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When designing sound packages, often fully filling the available space with acoustic materials
is not the most absorbing solution. Better solutions can be obtained by creating cavities of air
pockets, but determining the most optimal shape and topology that maximises sound absorp-
tion is a computationally challenging task. Many recent topology optimisation applications
in acoustics use heuristic methods such as solid-isotropic-material-with-penalisation (SIMP)
to quickly find near-optimal solutions. This study investigates seven heuristic and meta-
heuristic optimisation approaches including SIMP applied to topology optimisation of acous-
tic porous materials for absorption maximisation. The approaches tested are hill climbing,
constructive heuristics, SIMP, genetic algorithm, tabu search, covariance-matrix-adaptation
evolution strategy (CMA-ES), and differential evolution. All the algorithms are tested on
seven benchmark problems varying in material properties, target frequencies, and dimen-
sions. The empirical results show that hill climbing, constructive heuristics, and a discrete
variant of CMA-ES outperform the other algorithms in terms of the average quality of solu-
tions over the different problem instances. Though gradient-based SIMP algorithms converge
to local optima in some problem instances, they are computationally more efficient. One of
the general lessons is that different strategies explore different regions of the search space
producing unique sets of solutions.
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I. INTRODUCTION1

A. Background2

Historically, shape designs in engineering have been3

arrived at via a trial-and-error process, intuition, incre-4

mental improvements to old designs, human decision-5

making from numerical analyses, and recently, solely by6

computer analyses. Superior-to-human engineering de-7

signs have been achieved by computers using technolo-8

gies such as structural topology optimisation. Topology9

optimisation involves finding the optimal topology (num-10

ber of holes) and shape (size, dimensions) for a structure11

such that a given performance indicator is either max-12

imised or minimised. Bendsøe and Kikuchi1 introduced13

the concept of simultaneously optimising both shape and14

topology in the late 1980s. Since then, many theoretical15

developments have been made, and a community of re-16

searchers have actively been working in this field. One of17

the ways to formulate a topology optimisation problem is18

finding the optimal assignment of materials in each finite19

a)vivek.thaminniramamoorthy@nottingham.ac.uk

element of a discretised structure. In principle, this for-20

mulation is discrete optimisation, and finding the exact21

global optimum is computationally challenging. Exact22

optimisation techniques that guarantee finding the global23

optimum remain prohibitively expensive. Evaluating all24

possible solutions becomes impractical due to the large25

search space sizes and the expensive finite element eval-26

uations. A noteworthy effort towards topology optimisa-27

tion using an exact approach was by Stolpe and Bendsøe228

on the Zhou and Rozvany problem instance3. But justi-29

fiably, the focus of previous work has mainly been on the30

inexact or heuristic optimisation approaches.31

B. Heuristics32

Heuristics are techniques that find solutions close33

enough to the global optimum in a reasonable time.34

Though heuristics do not guarantee finding the optimal35

solution, they are well-established and often the only36

viable option to address hard problems, such as those37

in NP-complete and NP-hard classes. The three most38

popular heuristic approaches applied to topology optimi-39

sation problems are SIMP1,4–6 (solid-isotropic-material-40
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with-penalisation), BESO7–9 (bi-directional evolutionary41

structural optimisation), and the level-set method10–12.42

Among these, SIMP is the most commonly used and43

well-studied approach. In SIMP, the discrete material as-44

signment problem is relaxed to the continuous space by45

allowing intermediate materials between solid and void.46

A penalty-based material interpolation scheme is used47

to represent intermediate materials and gradient-based48

optimisation strategies such as optimality criteria13 or49

method of moving asymptotes14 is used to move across50

the design variable space to find a near-optimal design.51

As SIMP is a derivative-based technique, it requires that52

a sensitivity analysis be carried out. BESO, not to be53

confused with evolutionary algorithms despite its name,54

is a type of constructive approach which iteratively adds55

material where stresses are high and removes material56

where stresses are low to arrive at a design. In the level-57

set method, a scalar field is associated with the design58

domain region and the isosurfaces of this scalar field are59

made the boundaries of the topology. This scalar field is60

then optimised to optimise the topology.61

C.Metaheuristics62

While heuristics are quick strategies to find near-63

optimal solutions, it was realised by Glover15 that many64

powerful heuristic approaches follow certain higher-level65

guidelines. These guidelines can be considered heuris-66

tics to design heuristic algorithms, and hence are termed67

metaheuristics. A popular example of a metaheuristic is68

genetic algorithms, wherein the guideline is to initiate a69

population of solutions, apply selection pressure to pick70

good individuals, recombine the selected individuals, mu-71

tate them and replace them into the population. Numer-72

ous metaheuristic techniques, such as genetic algorithms73

and CMA-ES, have also been studied on structural topol-74

ogy optimisation problems16,17.75

D. Acoustic topology optimisation76

Theoretical developments in structural topology op-77

timisation have focused on the classical problem of com-78

pliance minimisation18,19. Nevertheless, the application79

of topology optimisation techniques to other problem do-80

mains is steadily on the rise18,20,21. These techniques81

have already been extended to acoustics, giving rise to a82

sub-field called acoustic topology optimisation.83

At the time of writing this article, topology op-84

timisation has been performed on a variety of acous-85

tic applications, including horns, mufflers, rooms and86

sound barriers22–36. A majority of these applications87

use the gradient-based SIMP method or its variants,88

while a small fraction of them use BESO or level-set89

methods. These applications can be categorised into90

acoustic fluid-structure interaction problems and porous91

material problems. In acoustic fluid-structure interac-92

tion problems, the material choices are non-porous solid93

and fluid phases, and the wave propagation is mod-94

elled using mixed formulations37,38. Within acoustic95

fluid-structure interaction, problems other than topology96

optimisation such as material parameter estimation39
97

have also found the application of gradient-based meth-98

ods such as the method of moving asymptotes40. In99

porous material topology optimisation problems, the ma-100

terial choices also include poroelastic materials, and spe-101

cialised Biot formulations41,42 are generally used. In102

some applications31,43, boundary element method is used103

to optimise the boundary topology instead of the bulk104

topology. In this article, poroelastic material topology105

optimisation is in focus. Specifically, we refer to topology106

optimisation in the context of finding optimal mesoscale107

shapes and topologies, i.e., in the order of magnitude of108

the material thickness, and not the optimisation of their109

microstructures.110

Although metaheuristics have been previously111

tested on classical structural topology optimisation112

problems16,17, their use has been limited in acoustic113

topology optimisation applications44? . Only a few opti-114

misation approaches have been tested, and optimisation115

theory exclusive to this problem domain remains yet to116

be explored. The present work is a step in this direction.117

E. Contributions in this work118

The goal of the present work is to investigate the119

performance of alternative heuristic optimisation ap-120

proaches, including a few well-known metaheuristic ap-121

proaches on a set of benchmark problems. In this article,122

the approaches compared are hill climbing, constructive123

heuristics, SIMP, genetic algorithms, tabu search, CMA-124

ES and differential evolution. While SIMP and its vari-125

ants use gradients, none of the other approaches use any126

domain-specific information from the problem other than127

the objective function. Optimisation tests show how dif-128

ferent approaches perform for various CPU time budgets.129

Notably, while SIMP algorithms produce good-quality130

solutions at low CPU time budgets, certain other algo-131

rithms such as hill climbing, constructive heuristics and132

CMA-ES outperform at higher computational budgets.133

The findings reported in this paper may serve as a useful134

prelude to develop better strategies for topology optimi-135

sation in acoustic porous materials.136

The article is organised as follows: the optimisation137

problem description and the modelling methodology are138

given in section II, concise descriptions and settings of139

the optimisation approaches are given in section III, the140

results from the optimisation tests are discussed in sec-141

tion IV, and the conclusive remarks are provided in142

section V. Further, the pseudocodes of all algorithms,143

runtime comparisons, solution quality distributions and144

final optimal shapes from all algorithms for all problem145

instances are included in the supplementary material.146
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FIG. 1. Finite element model of an impedance tube system

with the design domain where the shape and topology of a

poroelastic material is to be optimised.

II. PROBLEM DESCRIPTION AND MODELLING147

A.Maximising sound absorption in normal incidence148

Consider the following problem: Given a finite ele-149

ment model of an impedance tube as shown in Figure 1,150

what is the best assignment of either air or a given poroe-151

lastic material to each element in the design domain that152

maximises the sound absorption of an acoustic source.153

The optimisation formulation can be written as:154

max
χi

α(χ) =
1

n

fn∑
f=f1

α(χ, f) (1)

χ : χi ∈ {0, 1} ∀ i = 1, 2, . . . , N

α ∈ [0, 1]

where α(χ, f) is the sound absorption coefficient in nor-
mal incidence for a given shape χ for frequency f , χi are
the decision variables represent the choice between air
and porous material for the ith element, N is the number
of elements in the design domain, and f1, f2, ..., fn are the
target frequencies for which the mean absorption is to be
maximised (where n is the number of frequencies consid-
ered). The symbol α is used to refer to the mean sound
absorption coefficient (α) across the target frequencies.
In this paper, α may be referred to as simply absorption
or fitness, which is to be maximised. Note that in the
problem formulation1, a volume fraction constraint is not
included, which is unlike in usual topology optimisation
problems. One reason is that in porous material topol-
ogy optimisation, often the optimal shapes need to be

carved out from a large block of the base porous material.
The removed material may not often constitute material-
saving, as the cost of recycling the carved out material
could negate the material-saving benefit. Another reason
is that more optimisation approaches to be tested as the
formulation would resemble a conventional discrete opti-
misation problem. Without the volume constraint, since
two choices are available (air or the base porous mate-
rial) for each of the N elements in the design domain the
search space size becomes 2N . If a limit Vf is imposed
on the ratio of porous volume to the total volume in the

design domain ( 1
N

∑N
i=1 χi = Vf ), the search space size

would become NC(VfN). In both these cases, the num-
ber of feasible solutions grows quickly with an increase
in N . Since discrete optimisation is considered difficult
to solve, the problem is usually relaxed to a continuous
problem allowing χi to take values between 0 and 1, in
other words allowing intermediate materials between air
and porous material in the design domain. The problem
is then solved using continuous optimisation approaches.
Intermediate materials given by χi ∈ (0, 1) are modelled
using interpolating the material properties. One such
interpolation scheme is the SIMP scheme (not to be con-
fused with the SIMP approach). Using this scheme, the
material property ψ for the intermediate material is given
by equation 2.

ψi = ψair + χpi [ψpor − ψair] (2)

ψ ∈ {E, ν, ρ̃, γ̃s, ρ̃eq, K̃eq} (3)

Here, ψ is any material property from Young’s modu-155

lus (E), Poisson’s ratio (ν), modified Biot density (ρ̃),156

coupling factor (γ̃s), dynamic mass density (ρ̃eq), dy-157

namic bulk modulus (K̃eq) etc. Though filtering tech-158

niques and interpolation penalties are used to enforce159

discrete solutions in such continuous formulations, often160

the resulting solutions tend to have intermediate mate-161

rials i.e. χi ∈ (0, 1). Since filters in topology optimi-162

sation play a role in the optimisation performance, in163

this study no filters or manufacturability restrictions are164

considered —with the view that these can be done in165

post-processing.166

B. Computing sound absorption and its gradients167

To compute sound absorption, the poroelastic system168

constituting the fixed and design domains is modelled169

using the alternative Biot finite element formulations de-170

scribed by Bécot and Jaouen42. This formulation is based171

on the mixed {u,P} formulation by Atalla et al.41. The172

acoustic model for the fluid part is given by the Johnson-173

Champoux-Allard-Lafarge (JCAL)45–47 model. To nat-174

urally account for the interface between porous and air175

regions, the unified analysis approach proposed and veri-176

fied by Lee et al24 is adopted. For intermediate material177

properties between air and porous material, the SIMP178

interpolation scheme48 is used. The poroelastic system179

governing equations can be expressed in matrix form in180
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equation 4.181 [
K̃− ω2M̃ −C̃
−C̃T H̃/ω2 − Q̃

]
︸ ︷︷ ︸

S̃(ω)

{
{u}
{P}

}
︸ ︷︷ ︸

X̃(ω)

=

{
F̃u

F̃P/ω
2

}
︸ ︷︷ ︸

F̃

(4)

where (̃·) denotes the complex-valued nature of it’s argu-182

ment. The expressions for the state matrices K̃, M̃, H̃,183

Q̃ and C̃ are functions of the topological design/decision184

variables χ . The construction of these matrices are ex-185

plained by Atalla et al.41 and will not be detailed here.186

{u} and {P} denote the solid phase displacement and187

fluid phase pressure degrees of freedom in the poroelastic188

system respectively. The associated global stiffness ma-189

trix S̃(ω) and the load vector F̃ are iteratively assembled190

over each angular frequency ω = 2πf to yield a system of191

linear equations. These equations are solved as given in192

equation 5 to obtain the solution vector X̃(χ, ω) which193

will contain the displacement and pressure fields of the194

solid and fluid parts of the poroelastic material respec-195

tively.196

{X̃(χ, ω)} = [S̃(χ, ω)]−1{F̃} (5)

For normal incidence, assuming plane waves, the sound197

absorption coefficient can be computed using the two-198

microphone method. Considering two closely spaced199

points x1 and x2 in the air region, the complex pres-200

sure amplitudes in frequency domain Px1
and Px2

can201

be obtained from {P} in X̃. The plane wave reflection202

coefficient R̃c can then be computed from these pressures203

as,204

R̃c(χ, ω) =
Px1

(χ, ω)e(−ikx2) − Px2
(χ, ω)e(−ikx1)

−Px1(χ, ω)e(ikx2) + Px2(χ, ω)e(ikx1)
(6)

Here, k is the wave number given by ω/cair with cair205

being the speed of sound in air. The sound absorption206

coefficient α is then given by:207

α(χ, ω) = 1− |R̃c(χ, ω)|2 (7)

The analytical gradient of absorption can be com-208

puted by using chain rule following a similar procedure209

to that of Lee et al.24. From equation 7:210

∂α

∂χi
= −2|R̃c|

∂|R̃c|
∂χi

(8)

211

∂|R̃c|
∂χi

=
<(R̃c × ∂R̃c

∂χi
)

|R̃c|
(9)

Equation 9 computes the derivative of absolute of212

the complex-valued R̃c, <(·) is the real part and (·) is213

the complex conjugate operator. The gradient ∂R̃c

∂χi
is214

obtained from
∂Px1

∂χi
and

∂Px2

∂χi
, which in-turn are two ele-215

ments from the derivative vector ∂X̃
∂χi

. To find ∂X̃
∂χi

, equa-216

tion 5 is differentiated to get the following expression.217

∂

∂χi
X̃(χ, ω) = [S̃(ω)]−1

−∂[S̃(ω)]

∂χi
X̃ (10)

The above step involves a large matrix inversion followed
by sparse matrix and vector multiplications repeated for
each element in the design domain. This step is per-
formed efficiently by using the adjoint-based approach as
detailed by Lee, Göransson and Kim28. Since only two

elements in ∂X̃
∂χi

i.e.
∂Px1

∂χi
and

∂Px2

∂χi
need to be computed

to compute the gradients, one can premultiply the equa-

tion 10 by the term
∂Px1

∂X , which is a vector of 0s except
for one element with a value of 1 corresponding to the
Px1 degree of freedom in equation 10.

∂Px1

∂χi
=

(
∂Px1

∂X

)T
∂X̃

∂χi
(11)

=

(
∂Px1

∂X

)T
[S̃]−1

−∂[S̃]

∂χi
X̃ = λTx1

−∂[S̃]

∂χi
X̃

Then, one can find a fictitious response vector λx1
=218

[S̃]−1
∂Px1

∂X and compute
∂Px1

∂χi
for each i by computing219

λTx1

(−∂[S̃]
∂χi

X̃
)

quickly. This avoids solving system of equa-220

tions repeatedly for each element or performing explicit221

matrix inversions. The above step is crucial for speeding-222

up gradient methods. In addition to solving [S̃(ω)]−1F̃,223

two additional instances of solving system of equations is224

involved in finding λx1 and λx2. Assuming all other steps225

are time insignificant, function evaluation with gradients226

are approximately three times as expensive as evaluating227

without gradient.228

This procedure has to be repeated at each frequency229

ω and for fine frequency steps, the calculation could be-230

come expensive. Although not implemented in this work,231

it is worth noting that there exist various expansion232

methods? ? ? to speed up the computation for broad233

frequency range problems.234

Further, the gradients −∂[S̃]
∂χi

are obtained by235

applying chain rule up to the material properties236

(E, ν, ρ̃, γ̃s, ρ̃eq, K̃eq) which depend on the design vari-237

ables χ.238

C. Benchmark problem instances239

For comparing the performance of various optimi-240

sation approaches, seven benchmark problem instances241

with different characteristics as given in Table I are242

utilised. A two-dimensional finite element model of a243

small rectangular unit cell of an absorbing wall, as shown244

in Figure 1 is considered. The unit cell’s dimensions, its245

discretisation into finite elements, the base porous ma-246

terial to fill the elements, and target frequencies to be247

absorbed vary for each problem instance.248

The unit cell of height d is backed by a rigid wall on249

the right, and a normal incidence sound source is mod-250

4 J. Acoust. Soc. Am. / 27 October 2021 Ramamoorthy et al. Heuristics and metaheuristics



TABLE I. Benchmark problem instances (see section II C)

No. Problem instance name Mesh size Length Height fmin fstep fmax Material ID

nelx × nely D (m) d (m) Hz Hz Hz (see Table II)

1 LKKK material broadband coarse-mesh 10× 10 0.135 0.054 100 100 1500 1

2 Melamine - building problem 15× 10 0.045 0.1 100 100 1500 2

3 High resistivity foam - low frequency 10× 10 0.1 0.1 50 50 500 3

4 Melamine - automotive problem 10× 10 0.02 0.1 100 100 1500 2

5 Melamine - high frequency problem 10× 10 0.02 0.1 2000 1000 5000 2

6 Melamine -broadband fine-mesh 50× 20 0.135 0.054 100 100 1500 2

7 Melamine -single target frequency 10× 5 0.135 0.054 500 500 500 2

TABLE II. Acoustic and elastic properties of materials used

in the benchmark problems in Table I. Here, φ is the open

porosity, Λ′ is the thermal characteristic length, Λ is the vis-

cous characteristic length, σ is the static airflow resistivity,

α∞ is the tortuosity, k′0 is the thermal permeability, ρ is the

bulk density, E is the solid elastic modulus, ν is the Poisson’s

ratio and η is the dissipation factor.

Material Material-1 Material-2 Material-3

parameters

Material: LKKK24 Melamine High-resistivity

soft foam

Acoustic model: JCAL JCAL JCAL45–47

φ 0.9 0.99 0.8

Λ′ (µm) 449 196 100

Λ (µm) 225 98 10

σ (N·s·m−4) 25000 10000 300000

α∞ 7.8 1.01 3

k′0 4.75e-09 4.75e-09 4.75e-09

ρ (kg·m−3) 31.08 8 80

E (Pa) 800000 160000 30000

(ν) 0.4 0.44 0.44

(η) 0.265 0.1 0.01

elled at the left end. A region from the rigid wall up to251

a length D is designated as the design domain. The de-252

sign domain is followed by a fixed domain, which is just253

an air region in this case with a length L. The design254

domain is discretised into nelx and nely finite elements255

along the horizontal and vertical directions respectively.256

Within the unit cell, symmetry is assumed about the257

central horizontal line, and sliding boundaries (ux-free,258

uy = 0, P -free) are assumed at the top and bottom edges.259

To save computational effort, only half of the system is260

modelled, and symmetry is imposed about the centerline261

(ux-free, uy = 0, P -free). It has been verified that this262

gives the same absorptions as obtained when modelling263

the full unit cell with sliding supports in the top and bot-264

tom edges. In all the problem instances, the mean sound265

absorption coefficient under normal incidence across the266

target frequencies is to be maximised.267

Although meant to be arbitrary, the problem in-268

stances are chosen from practical engineering examples.269

The material used for optimisation for each problem in-270

stance is picked from three choices in Table II. In prob-271

lem instance 1, a special material previously used by Lee,272

Kim, Kim, and Kang24 (LKKK material) is used on a273

coarser 10× 10 discretisation. Note that the LKKK ma-274

terial may not representative of a physical material due275

to the high tortuosity value of 7.8. Problem instance 2276

features a 45 mm long design domain representative of277

a typical building application. Problem instance 3 uses278

an artificial material with a high static airflow resistiv-279

ity. In problem instance 4, a thin design domain of 2280

cm, representative of a foam layer in an automotive ab-281

sorber, is considered. In problem instance 5, a thin layer282

is optimised for high-frequency absorption. Among the283

problem instances, problem instance 6 has a relatively284

fine mesh size with 50 × 20 elements featuring a thicker285

design domain optimised on a broad frequency range.286

Other than 1 and 3, all problem instances use Melamine287

foam for control. In problem instance 7, a single target288

frequency is considered.289

III. OPTIMISATION APPROACHES290

Several gradient-free heuristic and metaheuristic ap-291

proaches, including well known and novel, are evaluated292

in this study alongside the state-of-the-art gradient-based293

approach SIMP. Henceforth in this paper, all the heuris-294

tic and metaheuristic approaches will be referred to as295

algorithms, and they are not to be confused with exact al-296

gorithms as used by some authors. The algorithms tested297

and their settings are summarised in Table III.298

Five heuristic algorithms namely HC, CH1, CH2,299

SIMPf0 and SIMPf2 are tested. HC is a first-300

improvement hill climbing, where each element is flipped301

between air and porous material, and the new solution302

is accepted if it is improving. Consecutive elements are303

flipped like in a raster scan (row-by-row) until the func-304

tion evaluation budget is used up. CH1 is a constructive305

heuristic that starts from an air-filled solution and pro-306

gressively adds porous material in elements of best im-307

provement in absorption. Similarly, CH2 starts from a308
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TABLE III. Optimisation approaches tested (pseudocodes are included in the supplementary material)

Abbr. Optimisation approach Procedure and parameter settings Algorithm type:
Determinis-
tic or Non-
deterministic

Trials Search
space

Gradient
usage

Fn.
eval.
budget

HEURISTICS

HC Hill climbing
(first improvement)

Start with a random binary array solution; Bit flip
the consecutive elements; Accept if improving and
move to the next element; Repeat from the start un-
less fn. eval. budget is used up. Element ordering is
like in a raster scan.

Non-deterministic
since starting
solution is random

31 Discrete No 4096

CH1 Constructive heuristic:
material addition

Start with air-filled design domain; Compute absorp-
tion improvement at each element by filling porous
material only in that element; Sort elements; Add
porous material at best ‘m’ improving elements; Re-
peat until design domain is fully porous; Track and
return the best solution. m is chosen such that the
budget is not exceeded.

Deterministic 1 Discrete No 4096

CH2 Constructive heuristic:
material removal

Similar to CH1. Start from fully porous design do-
main; Remove porous (replace with air) at ‘m’ least
worsening elements; Repeat until all porous is re-
moved; Track and return the best solution

Deterministic 1 Discrete No 4096

SIMPf0 SIMP with no filter49 Start from a random continuous solution, follow the
SIMP procedure49; Omit the filtering step. Use
SIMP penalty p = 3; move update - optimality cri-
teria; move limit m = 0.2; Volume fraction limit
Vf = 1.

Non-deterministic 31 Continuous Yes 1366

SIMPf2 SIMP with density filter49 Start from a random continuous solution, follow the
SIMP procedure49; use density filter ft=2. Use
SIMP penalty p = 3; move update - optimality cri-
teria; move limit m = 0.2; Volume fraction limit
Vf = 1; Filter radius rmin =2.

Non-deterministic 31 Continuous Yes 1366

METAHEURISTICS

GA Genetic algorithm50 Initialise population with 64 random binary solu-
tions; Selection: tournament–2; Crossover: uniform;
Mutation: bitflip; Mutation rate: 1/(N); Replace-
ment: best of parents and offspring replace parents;
Repeat from selection, unless budget is used up.

Non-deterministic
(uses a random
number generator)

31 Discrete No 4096

TABU Tabu search51 Initiate tabu list; Start with a random binary array
solution; Pick a random bit, not in tabu list; Accept
if improving and add the bit to tabu list; tabu tenure:
20% of N ; Pick another random bit and repeat unless
budget is used up.

Non-deterministic
(since starting solu-
tion and moves are
random)

31 Discrete No 4096

CMA Covariance-matrix-
adaptation evolution
strategy52

Relax problem to continuous using SIMP interpola-
tion scheme with p = 3; Follow CMA procedure52;
Terminate if budget is used up; Discretise final con-
tinuous solution by rounding.

Non-deterministic
(uses a random
number gener-
ator to sample
points from the
distribution)

31 Continuous No 4096

CMAd Discrete variant of CMA Follow CMA procedure in continuous space; Before
fitness evaluation, discretise the sampled continuous
solutions by rounding; Return the rounded best so-
lution. An interpolation scheme is not necessary as
continuous solutions are never evaluated.

Non-deterministic 31 Discrete No 4096

DE Differential evolution53,54 Relax problem to continuous using SIMP interpola-
tion scheme with p = 3; Follow differential evolution
procedure53,54; Stop if budget is used up. Use popu-
lation size=32; F=0.2; CR=0.2;

Non-deterministic 31 Continuous No 4096

DEd Discrete variant of DE Follow the differential evolution procedure; Before
fitness evaluation, discretise the sampled continuous
solutions by rounding; Return the rounded best so-
lution.

Non-deterministic 31 Discrete No 4096

porous material-filled solution and progressively removes309

porous material from the elements where the decrease in310

absorption is the least. SIMPf0 and SIMPf2 are solid-311

isotropic-material-with-penalisation approaches49 which312

use gradients of absorption to modify the solution at each313

step. While SIMPf2 uses density filtering, SIMPf0 uses314

no filtering techniques.315

Four popular metaheuristic approaches are tested,316

including genetic algorithm (GA), tabu search (TABU),317

covariance-matrix-adaptation evolution strategy (CMA)318
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and differential evolution (DE). Additionally, discrete319

variants of CMA and DE referred to as CMAd and DEd320

are also tested, where the continuous shapes are rounded321

before every absorption evaluation.322

Except for CH1 and CH2, all the other algorithms323

are non-deterministic as they embed a random compo-324

nent, and each new trial of the non-deterministic algo-325

rithm could produce a different near-optimal solution.326

For these algorithms, 31 trials were run on each problem327

instance in order to assess their average performance and328

carry out statistical analyses.329

All non-gradient algorithms are allowed 4096 func-330

tion evaluations during the trials. Since absorption+ gra-331

dient evaluations take approximately thrice the compu-332

tational time (Eq. 11), SIMPf0 and SIMPf2 are allowed333

1366 function evaluations.334

The discrete algorithms, which only allow air or335

porous elements in the design domain, are initiated from336

random discrete solutions with equal probability of air337

or porous material for each element (except for CH1 and338

CH2). The continuous algorithms, which allow interme-339

diate materials between air and porous materials in each340

element, are initiated from solutions generated by assign-341

ing a random number uniformly distributed between 0342

and 1 to the topological design variables. Such random343

initialisation is done to ensure a fair comparison making344

no apriori assumptions about the solution.345

Some of the newly proposed approaches, namely, hill346

climbing, constructive heuristics, and the discrete vari-347

ants of CMA evolution strategy and differential evolu-348

tion, in the specific way used here are tested for the349

first time in topology optimisation. The others are well-350

established algorithms, and resources including surveys,351

tutorials and code implementations can be easily reached.352

More specific implementation details are included in the353

supplementary material. It is noted that a thorough354

knowledge of all the algorithms is not essential to under-355

stand the findings. These algorithms can be thought of356

as black-boxes that optimise the shape design by search-357

ing for the optimal assignment of the decision variables358

χ to maximise α(χ).359

IV. RESULTS AND DISCUSSION360

A. Run time performance comparison361

One of the desired aspects of a good topology op-362

timisation strategy is the ability to find better quality363

solutions in a limited CPU time. As more CPU time is364

allowed, the algorithms progressively find solutions with365

higher absorption. Figure 2(a) compares the progress366

of the best-so-far absorption values (α) obtained ver-367

sus CPU time used by various algorithms on problem368

instance 6.369

Multiple machines were used to run the optimisation370

tests, and in order to remove the machine-dependence371

on runtime in Figure 2(a), the best-so-far absorption val-372

ues were tracked against the number of function evalua-373

tions, and runtimes were then computed by using aver-374

age time-per-function-evaluation clocked on a reference375

machine. The reference machine used features an In-376

tel(R) Core(TM) i7-3820 CPU 3.6 GHz processor, 32377

GB RAM and a 64-bit Windows 10 operating system378

running Matlab2019b55. Scales indicating the number of379

function evaluations are also provided for benchmarking380

purposes. For all non-deterministic algorithms, as mul-381

tiple trials were conducted, the absorption values shown382

in Figure 2(a) are averaged across the 31 trials after each383

generation of the algorithm.384

Firstly, note that initial absorption levels are differ-385

ent for the algorithms. While the discrete algorithms386

HC, GA, TABU, CMAd and DEd are initiated from ran-387

dom discrete solutions with α around 0.71, the continu-388

ous algorithms CMA, DE, SIMPf0 and SIMPf2 are ini-389

tiated from random continuous solutions with α around390

0.65. CH2 starts from fully porous design domain with391

α around 0.84 and CH1 starts from an empty (air-filled)392

design domain with no absorption.393

One of the first things to note is that the CH2 algo-394

rithm does not produce an improvement from the fully395

porous-filled solution and hence the best-so-far absorp-396

tion value stays the same for this problem. For low CPU-397

time budgets, SIMPf0 and SIMPf2 produce higher qual-398

ity solutions than all the other algorithms except CH2.399

SIMPf0 and SIMPf2 converge to a higher absorption than400

the porous-filled CH2 solution in under 5 minutes on401

this problem instance highlighting that gradient-based402

methods can be time-efficient. After about 20 minutes of403

runtime, HC produces better solutions on average than404

SIMP, but the difference is small.405

After the designated budget of 4096 function evalua-406

tions (1366 gradient-included function evaluations), HC,407

SIMPf2, TABU, SIMPf0 and CH1 produce the top tier408

solutions. CMAd follows closely by producing slightly409

better-quality solutions compared to fully filled CH2 so-410

lution towards the end. Whereas for DEd and GA, the411

runtime performance was considerably poor.412

It is important to appreciate that the solutions from413

continuous algorithms (CMA, DE, SIMPf0 and SIMPf2)414

consider intermediate materials between the porous ma-415

terial and air χi ∈ (0, 1] whereas the discrete algorithms416

consider only porous material or air solutions χi ∈ {0, 1}.417

Since the solutions are from different search spaces, the418

absorption levels cannot be directly compared between419

the two. Although the final shapes from continuous algo-420

rithms are desired to be 0 or 1, they are often not. Hence,421

they are forced to be discrete using a simple round-off422

filter, and the absorption values are recomputed. Such423

rounding leads to a drop or surge in the absorption val-424

ues at the end of all continuous algorithms as can be425

observed noticeably in CMA and DE plotlines in Fig-426

ure 2(a). The rounded absorptions indicated by the end427

markers are also trial-averaged. Rounding leads to no428

significant changes in SIMPf0 and SIMPf2 solutions for429

this problem instance. For CMA and DE, the rounded430

solution absorption values were poorer than SIMP solu-431

tions.432
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(a)

(b) (c) (d)

(e)

FIG. 2. (color online) Optimisation trials on problem instance 6: (a) Progress of best absorption found vs runtime (trial-

averaged). For continuous algorithms, the solutions are discretised in the end. (b) Distribution of final solution absorption

across trials. (c) Distribution of solution quality vs volume fraction (d) Sound absorption vs frequency for final shapes from

select algorithms. (e) Best shapes from different trials from top four algorithms and their absorption.

The above behaviour of continuous algorithms does433

not seem to be the general trend across all problem in-434

stances. When considering the runtime performance of435

problem instance 1 shown in Figure 3, SIMP algorithms436

produce final solutions with intermediate materials which437

when rounded result in a significant reduction in absorp-438

tion. This behaviour is also prominent in other problem439

instances especially the one with the high resistivity ma-440

terial (plots for other problem instances included in the441

supplementary material).442
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FIG. 3. (color online) Progress of best absorption found vs

runtime: problem instance 1.

B. Final solution quality comparison443

After rounding the continuous algorithm solutions444

and re-evaluating absorption, the distribution of final ab-445

sorption values are shown in Figure 2(b). What is inter-446

esting to note is that for non-deterministic algorithms,447

the 31 trials do not necessarily result in the same opti-448

mised shapes and the final absorption values are spread449

out. The boxes enclose first to third quartiles (i.e. 25450

percentile to 75 percentile), the whiskers denote the span,451

and the crosses denote the outliers.452

Often in practice, a particular topology optimisation453

strategy may be chosen, and one trial may be run to454

determine a near-optimal shape. In such cases, it is de-455

sirable to pick an algorithm that has the best median456

performance across trials. Hence, using the median ab-457

sorption across trials, the algorithms are sorted best to458

worst from left to right in Figure 2(b). HC and SIMPf2459

turn out to be the top-performing algorithms for this460

problem instance followed by TABU, SIMPf0 and CH1461

in the second tier. DE, CMA and CMAd follow with462

all trials producing better solutions than the fully-filled463

CH2 solution. DEd and GA performed the poorest with464

no trials producing better than the fully-filled solution.465

The shapes produced from 10 of the trials from the466

top four algorithms are displayed in Figure 2(e). Most467

shapes seem to have a thin layer of air near the rigid back-468

ing as this allows removing elastic resonance around 500469

Hz as can be observed from the absorption curves in Fig-470

ure 2(d). Without filtering, SIMPf0 produces intricate471

designs near this thin air layer compared to SIMPf2.472

C. Performance across problem instances473

For an overall comparison, the ranking is extended to474

other problem instances in Table IV. Such a comparison475

across many problem instances is essential as algorithms476

performing well on one problem instance need not nec-477

essarily perform well on other problem instances. The478

ranking scheme is such that if the median absorption479

values of two or more algorithms are the same correct480

to two decimal places, they are assigned the same rank.481

TABLE IV. The algorithms are ranked based on median val-

ues of optimised shape absorption (α∗) across trails. Lesser

the average rank, the better is the performance of the algo-

rithm. Algorithms are sorted based on the average of the

ranks across problem instances. This ranking scheme is pro-

vided for a quick lookup only and is not meant to be a precise

indicator of the performance. The ranking could change if

more problem instances and algorithms are considered.

Ranks Problem instances → Avg. rank

Algorithms ↓ 1 2 3 4 5 6 7

HC 1 1 3 1 1 1 1 1.29*

CMAd 1 3 1 1 4 8 1 2.71

CH1 7 1 8 1 1 3 1 3.14

TABU 1 5 4 8 7 3 1 4.14

CH2 5 6 4 1 4 9 1 4.29

SIMPf0 8 3 10 1 4 3 9 5.43

SIMPf2 10 6 11 1 1 1 11 5.86

DEd 1 9 2 10 9 10 1 6

CMA 6 6 4 8 9 7 8 6.86

DE 11 11 9 1 7 6 9 7.71

GA 9 10 4 11 11 11 1 8.14

This ranking is only provided for a quick summary of the482

optimisation tests, and it is emphasised that the ranks483

may not be the same for a different set of problem in-484

stances.485

From Table IV, one can observe that HC, CMAd486

and CH1 rank among the top three. Although SIMPf2487

and SIMPf0 performed well on problem instance 6, they488

take respectively the 6th and 7th places overall among489

the algorithms compared.490

Surprisingly, the simple first-improvement hillclimb-491

ing (HC) ranks among the best in all problem instances492

except the high-resistivity material instance (problem in-493

stance 3). This means that HC’s potential can to be494

exploited by using it in hybrid algorithms. It is worth495

noting that HC applied to the MBB beam compliance496

minimisation6 results in the trivial fully-solid-filled so-497

lution. A simple way to avoid this is to use a volume498

fraction penalty with the objective function.499

CMAd and CH1 ranked first in four problem in-500

stances. Although CMAd ranked 8th in problem instance501

6, its overall performance across the problem instances502

puts the algorithm in second place. Notably, in problem503

instance 3, which considers a high static airflow resistivity504

material, CMAd performed the best. This problem in-505

stance likely has many local optima and the performance506

of CMAd indicates its global topology optimisation po-507

tential. The poor performance of the SIMP algorithms in508

this problem instance is likely due to the multi-modality509

of the objective function and premature convergence to510

local optima.511
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Although the progress of absorption in the initial512

stages of CH1 is slow compared to the other algorithms,513

the final absorption value makes CH1 one of the best514

algorithms. Notably, for many problem instances con-515

sidered, the best absorption value from CH1 is higher516

than the absorption of the discretised solutions from both517

SIMPf0 and SIMPf2. CH1 seems to be better overall518

compared to CH2, indicating that constructing the solu-519

tion from scratch may be better than removing material520

from a fully-filled solution.521

Performance of CMA and DE were relatively poor522

in this benchmark. One reason could be that the num-523

ber of design variables is large and these strategies do524

not exploit the correlation of the neighbouring-element525

design variables, a special attribute in topology optimi-526

sation problems.527

Both CMAd and DEd seem to perform better than528

CMA and DE in general, indicating that rounding during529

the algorithm may be a better approach than rounding530

the solutions after the termination of continuous algo-531

rithms. While CMAd ranked among the top, the perfor-532

mance of DEd was similar to that of SIMP in terms of533

solutions quality.534

Among the algorithms considered, GA performed the535

poorest. Though, scope for improvement exists in terms536

of using better mutation and crossover operators adapted537

to topology optimisation, focus may be diverted to other538

strategies which show better promise.539

D. Best shapes obtained from algorithms540

The best solutions from all the algorithms for all541

problem instances are plotted in Figure 4. For non-542

deterministic algorithms, the solution with the highest543

absorption among the 31 trials is shown. It is recalled544

that manufacturability restrictions and morphological fil-545

ters are not imposed in this study except for SIMPf2.546

Results show both SIMPf0 and SIMPf2 produce similar547

shapes for most problem instances.548

For problem instance 1, all algorithms except SIMPf2549

result in irregular shapes. The best quality shapes from550

most algorithms are flat layers of air and porous material551

towards the rigid wall with a somewhat circular air cavity552

in the front. GA and DE produced checkerbox shapes.553

Moreover, shapes from GA for all problem instances are554

degenerate.555

For problem instance 2, HC, CH1 and SIMPf0 pro-556

duce the best shape with an almost porous material filled557

design domain except for a layer of air next to the rigid558

wall. CH1, SIMPf2, CMA, CMAd, TABU produced sim-559

ilar shapes. CH2 resulted in a fully-filled shape with560

slightly less absorption.561

In problem instance 3 with a high static airflow re-562

sistivity material, the shapes from all algorithms were563

seemingly random patterns but with sort of a cavity in564

the centre. SIMPf2 produces a result with a chunk of565

porous material suspended in the air.566

For problem instance 4, the optimal solution seems567

to be a fully-filled design domain and most algorithms568

are able to find this except for GA. The reason could be569

that GA is initiated from random bit arrays which would570

have volume fraction distributed near 50 percent (central571

limit theorem). Thus, initialising GA with solutions with572

a range of volume fractions might be a sounder approach.573

For problem instance 5, many algorithms find a solu-574

tion with a shape almost filled with the porous material575

except for air pockets near the rigid wall. CMA, DE and576

DEd seem to be approaching this solution. CH2 com-577

pletely fills the design domain with the porous material.578

For problem instance 6, the fully-filled solution has579

an elastic resonance in the frequency range considered,580

as may be seen from Figure 2(d). The elastic resonance581

forms a drop in the absorption near 500 Hz. The best so-582

lutions from different algorithms effectively remove this583

resonance. To do this, the algorithms seem to introduce584

air layers at the front and near the rigid backing. CMA,585

CMAd, DE and DEd give checker-board shapes which586

somewhat removes a layer near the rigid backing. No-587

tably, CH1 gives a smooth shape even though no man-588

ufacturability restrictions were imposed. CH2 returns a589

filled design domain and is unable to get rid of the reso-590

nance.591

For problem instance 7, many solutions have close592

to complete sound absorption (α = 1). Almost all al-593

gorithms find solutions with total sound absorption at594

500 Hz. Notably, SIMPf0 and SIMPf2 seem to suggest a595

fully-filled solution.596

In general, the algorithms which feature random597

move operations tend to produce degenerate shapes. Al-598

though hill climbing results in shapes with high sound599

absorption, the shapes obtained are sometimes irregu-600

lar and need additional filtering. On the other hand,601

constructive heuristic with material addition (CH1) has602

both high performance and finds shapes with smoother603

boundaries.604

In summary, different algorithms seem to provide so-605

lutions from a unique pool (Figure 2(c)). The reason606

for this is each approach uses unique move operations607

during the optimisation to reach solutions that may not608

be explored by other algorithms. Thus it may be worth609

many optimisation strategies to find a set of unique solu-610

tions which may be of interest to the acoustic engineer.611

In addition, scope for improving many of these methods612

exist. As an example, the performance of SIMP could613

be improved by using better strategies for avoiding lo-614

cal optima, and an appropriate morphological filter may615

be used in CMAd to overcome the drawback of produc-616

ing unconnected shapes while speeding up the algorithm.617

The results outlined in this article provides an initial un-618

derstanding of various heuristics and metaheuristics per-619

form on topology optimisation for absorption maximisa-620

tion. Thus, guidelines for developing hybrid algorithms621

and hyper-heuristics may be arrived at for devising more622

time-efficient strategies that also produce solutions closer623

to the true optima.624
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Best shapes Problem instances →

Algorithms ↓ 1
α ( Vf )

2 3 4 5 6 7

HC

0.91 (0.75) 0.58 (0.93) 0.84 (0.62) 0.21 (1.00) 0.68 (0.94) 0.91 (0.91) 1.00 (0.62)

CMAd

0.91 (0.73) 0.57 (0.90) 0.86 (0.62) 0.21 (1.00) 0.68 (0.95) 0.86 (0.71) 1.00 (0.68)

CH1

0.88 (0.72) 0.58 (0.92) 0.77 (0.58) 0.21 (1.00) 0.68 (0.90) 0.89 (0.70) 1.00 (0.64)

TABU

0.91 (0.78) 0.56 (0.89) 0.83 (0.56) 0.21 (0.99) 0.68 (0.95) 0.90 (0.86) 1.00 (0.80)

CH2

0.90 (0.80) 0.54 (1.00) 0.79 (0.74) 0.21 (1.00) 0.67 (1.00) 0.84 (1.00) 1.00 (0.76)

SIMPf0

0.90 (0.81) 0.58 (0.93) 0.75 (0.46) 0.21 (1.00) 0.68 (0.94) 0.90 (0.96) 1.00 (0.98)

SIMPf2

0.89 (0.85) 0.56 (0.93) 0.75 (0.38) 0.21 (1.00) 0.68 (0.95) 0.90 (0.94) 0.93 (1.00)

DEd

0.91 (0.74) 0.52 (0.75) 0.84 (0.55) 0.20 (0.93) 0.65 (0.83) 0.81 (0.60) 1.00 (0.62)

CMA

0.91 (0.75) 0.56 (0.88) 0.82 (0.57) 0.21 (0.95) 0.65 (0.86) 0.87 (0.74) 0.99 (0.82)

DE

0.82 (0.65) 0.38 (0.60) 0.81 (0.57) 0.21 (1.00) 0.67 (0.82) 0.88 (0.77) 0.99 (0.76)

GA

0.89 (0.66) 0.43 (0.61) 0.81 (0.56) 0.15 (0.73) 0.55 (0.70) 0.78 (0.56) 1.00 (0.56)

FIG. 4. Optimised shapes obtained from all algorithms for each problem instance. The shapes are discretised by rounding for

continuous algorithms. The values of mean absorption across frequencies (α) are printed at the top of each shape in bold font

along with porous material volume fraction (Vf ) in parentheses. White and black represent air and the porous, respectively,

with the acoustic input on the left and rigid backing on the right.

V. CONCLUSIONS625

In this work, topology optimisation to max-626

imise sound absorption under normal incidence in an627

impedance tube with a rigid backing is considered.628

Optimisation tests were conducted using 5 heuristic629

and 6 metaheuristic algorithms on 7 benchmark prob-630

lem instances. The approaches include hill climb-631

ing (HC), constructive heuristics (CH1 and CH2),632

solid-isotropic-material-with-penalisation (SIMPf0 and633

SIMPf2), genetic algorithm (GA), tabu search (TABU),634

covariance-matrix-adaptation evolution strategy (CMA635

and CMAd), and differential evolution (DE and DEd).636

Unlike in usual structural topology optimisation prob-637

lems, volume fraction constraint and manufacturability638

filters were not imposed. The highlights of the findings639

are as follows.640

• Gradient algorithms (SIMPf0 and SIMPf2) can641

quickly converge to good quality solutions, but in642

some problems, they either prematurely converge643

to local optima or produce shapes that have in-644

termediate materials indicating that the objective645

function is multimodal with many local optima.646

• When comparing the solution quality, no algo-647

rithm clearly outperformed all others on all of648

the problem instances. Ranking the algorithms649

based on median solution quality revealed that650

the hill climbing approach performed the best, fol-651

lowed by the material-addition constructive heuris-652

tic (CH1), and the discrete variant of covariance-653

matrix-adaptation evolution strategy (CMAd).654

• The optimal shapes produced by algorithms that655

use stochastic components (GA, CMA, CMAd, DE,656

DEd) tend to be irregular and unconnected, and657

hence they might need additional filtering tech-658

niques. Although HC produced higher sound ab-659

sorption solutions in general, the optimal shapes660
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produced were not smooth and crisp. On the other661

hand, CH1 produces high-quality solutions that662

also have fewer irregularities than HC. In addition663

to this, the sound absorption values of shapes pro-664

duced by CH1 were as good as or slightly better665

than those produced by SIMPf0. Moreover, CH1666

can be easily modified to include volume fraction667

constraint by terminating the construction after the668

desired volume fraction is reached. The material669

removal heuristic (CH2) often returns a fully filled670

design domain as the solution, and the reason for671

this is not clear.672

• Between the continuous algorithms (CMA and DE)673

and their discrete variants (CMAd and DEd), the674

discrete variants seem to perform better. This675

means using filtering techniques before each objec-676

tive function evaluation works better than filtering677

the solutions at the end of the algorithm.678

To conclude, the absorption maximisation topology679

optimisation problem seems to be rich with many local-680

optimal solutions, and different strategies explore differ-681

ent regions of the search space producing unique varieties682

of solutions. Insights obtained may be valuable in de-683

signing hybrid strategies and hyperheuristics for general-684

purpose optimisation of sound-absorbing materials.685
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