A Brief Review of Memetic Algorithms for Solving Euclidean 2D Traveling Salesrep Problem

Ender Ozcan and Murat Erenturk

Department of Computer Engineering Yeditepe University Istanbul, 34755, Turkey

Abstract. Traveling Salesrep Problem (TSP) is one of the classical combinatorial optimization problems. There is a variety of approaches for finding near optimal solutions to problem instances. In this paper, a survey of Memetic Algorithms (MAs) is provided. Some experiments are performed on small TSP instances using traditional MAs using various operators, including a modified two-point crossover. The best combination of these operators and parameters settings are used to solve TSP on Turkish cities.

1 Introduction

Traveling Salesrep Problem (TSP) is a typical combinatorial optimization problem, studied by numerous researchers. A salesrep is required to visit N cities exactly for once, completing a tour by arriving at any city that is also the start and travelling the minimum distance. More formally, given N cities, TSP requires a search for a permutation $\pi : \{0, ..., N-1\} \rightarrow \{0, ..., N-1\}$, using a cost matrix $C=[c_{ij}]$, where c_{ij} denotes the cost (assumed to be known by the salesrep) of the travel from city *i* to *j*, that minimizes the *path length*

$$f(\pi, C) = \sum_{i=0}^{N-1} c_{\pi(i), \pi((i+1) \mod N)},$$
 Equation 1.

where $\pi(i)$ denotes the city at i^{th} location in the tour.

Different classes of TSP can be identified by the properties of the cost matrix. In *symmetric* TSP $c_{ij}=c_{ji}$, $\forall i, j$, otherwise this set of problems are referred as *asymmetric* TSP. If the cities lie in a metric space, satisfying the triangle inequality, the problem is referred as metric TSP. Assuming that each city in a tour is marked by its position (x_i, y_i) in the plane, and the cost matrix *C* contains the Euclidean distances between the *i*th and *j*th city:

$$c_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
 Equation 2.

Then the problem is both symmetric and metric.

The search space of a Euclidean TSP is giant containing N! permutations and identified by Garey *et. al.* in [8] to be NP-hard. There are many exact and

approximation algorithms for solving TSP. Having a variety of application areas, such as, vehicle routing, robot control, crystallography, computer wiring, scheduling, etc. and being a combinatorial optimization problem, TSP attracts the attention of Genetic Algorithm (GA) community.

2 Memetic Algorithms and Previous Work

Genetic Algorithms (GAs) were introduced by J. Holland in [11], and have been used to solve many difficult problems (Goldberg [9]). A *population* of *individuals*, representing candidate solutions, is evolved from an initial generation towards a final generation. An *evaluation function* is used to measure how fit an individual is. At each evolutionary step, a pool of individuals for mating is selected; giving higher chance for fitter individuals, and then a *crossover* operator is applied, producing *offspring*, on which *mutation* is applied. Selection pressure lets fitter individuals to survive after the *replacement*. The evolution continues until some *termination criteria* are satisfied. Memetic Algorithms (MAs), introduced by Moscato *et. al.* in [20] and formalized by Raddcliff *et. al.* in [27], extend GAs by applying a *local search* on individuals after mutation. Usefulness of *hill climbing* in search algorithms for problem solving is emphasized by many researchers, such as, Alkan *et. al.* in [2], Ozcan *et. al.* in [25], [26].

Memetic Algorithms (MAs) are also used for solving TSP by combining local search techniques and GAs. Aarts *et. al.* in [1] provides some test results of MAs for the TSP, using 2-opt (Lin [17]) and variable depth neighbourhoods (Lin *et. al.* [18]) as local search techniques. Larranaga *et. al.* in [9] makes a review of representations and operators used in Genetic Algorithms for solving TSP. Table 1 is generated based on the findings in [9], showing a subset of genetic operators used in solving TSP.

There are several schemes to represent a candidate solution to a TSP instance: *binary representation, path representation, adjacency representation, ordinal representation,* and *matrix representation.* Ucoluk introduces a new scheme in [32], based on inversion sequences, unnecessitating a special crossover or mutation operator for solving TSPs.

Table 1. Some genetic operators used for solving TSPs.

Year	Authors
(1999)	Larranaga, Kuijpers, Poza and Murga [16]
(1987)	Oliver, Smith and Holland [24]
(1996)	Freisbein and Merz [7]
(1997)	Nagata and Kobayashi [23]
(1989)	Whitley, Timothy and Fuquay [31]
(1987)	Grefenstette [14]
(1998)	Tao and Michalewicz [30]
(1988)	Mühlenbein, Schleuter and Krämer [21]
(1991)	Syswerda [29]
(1985)	Davis [4]
(1991)	Syswerda [29]
(1985)	Goldberg and Lingle [10]
(1989)	Mühlenbein [22]
	Year (1999) (1987) (1996) (1997) (1989) (1987) (1988) (1991) (1985) (1991) (1985) (1991) (1985) (1989)

Displacement Mutation (DM) (1992)	Michalewicz [19]
Exchange Mutation (EM) (1990)	Banzhaf [3]
Insertion Mutation (ISM)) (1988)	Fogel [5]
Inversion Mutation (IVM	f) (1990)	Fogel [6]
Scramble Mutation (SM)	(1991)	Syswerda [29]
Simple Inversion Mutation	on (SIM) (1975)	Holland [11]

There are some new operators, having better performances that are not mentioned in [9]. Nagata *et. al.* describes a powerful crossover in which local search is performed during the application of this genetic operator in [23]. Similarly, Seo *et. al.* presents another intelligent crossover operator in [28], called Voronoi Quantized Crossover (VQX), based on *genic distances*. Tao *et. al.* introduces a unary operator based on simple inversion, yielding fast results utilizing a nonstandard evolutionary algorithm in [30]. Also, Freisbein *et. al.* uses a new crossover operator in a nonstandard GA, producing an offspring by preserving the Hamming distance between tours. Hence, the number of newly introduced edges is minimized. Jung *et. al.* uses the Natural Crossover (NX) on images, utilizing topological information for solving 2D Euclidean TSP instances in [12].

Krasnogor *et. al.* applies local search after the individuals are selected for the next generation and during initialization in [13]. The main feature of the MAs is the utilization of different schemes for accepting and rejecting the improvements during the local search. As a hill climbing step 2-swap is used in the experiments.

In this paper, we explore the effect of crossover, mutation and local search in Genetic Algorithms. The best combination of operators is used to solve a TSP, in which sales representative travels between Turkish cities.

3 Memetic Algorithms for TSP

An individual uses *path representation* in our MA. For example, assuming a 6-city TSP, (1 3 5 2 6 4) represents a tour starting from city 1, visiting 3, 5, 2, 6, 4 in that order and returning back to 1. Initial population is created randomly. Partially Mapped Crossover (PMX), Order Crossover (OX1) and two-point crossover (2PTX) are implemented. After 2PTX is applied, a patch-up operator randomly assigns unvisited cities for the regions requiring a repair as follows:

 Parent1: 1 3 5 7 4 6 2
 Offspring1: x x 5 7 1 3 2 \rightarrow Offspring1: 6 4 5 7 1 3 2

 Parent2: 2 7 5 4 1 3 6
 Offspring2: 2 7 5 x 4 6 x \rightarrow Offspring1: 2 7 5 1 4 6 3

Note that 2PTX and the designed patch up operator might yield the same result as OX1 in some cases. This operator works like a combined and modified version of order crossover and scramble mutation. Additional to these operators, insertion mutation (ISM) and swap mutation (EM) operators are realized. Figure 1 demonstrates how these genetic operators work. Three different methods for selecting mates are implemented: Ranking (RANK), tournament (TOUR) and random (RAND).

Furthermore two types of MAs are implemented: Steady State Memetic Algorithm (SSMA) and Trans-generational Memetic Algorithm (TGMA). SSMA utilizes an elitist survival strategy, replacing worst pair of individuals with the best pair among the offspring and themselves. TGMA saves a small best portion of a population into the next generation and fills out the rest with newly produced offspring.

(a)

(b)

Figure 1. Example operations of (a) PMX and OX1, and (b) ISM and EM.

As a hill climbing approach, a hill climbing step is applied as long as, maximum number of iterations is not exceeded and the individual is improved. Each hill climbing step is chosen to be the mutation operator. Note that the best known local search algorithm is Lin-Kernighan (LK) algorithm (Lin *et. al.* in [18]). Evolution is terminated either a maximum number of generations is exceeded or an *expected fitness* is achieved. Fitness function evaluates the total path length as in Equation 1. Population size is a multiple of the number of cities in the TSP instances.

4 **Experiments**

Initial experiments are performed to achieve the best combination of operators for MA. Then the final MA is used to solve using Turkish cities. All the experiments are repeated for 100 times.

4.1 Experimental Data

As an experimental data, five syntactic data, labeled as C20, C30, C40, S21, F32, F41, and a real data, labeled as T81 are used, where each integer valued suffix indicate the number of cities in the TSP instance. In C-class data, all the cities are are placed on a circle as shown in Figure 2.(a), equidistantly. Similarly, S21 is a square with a side length of 15000 units. F-class data are fractals as revealed in Figure 2.(b) and (c). Figure 2.(d) shows the locations of 81 cities in Turkey based on their longitude and latitudes. Optimum path lengths that are used as expected fitness values in MAs for each TSP instance is presented in Table 2.

4.2 Experimental Results

All possible combinations of operators are tested. Performance of crossover operators; OX1, PMX and 2PTX in SSMA and TGMA is summarized in Table 3, in terms of average fitness per generation in a run averaged over 100 runs. On average, results demonstrate that OX1 performs the best. Interestingly, 2PTX with patch up performs better than PMX in most of the cases. If the mutation operators; ISM and EM are compared, based on the results mentioned in Table 4, EM turns out to be better than ISM, on average. Test results of selection methods for recombination; tournament, random and ranking in SSMA and TGMA is provided in Table 5, in terms of average fitness per generation in a run averaged over 100 runs. On average, results show that TOUR is the best choice as a selection method. As expected RAND is the worst choice among them.

Figure 2. Experimental data: (a) Cities on a circle (C20, C30, C40), (b) F32, (c) F41, (d) Cities in Turkey (T81).

Table 2. Expected	fitness values	for TSP instances	used in t	he experiments.
-------------------	----------------	-------------------	-----------	-----------------

Data Label (D.L.)	Expected Fitness	D.L.	Expected Fitness
C20	62.575	S21	60.000
C30	62.716	F32	84.180
C40	62.768	F41	68.168

All the tables illustrate the success of Memetic Algorithms as compared to Genetic Algorithms in solving TSP. Even using a simple hill climbing operator as mentioned in Section 3 yields better results than the traditional GA. Best combination of operators is used to solve TSP for Turkish cities and the following path is obtained:

[HAKKARİ, ŞIRNAK, SİİRT, BİTLİS, MUŞ, BİNGÖL, ERZİNCAN, TUNCELİ, ELAZIĞ, DİYARBAKIR, BATMAN, MARDİN, ŞANLIURFA, ADIYAMAN, MALATYA, KAHRAMANMARAŞ, GAZİANTEP, KİLİS, HATAY (Antakya), OSMANİYE, ADANA, KAYSERİ, YOZGAT, NEVŞEHİR, NİĞDE, İÇEL(Mersin), KARAMAN, ANTALYA, BURDUR, AFYON, ISPARTA, KONYA, AKSARAY, KIRŞEHİR, KIRIKKALE, KARABÜK, BARTIN, ZONGULDAK, BOLU, DÜZCE, SAKARYA(Adapazarı), BİLECİK, KÜTAHYA, UŞAK, DENİZLİ, MUĞLA, AYDIN, İZMİR, MANİSA, BALIKESİR, ÇANAKKALE, EDİRNE, KIRKLARELİ, TEKİRDAĞ, İSTANBUL, BURSA, YALOVA, KOCAELİ(İzmit), ESKİŞEHİR, ANKARA, ÇANKIRI, KASTAMONU, ÇORUM, SİNOP, AMASYA, SAMSUN, TOKAT, SİVAS, ORDU, GİRESUN, GÜMÜŞHANE, TRABZON, BAYBURT, ERZURUM, RİZE, ARTVİN, ARDAHAN, KARS, AĞRI, IĞDIR, VAN]

Table 3. Experimental results utilizing different GA types and crossover operators, where α indicates average fitness per generation at each run, averaged over 100 runs, and β indicates the best fitness values achieved during these runs.

GA	-	OX1		PN	/IX	2PT	2PTX	
TYPE	D.L.	α	β	α	β	α	β	
	C20	108.028	62.575	146.258	77.496	130.375	62.998	
	C30	118.658	63.048	198.126	62.716	118.797	63.395	
SSGA	C40	131.864	62.768	296.656	62.768	133.651	63.499	
	S21	93.915	60.000	121.431	60.000	107.623	60.000	
	F32	111.713	101.277	193.130	91.094	112.130	100.088	
	F41	122.177	92.025	288.901	77.609	128.192	92.025	
	C20	107.493	62.575	145.761	68.596	137.425	62.575	
	C30	116.633	62.716	232.692	62.716	126.822	62.716	
SSGA	C40	128.117	63.117	326.627	62.768	127.315	62.768	
НС	S21	93.626	60.000	130.871	60.000	118.905	60.000	
	F32	108.048	97.347	191.778	89.288	108.371	98.640	
	F41	115.860	89.079	278.021	68.168	115.703	68.168	
	C20	155.053	62.575	200.678	62.575	155.642	62.575	
	C30	199.731	62.716	276.245	60.000	199.010	63.142	
TGGA	C40	242.713	62.768	366.881	62.768	325.438	62.768	
	S21	139.622	60.000	182.676	60.000	158.829	60.000	
	F32	172.393	92.945	231.142	84.180	173.531	94.675	
	F41	209.223	68.168	313.109	68.168	271.056	68.168	
	C20	134.497	62.575	181.913	62.575	134.348	62.575	
	C30	165.795	62.716	248.582	62.716	164.665	62.716	
TGGA	C40	197.829	62.768	317.268	62.768	373.212	62.768	
НС	S21	120.276	60.000	165.421	60.000	139.039	60.000	
	F32	146.317	84.180	205.101	101.886	147.306	88.151	
	F41	158.461	68.168	268.375	68.168	281.333	68.168	

GA		ISM		EM			
ТҮРЕ	D.L.	α β		α	β		
	C20	145.655	62.575	110.786	71.431		
	C30	147.590	62.716	142.798	62.716		
SSGA	C40	207.804	62.768	157.104	121.454		
	S21	116.598	60.000	98.714	60.000		
	F32	159.191	91.094	118.792	108.694		
	F41	207.856	77.609	151.658	120.573		
	C20	149.799	62.575	110.654	62.575		
	C30	186.314	62.716	131.118	88.975		
SSGA	C40	243.077	62.768	144.962	114.914		
HC	S21	129.523	60.000	99.411	60.000		
	F32	157.291	89.288	114.841	106.003		
	F41	205.571	68.168	134.152	92.426		
	C20	173.683	62.575	167.233	62.575		
	C30	236.148	62.716	213.842	60.000		
TGGA	C40	344.740	62.768	278.614	62.768		
	S21	169.553	60.000	151.198	60.000		
	F32	201.821	92.945	182.890	84.180		
	F41	287.101	68.168	241.825	68.168		
	C20	153.128	62.575	147.378	62.575		
	C30	198.448	62.716	187.580	62.716		
TGGA	C40	309.523	62.768	282.683	62.768		
НС	S21	149.920	60.000	133.237	60.000		
	F32	172.591	84.180	159.893	86.734		
	F41	239.901	68.168	241.260	68.168		

Table 4. Experimental results utilizing different GA types and mutation operators, where α indicates average fitness per generation at each run, averaged over 100 runs, and β indicates the best fitness values achieved during these runs.

Table	5.	Experimental	results	utilizing	different	GA	types	and	selectio	on meth	nods	for
recomb	oinat	tion, where $\boldsymbol{\alpha}$	indicates	average f	itness per	gener	ation at	each	run, av	eraged	over	100
runs, a	nd β	indicates the	best fitne	ss values a	achieved d	uring	these ru	ıns.				

		TOURNAMENT αβ		RAN	DOM	RANKING		
GA TYPE	D.L.			α	β	α	β	
	C20	126.436	62.575	126.944	62.575	131.282	62.575	

	C30	140.705	62.716	173.790	62.716	121.087	62.716
SSGA	C40	177.456	64.008	228.010	64.034	128.714	62.768
	S21	101.145	60.000	114.465	60.000	107.359	60.000
	F32	128.573	91.623	150.232	101.646	138.168	91.094
	F41	160.240	77.609	201.873	92.138	177.157	92.025
	C20	113.707	62.575	143.931	62.575	133.041	62.575
	C30	141.000	62.716	182.180	63.048	152.969	63.525
SSGA	C40	177.561	62.768	217.941	63.117	186.557	62.768
НС	S21	106.584	60.000	130.238	60.000	106.579	60.000
	F32	127.228	89.288	146.701	97.347	134.269	91.094
	F41	157.085	80.433	186.761	68.168	165.738	68.168
	C20	134.429	62.575	224.846	71.359	152.098	62.575
	C30	153.537	60.000	330.044	90.165	191.405	63.852
TGGA	C40	228.951	62.768	476.435	65.886	229.646	62.768
	S21	120.017	60.000	201.758	60.000	159.352	60.000
	F32	141.048	84.180	268.649	111.198	167.369	96.122
	F41	162.891	68.168	379.565	78.357	250.932	68.168
	C20	120.202	62.575	193.156	62.575	137.401	62.575
	C30	130.820	62.716	278.075	62.716	170.147	62.716
TGGA	C40	151.887	62.768	428.456	62.768	307.965	62.768
НС	S21	106.970	60.000	172.790	60.000	144.976	60.000
	F32	117.335	84.180	232.659	84.180	148.732	86.734
	F41	121.668	68.168	352.459	68.168	266.375	68.168

5 Conclusions

Considering path representation, several different and well known operators are tested utilizing Genetic Algorithms and Memetic Algorithms to solve some small instances of Travelling Salesrep Problem in 2D, combining with hill climbing. Emprical results yield the success of following operators from the best to the worst: OX1, 2PTX and PMX as crossover, and EM and ISM as mutation and hill climbing method. Note that 2PTX uses a patch-up algorithm, producing a modified crossover combining OX1 and scramble mutation that has not been tested before. Hence, the best combination of operators is OX1 and EM for both TGGA and SSGA. Furthermore, results show that hill climbing improves the solution in any GA type. Using a transgenerational memetic

algorithm with OX1 and EM, TSP is solved for Turkish cities. To our knowledge, this is the first time; the optimal path is obtained for this instance.

References

1. E. H. L. Aarts and M. G. A. Verhoeven, Genetic local search for the traveling salesman problem, *Handbook of Evolutionary Computation*, pp.G9.5:1-7, IOP publishing Ltd and Oxford University Press. (1997)

2. A. Alkan, E. Ozcan, Memetic Algorithms for Timetabling, *IEEE Congress on Evolutionary Computation*, pp. 1796-1802. (2003)

3. W. Banzhaf, The "molecular" traveling salesman, *Biological Cybernetics*, vol. 64, pp. 7–14. (1990)

4. L. Davis, Applying adaptive algorithms to epistatic domains, *Proceedings of the International Joint Conference on Artificial Intelligence*, vol. 1, pp. 161–163. (1985)

5. D. B. Fogel, An evolutionary approach to the travelling salesman problem, *Biological Cybernetics*, vol. 60, no. 2, pp. 139–144. (1988)

6. D. Fogel, A parallel processing approach to a multiple travelling salesman problem using evolutionary programming, *Proceedings of the Fourth annual Symposium on Parallel Processing*, (Fullerton, California), pp. 318–326. (1990)

7. B. Freisleben, and P. Merz, New Genetic Local Search Operators for the Traveling Salesman Problem, *Proc. of 4th Conf. on Parallel Problem Solving from Nature - PPSN IV*, vol. 1141, pp. 890-900, Springer. (1996)

8. M. R. Garey, R.L. Graham, and D. S. Johnson. Some NP-complete geometric problems, *In 8th Annual ACM Symposium on Theory of*, pp 10-22. (1976)

9. D. E. Goldberg, *Genetic Algorithms in Search, Optimization, and Machine Learning*, Addison-Wesley, Reading (MA). (1989)

10.D. E. Goldberg, and R. Lingle Jr., Alleles, loci, and the traveling salesman problem, in *Proceedings of the First International Conference on Genetic Algorithms and Their Applications* (J. J. Grefenstette, ed.), Lawrence Erlbaum Associates, Publishers. (1985)

11.J. H. Holland, Adaptation in Natural and Artificial Systems, Univ. Mich. Press. (1975)

12.S. Jung and B. Moon, The Natural Crossover for the 2D Euclidean TSP, *Genetic and Evolutionary Computation Conference*, pp. 1003-1010. (2000)

13.N. Krasnogor, and J. Smith, A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study, *Proc. of the Int'l Genetic and Evolutionary Computation Conference - GECCO2000*. (2000)

14.J. J. Grefenstette, Incorporating problem specific knowledge into genetic algorithms, *Genetic Algorithms and Simulated Annealing*, ed. L. Davis, Morgan Kaufmann, Los Altos, CA pp. 42–60. (1987)

15.M. P. P. Larranaga, C. M. H Kuijpers and R. H. Murga, Decomposing bayesian networks: triangulation of the moral graph with genetic algorithms, *Statistics and Computing (UK)*, vol. 7, no. 1, pp. 19–34. (1997)

16.P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic, Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators, *Artif. Intell. Rev.* 13(2): 129-170. (1999)

17.S. Lin, Computer solutions of the traveling salesman problem, *Bell Syst. Tech. J.*, 44 2245–69. (1965)

18.S. Lin, and B. W. Kernighan, An effective heuristic algorithm for the traveling salesman problem, *Operations Research*, 21:498–516. (1973)

19.Z. Michalewicz, *Genetic Algorithms* + *Data Structures* = *Evolution Programs*. Berlin: Springer. (1992)

20.P. Moscato, and M. G. Norman, A Memetic Approach for the Traveling Salesman Problem Implementation of a Computational Ecology for Combinatorial Optimization on Message-Passing Systems, *Parallel Computing and Transputer Applications*, pp. 177-186. (1992)

21.H. Mühlenbein, M. G. Schleuter, and O. Krämer, Evolution algorithms in combinatorial optimization, *Parallel Computing*, vol. 7, pp. 65–85. (1988)

22.H. Mühlenbein, Parallel genetic algorithms, population genetics and combinatorial optimization, *Proceedings of the Third International Conference on Genetic Algorithms* (J. D. Schaffer, ed.), (San Mateo, CA), Morgan Kaufman. (1989)

23.Y. Nagata and S. Kobayashi, Edge assembly crossover: A high-power genetic algorithm for the travelling salesman problem, *Proc. Of the 7th Int'l Conf. on GAs.* (1997)

24.I. M. Oliver, D. J. Smith, and J. R. C. Holland, A study of permutation crossover operators on the travelling salesman problem, *Genetic algorithms and their applications: Proc. of the second Int. Conf. On Genetic Algorithms* (J. J. Grefenstette, ed.), (Hillsdale, NJ), pp. 224–230, Lawrence Erlbaum Assoc. (1987)

25.E. Ozcan, and C. K. Mohan, Steady State Memetic Algorithm for Partial Shape Matching, *7th Annual Conference on Evolutionary Programming*, pp. 527-536. (1998)

26.E. Ozcan, E. Onbasioglu, Genetic Algorithms for Parallel Code Optimization, *IEEE Congress on Evolutionary Computation*, to appear. (2004)

27.N. J. Radcliffe, and P.D. Surry, Formal memetic algorithms, *Evolutionary Computing: AISB Workshop*, Springer Verlag, LNCS 865, pp. 1-16. (1994)

28.D. Seo and B. Moon, Voronoi Quantized Crossover for Traveling Salesman Problem, *Genetic and Evolutionary Computation Conference*, pp. 544-552. (2002)

29.G. Syswerda, *Schedule optimization using genetic algorithms*, ch. 21, pp. 332–349. (1991)

30.G. Tao and Z. Michalewicz, Inver-over operator for the TSP, *Parallel Problem Solving from Nature – PPSN V* (A. E. Eiben, T. Back, M. Schoenauer, and H.-P. Schwefel, eds.), (Berlin), pp. 803–812, Springer. Lecture Notes in Computer Science 1498. (1998)

31.D. Whitley, T. Starkweather, and D. Fuquay, Scheduling problems and traveling salesman: The genetic edge recombination operator, *Proceedings of the Third International Conference on Genetic Algorithms* (J. D. Schaffer, ed.), (San Mateo, CA), Morgan Kaufman. (1989)

32.G. Ucoluk, Genetic Algorithm Solution of the TSP Avoiding Special Crossover and Mutation, *Intelligent Automation and Soft Computing*, 3(8), TSI Press. (2002)