small.

The overall results demonstrate that the basic VNS-GD performed very well where

it obtained most best results over the thirteen problems of the Toronto benchmark
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Table 2 The results of good initial solutions tested with different neighbourhood orderings for
the Toronto benchmark datasets (RL = reinforcement learning, stdev. = standard deviation,
Av. t(m) = average running time in minutes)

One good initial solution
Initial Basic Adaptive Adaptive Av.

Problem value Start-k VNS I II RL t(m) Best
car91 5.08 4.86 4.87 4.89 4.94 4.88 542.65 4.86
stdev. 0.03 0.03 0.03 0.02 0.03
car92 4.34 4.24 4.22 4.22 4.21 4.20 286.64 4.20
stdev. 0.02 0.01 0.01 0.01 0.02
ear83 I 36.91 34.36 33.81 34.08 33.76 34.17 17.62 33.76
stdev. 0.54 1.01 0.69 0.69 0.63
hec92 I 11.13 10.11 10.19 10.28 10.23 10.30 1.38 10.11
stdev. 0.15 0.15 0.14 0.16 0.14
kfu93 14.42 13.83 13.62 13.89 13.80 13.84 60.38 13.62
stdev. 0.06 0.09 0.05 0.07 0.06
lse91 11.41 10.65 10.58 10.65 10.66 10.59 54.89 10.58
stdev. 0.12 0.13 0.14 0.12 0.11
rye93 9.37 8.51 8.45 8.51 8.50 8.53 133.74 8.45
stdev. 0.08 0.08 0.08 0.09 0.08
sta83 I 157.34 157.08 157.08 157.08 157.08 157.08 1.10 157.08
stdev. 0.00 0.00 0.00 0.00 0.00
uta92 I 3.52 3.49 3.46 3.48 3.48 3.47 496.32 3.46
stdev. 0.00 0.01 0.01 0.01 0.01
ute92 26.24 24.95 24.99 24.97 25.04 24.97 4.52 24.95
stdev. 0.12 0.13 0.11 0.11 0.13
tre92 8.73 8.36 8.28 8.31 8.37 8.38 36.08 8.28
stdev. 0.06 0.08 0.06 0.06 0.06
yor83 I 39.67 37.53 36.51 37.14 37.19 37.31 10.39 36.51
stdev. 0.35 0.52 0.42 0.38 0.39

datasets when tested with various initialisations. This suggests that the neighbour-

hood ordering with respect to the size of the neighbourhood can affect the search for

good solutions. On each occasion when there is improvement to the solution quality,

the search always starts with a small neighbourhood structure. This would allow the

search to explore more regions that cannot be achieved by other larger neighbourhood

structures, while at the same time it could reduce the processing time because the

search always begins with a small size neighbourhood structure.

The running time for this approach is quite long because of the incorporation

of a repair mechanism. The repair mechanism for the Toronto benchmark datasets

considers each examination to be repaired or improved, taking into consideration a

move to time-slot that can reduce the current penalty cost to the lowest level. In this

study, the repair mechanism not only works for the infeasible moves but it also tries

to repair each examination assignment by reducing the assignment cost.

Any VNS-based approach initialised with the multiple solutions which are all ob-

tained by the Adaptive Heuristic Orderings approach ([5]) performs the best based on

the best-of-runs results across almost all instances. Moreover, initialising VNS-based

approaches using a single solution during all trials regardless whether that solution is

good or poor does not perform as well.

Tables 4 (a) and (b) illustrate the comparison of the results from different improve-

ment approaches in the literature with our VNS-GD approach tested with multiple

initial solution and basic VNS ordering strategies. In order to see the best approach,
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Table 3 The results of multiple initial solutions tested with different neighbourhood order-
ings for the Toronto benchmark datasets (RL = reinforcement learning, stdev. = standard
deviation, Av. t(m) = average running time in minutes)

Av. Multiple initial solution
initial Basic Adaptive Adaptive Av.

Problem value Start-k VNS I II RL t(m) Best
car91 5.65 4.87 4.88 4.89 4.87 4.83 519.42 4.83
stdev. 0.08 0.07 0.08 0.07 0.08
car92 4.93 4.10 4.06 4.07 4.13 4.12 299.9 4.06
stdev. 0.06 0.05 0.06 0.18 0.06
ear83 I 41.94 33.43 33.22 33.38 33.53 33.41 19.49 33.22
stdev. 0.52 0.70 0.47 0.47 0.63
hec92 I 12.76 10.25 10.27 10.28 10.23 10.35 1.35 10.23
stdev. 0.16 0.17 0.16 0.14 0.15
kfu93 16.23 13.39 13.30 13.57 13.46 13.41 66.36 13.30
stdev. 0.18 0.17 0.13 0.15 0.16
lse91 12.82 10.45 10.45 10.36 10.38 10.46 56.81 10.36
stdev. 0.25 0.27 0.26 0.25 0.28
rye93 11.08 8.56 8.42 8.53 8.48 8.53 140.12 8.42
stdev. 0.09 0.11 0.13 0.10 0.12
sta83 I 160.16 157.04 157.04 157.04 157.04 157.04 1.37 157.04
stdev. 0.08 0.08 0.07 0.07 0.07
uta92 I 3.88 3.36 3.38 3.37 3.36 3.40 504.24 3.36
stdev. 0.04 0.05 0.05 0.05 0.05
ute92 28.55 24.97 24.92 24.99 24.93 24.93 4.38 24.92
stdev. 0.12 0.13 0.09 0.09 0.09
tre92 9.58 8.25 8.12 8.22 8.24 8.22 39.38 8.12
stdev. 0.11 0.13 0.11 0.11 0.14
yor83 I 45.18 36.48 35.88 36.27 36.37 35.96 10.69 35.88
stdev. 0.35 0.50 0.42 0.40 0.38

the results of each problem are ranked and the best approach is identified based on the

least average rank. The rank value of each approach is provided in brackets next to

the solution quality in each table. Based on the average ranking of approaches across

all instances considering their best performances, the VNS-GD approach is placed as

the second best approach. However, it did not obtain the best result for any of the

benchmark problems. The best approach is the study provided by [11] which employs

the VNS approach hybridized with a genetic algorithm. The results of pur93 I were

not included in the previous tables since it required a long running time and it was

almost impossible to obtain the results for a hundred runs due to the size of the prob-

lem. The run for pur93 I was performed with only a good initial solution starting with

solution quality (5.74), and was repeated only three times. The best result for pur93 I

is presented in Table 4.

4 Conclusion

This study investigated different initialisation strategies in order to perform multiple

runs using a variable neighbourhood search algorithm hybridised with a great deluge

move acceptance method (VNS-GD). The overall framework represents a two-stage

stochastic search algorithm which uses the VNS-GD in the second stage. We have

simulated the behavior of a deterministic algorithm in the first stage by using a single
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Table 4 Comparison of different improvement approaches with VNS-GD. The rank of each
approach as compared to the rest for each instance is indicated in parenthesis.

Problem [23] [33] [16] [29] [41] [18]

car91 6.2 (10) - 4.65 (3) 5.1 (6) 4.5 (1) 5.4 (9)
car92 5.2 (10) - 4.1 (4.5) 4.3 (7.5) 3.93 (2) 4.2 (6)
ears83 I 45.7 (12) 38.9 (11) 37.05 (10) 35.1 (8) 33.71 (4) 34.2 (5)
hec92 I 12.4 (12) 11.2 (10) 11.54 (11) 10.6 (6) 10.83 (8) 10.4 (5)
kfu93 18 (12) 16.5 (11) 13.9 (8) 13.5 (4.5) 13.82 (7) 14.3 (9)
lse91 15.5 (12) 13.2 (11) 10.82 (8) 10.5 (7) 10.35 (5) 11.3 (9.5)
pur93 I - - - - - -
rye92 - - - 8.4 (2) 8.53 (4) 8.8 (6)
sta83 I 160.8 (11) 158.1 (6) 168.73 (12) 157.3 (4.5) 158.35 (9) 157 (2)
tre92 10 (12) 9.3 (10) 8.35 (5) 8.4 (6.5) 7.92 (3) 8.6 (8.5)
uta92 I 4.2 (11) - 3.2 (3.5) 3.5 (8) 3.14 (1) 3.2 (3.5)
ute92 29 (12) 27.8 (11) 25.83 (7) 25.1 (4) 25.39 (6) 25.3 (5)
yor83 I 41 (12) 38.9 (10) 37.28 (8) 37.4 (9) 36.53 (7) 36.4 (6)
Av. Rank 11.15 10.38 7.62 6.35 5.04 6.38
Rank 12 11 9 6 5 7

(a)

Problem [1] [21] [17] [11] [40] VNS-GD

car91 5.2 (7) 5.2 (7) 6.6 (11) 4.6 (2) 4.8 (4) 4.88 (5)
car92 4.4 (9) 4.3 (7.5) 6 (11) 3.9 (1) 4.1 (4.5) 4.06 (3)
ears83 I 34.9 (6) 36.8 (9) 29.3 (1) 32.8 (2) 34.92 (7) 33.22 (3)
hec92 I 10.3 (4) 11.1 (9) 9.2 (1) 10 (2) 10.73 (7) 10.27 (3)
kfu93 13.5 (4.5) 14.5 (10) 13.8 (6) 13.0 (1.5) 13.0 (1.5) 13.3 (3)
lse91 10.2 (4) 11.3 (9.5) 9.6 (1) 10 (2) 10.01 (3) 10.45 (6)
pur93 I - 4.6 (2) 3.7 (1) - 4.73 (3) 5.71 (4)
rye92 8.7 (5) 9.8 (8) 6.8 (1) - 9.65 (7) 8.42 (3)
sta83 I 159.2 (10) 157.3 (4.5) 158.2 (7) 156.9 (1) 158.26 (8) 157.04 (3)
tre92 8.4 (6.5) 8.6 (8.5) 9.4 (11) 7.9 (2) 7.88 (1) 8.12 (4)
uta92 I 3.6 (10) 3.5 (8) 3.5 (8) 3.2 (3.5) 3.2 (3.5) 3.38 (6)
ute92 26 (8) 26.4 (10) 24.4 (1) 24.8 (2) 26.11 (9) 24.92 (3)
yor83 I 36.2 (3.5) 39.3 (11) 36.2 (3.5) 34.9 (1) 36.22 (5) 35.88 (2)
Av. Rank 6.62 8.00 4.88 3.00 4.88 3.69
Rank 8 10 3.5 1 3.5 2

(b)

poor solution and a single good solution obtained from previously proposed approaches

for each instance. The same poor and good solutions are used separately at each run

of the proposed algorithm to see their influence on the performance of the overall

algorithm. Also, we used a previously proposed stochastic constructive algorithm to

build multiple solutions for each run of VNS-GD. Moreover, the performance of the

overall framework combining different neighbourhood ordering methods with different

initialisation strategies is tested. Various initialisations and neighbourhood ordering in-

fluenced the resultant solution quality as expected. The use of different initial solutions

at each run, even though these solutions are already locally optimum, still demonstrates

good performance for examination timetabling. Considering the neighbourhood order-

ings, the overall framework performed the best with a strategy which grows the step

size whenever there is no improvement on the Toronto benchmark. Additionally, our

approach ranks the second considering all instances based on the best of runs for each
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instance when compared to previously proposed approaches. The intention is to fully

analyse and understand the results presented here before applying the method to, in

the first instance, the ITC2007 examination benchmark datasets. Although the results

so far are extremely encouraging, it is important to carry out further evaluation and

testing.
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