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Abstract. Due to the complexity of the supply chain with multiple con-
�icting objectives requiring a search for a set of trade-o� solutions, there
has been a range of studies applying multi-objective methods. In recent
years, there has been a growing interest in the area of many-objective
(four or more objectives) optimisation which handles di�culties that
multi-objective methods are not able to overcome. In this study, we ex-
plore formulation of Supply Chain Management (SCM) problem in terms
of the possibility of having con�icting objectives. Non-dominated Sorting
Genetic Algorithm-III (NSGA-III) is used as a many-objective algorithm.
First, to make an e�ective search and to reach solutions with better qual-
ity, parameters of algorithm are tuned. After parameter tuning, we used
NSGA-III at its best performance and tested it on twenty four synthetic
and real-world problem instances considering three performance metrics,
hypervolume, generational distance and inverted generational distance.

1 Introduction

Supply chain management is critical to achieve sustainable competitive advan-
tage for a company. One major aspect of supply chain management is to select
suppliers which can support the success of a company meeting expectations of
the company. Another one is to plan and control inventory through the whole
network from suppliers to customers, balancing material �ows among the entire
processes of a supply chain e�ectively. Thus, supplier selection combined with
e�ective inventory planning has been studied by a number of researchers [5, 7,
9].

In Turk et al. [12], a generic local search meta-heuristic is used to solve the
integrated SCM problem which aims to deal with both supplier selection and
inventory planning aggregating two objectives subject to several constraints. A
simulated annealing approach is applied to the problem balancing the trade-o�
between supply chain operational cost and supplier risk using two scalarisation
approaches, weighted sum and Tchbyche�. That study illustrated the multi-
objective nature of the problem testing the proposed approaches on a simple
single problem instance. Turk et al. [12] provided an approach which is capable of
capturing the trade-o� between risk and cost via scalarisation of both objectives.



2 Seda Türk, Ender Özcan, and Robert John

This gives �exibility to the decision makers to choose from a set of trade-o�
solutions for supply chain management

In Turk et al. [13], three population based meta-heuristic algorithms are
used to tackle the same problem with an attempt to detect the best performing
approach. The problem is formulated as a two-objective problem and the per-
formance of three Multi-objective Evolutionary Algorithms (MOEAs), Nondom-
inated Sorting Genetic Algorithm-II (NSGA-II), Strength Pareto Evolutionary
Algorithm 2 (SPEA2) and Indicator Based Evolutionary Algorithm (IBEA) are
investigated. Although MOEAs performed reasonably well in this study for the
two-objective problem, there could be even more con�icting objectives which can
be considered in the solution model and then simultaneously optimised. In this
problem, the total cost is the sum of 5 di�erent costs, production cost, holding
cost, batch cost, transportation cost and stock-out cost, related to production
processes. In this study, we treat each cost component as a separate objective
and solve the integrated supply chain management problem as a many objec-
tive problem using NSGA-III. To the authors' knowledge, this is tone of the �rst
studies in many objective supply chain management problem. The problem takes
into account six objectives, i.e, total risk, production cost, holding cost, batch
cost, transportation cost and stock-out cost. The main purpose of this paper
is to handle multiple optima and other complexities for the integrated prob-
lem of supplier selection and inventory planning formulated as a many-objective
problem.

The rest of paper is organised as follows. In section II, background informa-
tion on NSGA-III is provided. In section III, the de�nition of the problem is
reviewed brie�y. In section IV, numerical experiments are presented. In section
V, computational results are discussed and in section VI, the conclusion and
possible directions for future work are given.

2 Preliminaries

This section will provide an introduction to technique that has been used in this
work and an overview of related work in the literature.

2.1 Non-dominated Sorting Genetic Algorithm-III

Recently, there has been a growing interest in many-objective (four or more
objectives) optimisation problems. Most MOEAs have faced di�culties in solv-
ing many-objective optimisation. Di�culties in handling many objectives can
be listed as: i) a large fraction of population becomes non-dominated solutions
within consideration of the number of objectives, ii) in a large dimensional space,
diversity measurement becomes di�cult and computationally expensive, iii) re-
combination operators may be insu�cient to improve o�spring solutions [2].
Deb and Jain [2] developed a NSGA-II procedure with signi�cant chances in the
selection operator to overcome these di�culties and called it NSGA-III.
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NSGA-III remains similar to NSGA-II apart from replacing the crowding
distance in the selection operator with a systematic evaluation of individuals in
the population with respect to the reference points [14]. Initially, a population
Pt of size N is randomly generated and then those N individuals are sorted into
di�erent non-domination levels. Then, an o�spring population Qt of size N is
created applying crossover and mutation operators with associated probabilities
(rates). Pt and Qt are merged to form Rt of size 2N which includes elite members
of both parent and o�spring populations. All individuals in Rt are sorted into a
number of non-domination levels such as F1; F2 and so on. The rest of the NSGA-
III algorithm works quite di�erent from NSGA-II. After sorting Rt let us obtain
a new population St with size N examining individuals in St corresponding to
a set of reference points either prede�ned or supplied. All objective values and
reference points are �rst normalised to keep them in an identical range. Then,
in order to associate each individual in the population St with a reference point,
a reference line is determined joining the reference point with the origin of the
normalized space. Next, the perpendicular distances between each individual in
St and their corresponding lines are calculated and each individual is associated
to the closest reference line. After that, in order to selectively choose which points
will be in the next population Pt+1, a niche preserving operator explained in Deb
and Jain [2] is used.

2.2 Performance Metrics

The performance of multi-objective algorithms is assessed using various metrics
including number of the non-dominated solutions found, distance of the �nal
pareto set to the global pareto-optimal front (accuracy), distribution of the �nal
pareto set with respect to the pareto-optimal front, and spread of the pareto
set (diversity) [15, 8]. When dealing with multi-objective optimisation problems,
the purpose is to achieve a desirable non-dominated set. However, for a number
of reasons, the assessment of results becomes di�cult; i) several solutions are
generated rather than one like in a single objective optimisation problem, ii) a
number of runs need to be performed to assess the performance of EAs due to
their stochastic nature, iii) di�erent entities, such as, coverage, diversity of a
set of solutions, could be measured and used as a guidance during the search
process [10]. In order to handle di�culties, there are several performance metrics
proposed in the literature. In this study, three performance metrics, hypervolume
(HV), generational distance (GD) and inverted generational distance (IGD) are
used (further explanations given in the work of Turk et al. [13]).

In addition, this approach provides a set of trade-o� solutions. A common way
of (automatically) reducing all trade-o� solutions into a `preferable' reasonable
single solution is detecting the solution at the knee point on the pareto-front.
We have used the method presented in [1] to obtain the a single solution called
a knee solution based on the knee point for all problem instances.
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Table 1. Notations

Notation Meaning Notation Meaning

i supplier p product
j manufacturing plant c components
k customer t discrete time period

Table 2. Notation for Decision Variables [12]

Variable Meaning

PA(p, j, k, t) Amount of product p from plant j to customer k in period t
CA(c, i, j, t) Amount of component c from supplier i to plant j in period t

3 Problem Description

In Turk et al. [13], a two-stage integrated approach is presented to the supplier
selection and inventory planning. In the �rst stage, in order to get a risk value
of each supplier, suppliers are evaluated based on various criteria derived from
cost, quality, service and delivery using Interval Type-2 Fuzzy Sets (IT2FSs). In
the second stage, the information of supplier rank is fed into an inventory model
built to cover the e�ect of suppliers on the total cost of a supply chain. The
integrated SCM problem is formulated as a multi-objective problem which aims
to handle two objectives; total cost and total risk. The total cost is the sum
of 5 di�erent costs, production cost, holding cost, batch cost, transportation
cost and stock-out cost, related to production processes. Due to the existence
of con�icting objectives, we treat each cost component as a separate objective
and solve the integrated supply chain management problem as a six objective
problem using NSGA-III. The formulation of the problem can be found in the
work of Turk et al. [13]. In this section, only formulation of each objective is
given.

3.1 Problem Formulation

The formulation of six objective supply chain problem is presented below with
relevant notation shown in Tables 1, 2 and 3.

In this research, the integrated SCM problem is considered as a six objective
problem solved by a many-objective optimisation method. The aim of this study
is to minimise: i) potential risk endured T R (Equation 6) as a result of the
supplier selection and ii) the each cost of the supply chain T HC (Equation 1),
T T C (Equation 2), T BC (Equation 3), T P C (Equation 4), T SC (Equation 5).

In Equation 1, the total cost of inventory is shown for the components and
products successively. Equation 2 accumulates the transportation cost consider-
ing the products in the �rst row and components in the second row, respectively.
In Equation 3, the component order and setup costs as batch costs are added.
The manufacturing and shortage costs for each product and each component are
included in Equation 4 as a total production cost. The stock-out cost is depicted
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Table 3. Notation used for the formulation of the problem [12]

Notation Meaning

PI(p, j, t) Inventory of product p at plant j in period t
CI(c, j, t) Inventory of component c at plant j in period t
YP (p, k) Product p's selling price for customer k
TC(c, i, j) Carrying cost for component c between supplier i and plant j
TP (p, j, k) Carrying cost for product p between plant j and customer k
IC(c, j) Component c's inventory cost at plant j
IP (p, j) Product p's inventory cost at plant j
SC(c, j) Shortage cost at plant j for component c
SP (p, j) Shortage cost at plant j for product p
OC(c, i) Ordering cost of supplier i for component c
MP (p, j) Manufacturing cost for product p at plant j
S(p, j) Setup cost in plant j for product p
DS(i, j) Distance between supplier i and plant j
DP (j, k) Distance between plant j and customer k
Rank(i) Rank of vendor i
Risk(i) Risk of vendor i
PM (p, k, t) Non-ful�lment amount of product p for customer k in period t

in Equation 5 as a penalty cost incurred when the quantity of production does
not satisfy the customer demands.

minimise T HC =
∑
t

∑
p

∑
j

IP (p; j)× PI(p; j; t) +
∑
c

∑
j

IC(c; j)× CI(c; k; t)

 (1)

minimise T T C =
∑
t

∑
p

∑
j

∑
k

(
PA(p; j; k; t)×DP (j; k)× TP (p; j; k)

)

+
∑
c

∑
i

∑
j

(
CA(c; i; j; t)×DS(i; j)× TC(c; i; j)

) (2)

minimise T BC =
∑
t

∑
c

∑
i

∑
j

OC(c; i)× CA(c; i; j; t)

+
∑
p

∑
j

∑
k

S(p; j)× PA(p; j; k; t)

 (3)

minimise T P C =
∑
t

∑
p

∑
j

∑
k

MP (p; j)× PA(p; j; k; t)

+
∑
p

∑
j

SP (p; j)× PI(p; j; t) +
∑
c

∑
j

SC(c; j)× CI(c; j; t)

 (4)

minimise T SC =
∑
t

(∑
p

∑
k

PM (p; k; t)YP (p; k)

)
(5)
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minimise T R =
∑
t

∑
c

∑
i

∑
j

CA(c; i; j; t)×Risk(i) (6)

Equation 6 demonstrates the total risk of suppliers with respect to Equation
7 which shows the calculation of a coe�cient for the risk of each supplier by
normalising the supplier rank (detailed in Turk et al. [13]).

Risk(i) =

∑
i Rank(i)

Rank(i)
(7)

4 Preliminary Experiments

4.1 Experimental Setup

The results found in stage one is carried to the second stage to solve the in-
tegrated problem using NSGA-III. The Jmetal suite [4, 3] is used to run all
experiments with NSGA-III as a many-objective evolutionary algorithm. Each
trial is repeated for 30 times during the experiments, where each run yields a set
of trade-o� solutions. A run terminates whenever 5000 iterations/generations
are exceeded.

The same chromosome representation explained in Turk et al. [13] is used to
depict a potential inventory plan. The initial population is generated randomly.
A binary tournament selection is employed to create a o�spring population. Sim-
ulated Binary Crossover (SBX) and Polynomial Mutation operators are used.
The parameters of NSGA-III include the population size (P ), crossover probabil-
ity (Pc), distribution index for crossover (Dm), distribution index for mutation

(Dc) and number of divisions (Nd). NSGA-III has the same algorithmic con-
trol parameters as NSGA-II, including number of divisions (Nd). The number
of divisions is utilised to determine how many reference points will be used in
a reference line to maintain diversity in obtained solutions. All the algorithmic
control parameters are tuned.

4.2 Problem Instances

Twenty four problem instances provided by Turk et al. [13] are used in this study.
Problem instances have di�erent characteristics and sizes, where four of them
are real world problem instances and 20 of them are randomly generated based
on those instances.

4.3 Parameter Tuning of NSGA-III

Parameters of NSGA-III are tuned using Taguchi orthogonal arrays [11] as
a design of experiments method. We investigated �ve control parameters for
NSGA-III with the following potential settings: P ∈ {25, 50, 100, 200}, Pc ∈
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Table 4. Average rank of NSGA-III, with a particular parameter con�guration based
on the L16 Taguchi orthogonal array

Experiment

number (EN)
P Pc Dc Dm Nd

Average Rank
EN P Pc Dc Dm Nd

Average Rank

NSGA-III NSGA-III

1 25 0.6 5 5 3 13.4 9 100 0.6 15 20 4 11.4

2 25 0.7 10 10 4 8.9 10 100 0.7 20 15 3 14.0

3 25 0.8 15 15 5 6.4 11 100 0.8 5 10 6 4.0

4 25 0.9 20 20 6 5.2 12 100 0.9 10 5 5 5.9

5 50 0.6 10 15 6 4.2 13 200 0.6 20 10 5 5.6

6 50 0.7 5 20 5 6.8 14 200 0.7 15 5 6 3.0

7 50 0.8 20 5 4 9.4 15 200 0.8 10 20 3 14.2

8 50 0.9 15 10 3 13.5 16 200 0.9 5 15 4 10.2

Table 5. ANOVA test results for dismissing the contribution of each parameter for
NSGA-III in terms of percent contribution

MOEAs P Pc Dc Dm Nd Error Total
NSGA-III 0.28 0.28 0.11 2.51 96.81 - 100 %

{0.6,0.7,0.8,0.9}, Dc, Dm ∈ {5, 10, 15, 20} and Nd ∈ {3, 4, 5, 6}. The L16

Taguchi orthogonal arrays design is used to achieve the best parameter con�g-
uration. We followed the same way explained in Turk et al. [13] and obtained
results as shown in Table 4.

The mean e�ect of each parameter is calculated in the same manner as ex-
plained in the work of Turk et al. [13]. Figure 1 provides the main e�ects plot
indicating the performance of each parameter value setting. The best con�gu-
ration for NSGA-III is attained as 200 for P , 0.7 for Pc, 10 for Dc, 5 for Dm

and 6 for Nd. In addition, the contribution of each parameter setting on the
performance of NSGA-III is analysed using ANOVA. Table 5 summarises the re-
sults. The number of divisions has a signi�cant contribution within a con�dence
level of 95% on the performance of NSGA-III. In the same manner, hypervolume
of three selected instances is used to assess the performance of each parameter
setting con�gured based on the Taguchi method.

5 Computational Results

Given six objective functions, the experimentation is conducted in exactly the
same manner as when generating a Pareto set of solutions with two objectives
as explained in Turk et al. [13]. NSGA-III is applied to 24 problem instances.
The high-dimensional trade-o� front in a many-objective evolutionary algorithm
is analysed. Three di�erent performance metrics and its cost results are consid-
ered to investigate its performance. In order to tackle di�culties of the high-
dimensional trade-o� front for the six objective problem, we aggregate all cost
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Fig. 1. Main e�ects plot with mean rank values in NSGA-III

values together and evaluated them same as the two objective problem (to �nd
pareto-front sets and its performance). For 24 instances, NSGA-III provides bet-
ter mean values of hypervolume, generational distance and inverted generational
distance than NSGA-II, SPEA 2 and IBEA in Turk et al. [13].

Six objectives, total risk, total production cost, total holding cost, total batch
cost, total transportation cost and total stock-out cost computed for each knee
solution to each instance are summarised in Table 7. We have observed that
NSGA-III achieved knee solutions for the majority of the instances with a low
customer satisfaction rate. To �nd reasons for poor levels of customer service and
to visualise relationship among objectives, Figure 2 depicts the pareto optimal
set of Inst19 as an example in `parallel coordinates' [6] generated by using NSGA-
III. Each green line represents a pareto optimal solution and indicates change
through objectives from one to another. The black line shows the knee solution
for Inst19. Figure 3 displays the same data set but this time, there are two lines
and each line represents a single solution in the pareto set of Inst19. In Figure 3,
the solution 1 with a high risk has low production and stock-out costs while the
solution 2 represents low risk scenario with high production and stock-out costs.
Also, the high risk solution consists of relatively low holding cost. Moreover,
from the visualisation, we can observe that there is obvious inverse-correlation
between the transportation cost and holding cost as seen in Figure 2. In this
sense, decreasing the holding cost will increase transportation cost. However,
the correlation between other objectives is not quite as obvious. Therefore, the
relationship between risk and each cost is investigated in Figure 4. There is no
speci�c relationship between risk and production cost, transportation cost and
batch cost. It is obviously seen that there is negative relationship between risk
and holding cost, and between risk and stock-out cost.

In summary, we have explored the performance of NSGA-III, in the six ob-
jective integrated SCM problem. Based on performance metrics, NSGA-III per-
formed reasonably well in this study. However, the empirical results indicate
that NSGA-III did not achieve high quality trade-o� solutions satisfying at least
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Table 6. Performance of NSGA-III in terms of hypervolume (HV), generational dis-
tance (GD) and inverted generational distance (IGD)

Inst. HV GD IGD Inst. HV GD IGD

Inst1
Mean 0.8617 14,191.2 465,424.7

Inst13
Mean 0.9206 76,152.2 713,037.7

Stnd. 0.0178 12,478.6 178,732.2 Stnd. 0.0088 41,477.9 279,123.7

Inst2
Mean 0.9026 20,818.4 165,035.9

Inst14
Mean 0.8746 79,809.1 212,990.4

Stnd. 0.0070 9,786.4 55,906.3 Stnd. 0.0100 34,490.0 57,665.8

Inst3
Mean 0.8263 46,785.9 2,189,103.3

Inst15
Mean 0.9263 94,034.5 204,205.7

Stnd. 0.0084 19,769.8 1,026,613.6 Stnd. 0.0074 46,892.7 57,232.2

Inst4
Mean 0.8383 30,252.1 457,079.3

Inst16
Mean 0.8980 90,109.0 182,753.4

Stnd. 0.0102 23,904.7 271,723.8 Stnd. 0.0070 44,550.3 53,838.6

Inst5
Mean 0.8971 46,179.5 298,860.6

Inst17
Mean 0.8862 115,584.6 534,597.3

Stnd. 0.0091 29,988.4 127,470.0 Stnd. 0.0120 64,992.4 190,702.7

Inst6
Mean 0.8693 58,723.5 396,973.3

Inst18
Mean 0.9083 131,657.6 209,729.7

Stnd. 0.0045 28,026.6 149,382.0 Stnd. 0.0110 70,231.8 45,540.7

Inst7
Mean 0.8770 51,260.7 168,246.7

Inst19
Mean 0.9837 43,111.0 247,124.0

Stnd. 0.0078 24,129.5 34,780.2 Stnd. 0.0016 19,239.8 72,672.2

Inst8
Mean 0.8717 19,298.9 85,388.1

Inst20
Mean 0.9792 117,175.2 301,284.0

Stnd. 0.0060 11,332.0 19,731.9 Stnd. 0.0026 51,612.7 65,545.4

Inst9
Mean 0.8899 118,589.7 199,444.9

Inst21
Mean 0.9847 57,679.7 307,158.7

Stnd. 0.0153 122,349.9 136,917.6 Stnd. 0.0017 17,709.2 92,594.1

Inst10
Mean 0.8731 31,074.0 141,270.7

Inst22
Mean 0.9862 67,881.1 229,310.3

Stnd. 0.0078 11,447.5 41,997.4 Stnd. 0.0013 29,465.3 58,393.4

Inst11
Mean 0.8630 61,447.7 162,999.2

Inst23
Mean 0.9886 47,219.0 179,730.0

Stnd. 0.0077 65,245.3 47,410.7 Stnd. 0.0007 13,601.8 49,710.5

Inst12
Mean 0.8802 82,517.8 233,954.7

Inst24
Mean 0.9852 75,444.5 261,063.7

Stnd. 0.0082 44,704.8 73,336.6 Stnd. 0.0014 30,343.3 58,524.4

Fig. 2. Results of NSGA-III in parallel coordinate for Inst19; green lines show trade-o�
solutions among objectives and black line indicates the knee solution.

90% of the customer demand while each cost is considered as an objective. In
addition, to investigate con�icting objectives, the parallel coordinates �gures are
used visualising the relationship among objectives. It is observed that there is
an obvious relationship between some objectives such as risk and stock-out cost.
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Fig. 3. Two solutions of NSGA-III highlighted in parallel coordinate; Trade-o� among
objectives for Inst19

Table 7. Objective wise results of NSGA-III. TR: Total Risk, TC: Total Cost,
TBC: Total Batch Cost, TPC: Total Production Cost, TTC: Total Transportation
Cost, TSC: Total Stock-out Cost, THC: Total Holding Cost.

Inst. TR TC Service Level TBC TPC TTC TSC THC
Inst1 10,875.0 3,120.0 83.97% 330.0 2,100.0 190.0 0.0 500.0
Inst2 7,554.3 3,812.3 85.68% 300.0 879.0 176.2 1,911.1 546.0
Inst3 7,394.3 4,189.4 78.02% 270.0 1,426.6 166.8 1,405.0 921.0
Inst4 10,398.8 4,667.7 69.45% 270.0 1,643.5 192.2 1,136.1 1,425.9
Inst5 1,814.0 5,768.6 46.81% 200.0 703.0 122.9 1,674.5 3,068.2
Inst6 9,052.5 5,133.9 83.91% 230.0 2,111.6 182.7 1,783.7 826.0
Inst7 15,108.8 6,332.5 61.78% 490.0 2,220.0 269.0 933.5 2,420.0
Inst8 21,172.1 5,480.9 80.29% 700.0 2,524.2 307.9 868.6 1,080.3
Inst9 15,617.4 4,741.2 80.25% 680.0 1,963.0 302.5 859.5 936.3
Inst10 16,217.0 5,872.8 57.83% 600.0 1,695.1 267.1 834.1 2,476.4
Inst11 19,834.3 6,005.7 76.31% 710.0 3,089.6 322.9 460.4 1,422.8
Inst12 11,343.0 8,720.8 67.07% 480.0 4,023.6 243.7 1,101.3 2,872.1
Inst13 11,051.8 7,043.5 55.21% 390.0 1,460.0 281.0 1,757.5 3,155.0
Inst14 17,517.9 7,601.5 66.56% 540.0 2,679.9 285.5 1,554.2 2,541.9
Inst15 8,401.4 6,595.7 59.07% 480.0 1,404.1 238.1 1,774.0 2,699.5
Inst16 11,969.5 6,430.6 64.05% 460.0 1,748.5 300.7 1,609.3 2,312.1
Inst17 12,135.5 9,952.9 60.74% 480.0 3,554.5 290.0 1,721.3 3,907.1
Inst18 6,130.3 7,093.1 51.47% 410.0 1,250.1 247.0 1,743.8 3,442.2
Inst19 16,688.4 10,312.5 83.42% 680.0 690.0 348.0 6,884.5 1,710.0
Inst20 24,902.3 11,994.0 79.19% 970.0 1,657.1 442.6 6,427.7 2,496.5
Inst21 16,885.4 11,549.7 83.39% 830.0 1,380.8 365.9 7,054.8 1,918.2
Inst22 22,838.1 10,990.0 93.93% 1,090.0 1,715.7 365.4 7,152.3 666.6
Inst23 15,405.6 9,925.7 99.53% 890.0 1,121.2 358.4 7,509.5 46.5
Inst24 23,212.4 9,713.2 91.88% 1,020.0 829.9 417.1 6,657.8 788.4

Objective reduction can be alternative way removing the redundant objectives
in the original objective set. To improve performance and to achieve acceptable
cost results, some objectives might be excluded and the problem will be solved
again. Also the model can be improved to reduce the stock-out cost.
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Fig. 4. Risk vs Cost objectives' results of NSGA-III in parallel coordinate for Inst19

6 Conclusions

This paper provides an investigation of meta-heuristic algorithm, NSGA-III on
the integrated SCM problem as one of the �rst studies in literature. Also, this
chapter analysed performance of NSGA-III using three well known performance
metrics. First, the optimal parameter setting is found for the algorithm. After
tuning, the algorithm is tested on twenty four problem instances. The results
show the overall success of NSGA-III comparing to NSGA-II given in Turk et
al. [13]. Moreover, we examine the trade-o� between all contributing costs to
the total cost and risk, separately. The many-objective optimisation algorithm,
NSGA-III is applied to the six objective formulation of the same problem [13].
NSGA-III performs well over all instances. However, it is found that NSGA-
III cannot satisfy customer expectations while producing high stock-out cost.
Based on these �ndings, the number of objectives would be reduced to four for
many-objective optimisation based on relationships among objectives found as
in the parallel coordinates �gures. Another future study could be applying the
approach to new unseen instances possibly even larger than the ones used in this
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study and/or changing the decision makers' supplier related preferences creating
more instances.
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