
A Brief Review of Memetic Algorithms for Solving
Euclidean 2D Traveling Salesrep Problem

Ender Ozcan and Murat Erenturk
Department of Computer Engineering

Yeditepe University
Istanbul, 34755, Turkey

 Abstract. Traveling Salesrep Problem (TSP) is one of the classical
combinatorial optimization problems. There is a variety of approaches for
finding near optimal solutions to problem instances. In this paper, a survey of
Memetic Algorithms (MAs) is provided. Some experiments are performed on
small TSP instances using traditional MAs using various operators, including a
modified two-point crossover. The best combination of these operators and
parameters settings are used to solve TSP on Turkish cities.

1 Introduction

Traveling Salesrep Problem (TSP) is a typical combinatorial optimization problem,
studied by numerous researchers. A salesrep is required to visit N cities exactly for
once, completing a tour by arriving at any city that is also the start and travelling the
minimum distance. More formally, given N cities, TSP requires a search for a
permutation :{0, , 1} {0, , 1}N Nπ − → −… … , using a cost matrix C=[cij], where cij
denotes the cost (assumed to be known by the salesrep) of the travel from city i to j, that
minimizes the path length

f(π , C) =
1

(), ((1) mod)
0

N

i i N
i

cπ π

−

+
=
∑ , Equation 1.

where ()iπ denotes the city at ith location in the tour.

Different classes of TSP can be identified by the properties of the cost matrix. In
symmetric TSP cij=cji, ∀i, j, otherwise this set of problems are referred as asymmetric
TSP. If the cities lie in a metric space, satisfying the triangle inequality, the problem is
referred as metric TSP. Assuming that each city in a tour is marked by its position (xi,yi)
in the plane, and the cost matrix C contains the Euclidean distances between the ith and
jth city:

2 2() ()ij i j i jc x x y y= − + − Equation 2.

Then the problem is both symmetric and metric.

The search space of a Euclidean TSP is giant containing N! permutations and
identified by Garey et. al. in [8] to be NP-hard. There are many exact and

approximation algorithms for solving TSP. Having a variety of application areas, such
as, vehicle routing, robot control, crystallography, computer wiring, scheduling, etc. and
being a combinatorial optimization problem, TSP attracts the attention of Genetic
Algorithm (GA) community.

2 Memetic Algorithms and Previous Work

Genetic Algorithms (GAs) were introduced by J. Holland in [11], and have been used to
solve many difficult problems (Goldberg [9]). A population of individuals, representing
candidate solutions, is evolved from an initial generation towards a final generation. An
evaluation function is used to measure how fit an individual is. At each evolutionary
step, a pool of individuals for mating is selected; giving higher chance for fitter
individuals, and then a crossover operator is applied, producing offspring, on which
mutation is applied. Selection pressure lets fitter individuals to survive after the
replacement. The evolution continues until some termination criteria are satisfied.
Memetic Algorithms (MAs), introduced by Moscato et. al. in [20] and formalized by
Raddcliff et. al. in [27], extend GAs by applying a local search on individuals after
mutation. Usefulness of hill climbing in search algorithms for problem solving is
emphasized by many researchers, such as, Alkan et. al. in [2], Ozcan et. al. in [25], [26].

Memetic Algorithms (MAs) are also used for solving TSP by combining local search
techniques and GAs. Aarts et. al. in [1] provides some test results of MAs for the TSP,
using 2-opt (Lin [17]) and variable depth neighbourhoods (Lin et. al. [18]) as local
search techniques. Larranaga et. al. in [9] makes a review of representations and
operators used in Genetic Algorithms for solving TSP. Table 1 is generated based on the
findings in [9], showing a subset of genetic operators used in solving TSP.

There are several schemes to represent a candidate solution to a TSP instance: binary
representation, path representation, adjacency representation, ordinal representation,
and matrix representation. Ucoluk introduces a new scheme in [32], based on inversion
sequences, unnecessitating a special crossover or mutation operator for solving TSPs.
Table 1. Some genetic operators used for solving TSPs.

Operator Name Year Authors
Alternating Position Crossover (AP) (1999) Larranaga, Kuijpers, Poza and Murga [16]
Cycle Crossover (CX) (1987) Oliver, Smith and Holland [24]
Distance Preserving Crossover (DPX) (1996) Freisbein and Merz [7]
Edge Assembly Crossover (EAX) (1997) Nagata and Kobayashi [23]
Edge Recombination Crossover (ER) (1989) Whitley, Timothy and Fuquay [31]
Heuristic Crossover (HEU) (1987) Grefenstette [14]
Inver-over Operator (IOO) (1998) Tao and Michalewicz [30]
Maximal Preservative Crossover (MPX) (1988) Mühlenbein, Schleuter and Krämer [21]
Position Based Crossover (POS) (1991) Syswerda [29]
Order Crossover (OX1) (1985) Davis [4]
Order Based Crossover (OX2) (1991) Syswerda [29]
Partially mapped Crossover (PMX) (1985) Goldberg and Lingle [10]
Voting Recombination Crossover (VR) (1989) Mühlenbein [22]

Displacement Mutation (DM) (1992) Michalewicz [19]
Exchange Mutation (EM) (1990) Banzhaf [3]
Insertion Mutation (ISM) (1988) Fogel [5]
Inversion Mutation (IVM) (1990) Fogel [6]
Scramble Mutation (SM) (1991) Syswerda [29]
Simple Inversion Mutation (SIM) (1975) Holland [11]

There are some new operators, having better performances that are not mentioned in
[9]. Nagata et. al. describes a powerful crossover in which local search is performed
during the application of this genetic operator in [23]. Similarly, Seo et. al. presents
another intelligent crossover operator in [28], called Voronoi Quantized Crossover
(VQX), based on genic distances. Tao et. al. introduces a unary operator based on
simple inversion, yielding fast results utilizing a nonstandard evolutionary algorithm in
[30]. Also, Freisbein et. al. uses a new crossover operator in a nonstandard GA,
producing an offspring by preserving the Hamming distance between tours. Hence, the
number of newly introduced edges is minimized. Jung et. al. uses the Natural Crossover
(NX) on images, utilizing topological information for solving 2D Euclidean TSP
instances in [12].

Krasnogor et. al. applies local search after the individuals are selected for the next
generation and during initialization in [13]. The main feature of the MAs is the
utilization of different schemes for accepting and rejecting the improvements during the
local search. As a hill climbing step 2-swap is used in the experiments.

In this paper, we explore the effect of crossover, mutation and local search in Genetic
Algorithms. The best combination of operators is used to solve a TSP, in which sales
representative travels between Turkish cities.

3 Memetic Algorithms for TSP

An individual uses path representation in our MA. For example, assuming a 6-city TSP,
(1 3 5 2 6 4) represents a tour starting from city 1, visiting 3, 5, 2, 6, 4 in that order and
returning back to 1. Initial population is created randomly. Partially Mapped Crossover
(PMX), Order Crossover (OX1) and two-point crossover (2PTX) are implemented.
After 2PTX is applied, a patch-up operator randomly assigns unvisited cities for the
regions requiring a repair as follows:

Parent1: 1 3 5 7 4 6 2 Offspring1: x x 5 7 1 3 2→ Offspring1: 6 4 5 7 1 3 2

Parent2: 2 7 5 4 1 3 6 Offspring2: 2 7 5 x 4 6 x→ Offspring1: 2 7 5 1 4 6 3

Note that 2PTX and the designed patch up operator might yield the same result as OX1
in some cases. This operator works like a combined and modified version of order
crossover and scramble mutation. Additional to these operators, insertion mutation
(ISM) and swap mutation (EM) operators are realized. Figure 1 demonstrates how these
genetic operators work. Three different methods for selecting mates are implemented:
Ranking (RANK), tournament (TOUR) and random (RAND).

Furthermore two types of MAs are implemented: Steady State Memetic Algorithm
(SSMA) and Trans-generational Memetic Algorithm (TGMA). SSMA utilizes an elitist
survival strategy, replacing worst pair of individuals with the best pair among the
offspring and themselves. TGMA saves a small best portion of a population into the
next generation and fills out the rest with newly produced offspring.

 (a) (b)
Figure 1. Example operations of (a) PMX and OX1, and (b) ISM and EM.

As a hill climbing approach, a hill climbing step is applied as long as, maximum
number of iterations is not exceeded and the individual is improved. Each hill climbing
step is chosen to be the mutation operator. Note that the best known local search
algorithm is Lin-Kernighan (LK) algorithm (Lin et. al. in [18]). Evolution is terminated
either a maximum number of generations is exceeded or an expected fitness is achieved.
Fitness function evaluates the total path length as in Equation 1. Population size is a
multiple of the number of cities in the TSP instances.

4 Experiments

Initial experiments are performed to achieve the best combination of operators for MA.
Then the final MA is used to solve using Turkish cities. All the experiments are
repeated for 100 times.

4.1 Experimental Data

As an experimental data, five syntactic data, labeled as C20, C30, C40, S21, F32, F41,
and a real data, labeled as T81 are used, where each integer valued suffix indicate the
number of cities in the TSP instance. In C-class data, all the cities are are placed on a
circle as shown in Figure 2.(a), equidistantly. Similarly, S21 is a square with a side
length of 15000 units. F-class data are fractals as revealed in Figure 2.(b) and (c). Figure
2.(d) shows the locations of 81 cities in Turkey based on their longitude and latitudes.
Optimum path lengths that are used as expected fitness values in MAs for each TSP
instance is presented in Table 2.

ISM (1 3 5 2 6 4)→(1 3 2 6 5 4)

EM (1 3 5 2 6 4)→(1 6 5 2 3 4)

PMX (1 3 2 6 5 4)X→(5 6 2 3 1 4)

(5 6 2 1 4 3) (1 3 2 5 4 6)

OX1 (1 3 2 6 5 4)X→(5 1 2 6 4 3)

(5 6 2 1 4 3) (3 6 2 1 5 4)

4.2 Experimental Results

All possible combinations of operators are tested. Performance of crossover operators;
OX1, PMX and 2PTX in SSMA and TGMA is summarized in Table 3, in terms of
average fitness per generation in a run averaged over 100 runs. On average, results
demonstrate that OX1 performs the best. Interestingly, 2PTX with patch up performs
better than PMX in most of the cases. If the mutation operators; ISM and EM are
compared, based on the results mentioned in Table 4, EM turns out to be better than
ISM, on average. Test results of selection methods for recombination; tournament,
random and ranking in SSMA and TGMA is provided in Table 5, in terms of average
fitness per generation in a run averaged over 100 runs. On average, results show that
TOUR is the best choice as a selection method. As expected RAND is the worst choice
among them.

Figure 2. Experimental data: (a) Cities on a circle (C20, C30, C40), (b) F32, (c) F41,
(d) Cities in Turkey (T81).
 Table 2. Expected fitness values for TSP instances used in the experiments.

All the tables illustrate the success of Memetic Algorithms as compared to Genetic
Algorithms in solving TSP. Even using a simple hill climbing operator as mentioned in
Section 3 yields better results than the traditional GA. Best combination of operators is
used to solve TSP for Turkish cities and the following path is obtained:

Data Label (D.L.) Expected Fitness D.L. Expected Fitness

C20 62.575 S21 60.000

C30 62.716 F32 84.180

C40 62.768 F41 68.168

♦
♦ α = 2π/N

(a) (b) (c)

(d)

[HAKKARİ, ŞIRNAK, SİİRT, BİTLİS, MUŞ, BİNGÖL, ERZİNCAN, TUNCELİ, ELAZIĞ, DİYARBAKIR,
BATMAN, MARDİN, ŞANLIURFA, ADIYAMAN, MALATYA, KAHRAMANMARAŞ, GAZİANTEP, KİLİS,
HATAY (Antakya), OSMANİYE, ADANA, KAYSERİ, YOZGAT, NEVŞEHİR, NİĞDE, İÇEL(Mersin),
KARAMAN, ANTALYA, BURDUR, AFYON, ISPARTA, KONYA, AKSARAY, KIRŞEHİR, KIRIKKALE,
KARABÜK, BARTIN, ZONGULDAK, BOLU, DÜZCE, SAKARYA(Adapazarı), BİLECİK, KÜTAHYA, UŞAK,
DENİZLİ, MUĞLA, AYDIN, İZMİR, MANİSA, BALIKESİR, ÇANAKKALE, EDİRNE, KIRKLARELİ,
TEKİRDAĞ, İSTANBUL, BURSA, YALOVA, KOCAELİ(İzmit), ESKİŞEHİR, ANKARA, ÇANKIRI,
KASTAMONU, ÇORUM, SİNOP, AMASYA, SAMSUN, TOKAT, SİVAS, ORDU, GİRESUN, GÜMÜŞHANE,
TRABZON, BAYBURT, ERZURUM, RİZE, ARTVİN, ARDAHAN, KARS, AĞRI, IĞDIR, VAN]

Table 3. Experimental results utilizing different GA types and crossover operators, where α
indicates average fitness per generation at each run, averaged over 100 runs, and β indicates the
best fitness values achieved during these runs.

OX1 PMX 2PTX GA
TYPE D.L. α β α β α β

 C20 108.028 62.575 146.258 77.496 130.375 62.998

 C30 118.658 63.048 198.126 62.716 118.797 63.395

SSGA C40 131.864 62.768 296.656 62.768 133.651 63.499

 S21 93.915 60.000 121.431 60.000 107.623 60.000

 F32 111.713 101.277 193.130 91.094 112.130 100.088

 F41 122.177 92.025 288.901 77.609 128.192 92.025

 C20 107.493 62.575 145.761 68.596 137.425 62.575

 C30 116.633 62.716 232.692 62.716 126.822 62.716

SSGA C40 128.117 63.117 326.627 62.768 127.315 62.768

HC S21 93.626 60.000 130.871 60.000 118.905 60.000

 F32 108.048 97.347 191.778 89.288 108.371 98.640

 F41 115.860 89.079 278.021 68.168 115.703 68.168

 C20 155.053 62.575 200.678 62.575 155.642 62.575

 C30 199.731 62.716 276.245 60.000 199.010 63.142

TGGA C40 242.713 62.768 366.881 62.768 325.438 62.768

 S21 139.622 60.000 182.676 60.000 158.829 60.000

 F32 172.393 92.945 231.142 84.180 173.531 94.675

 F41 209.223 68.168 313.109 68.168 271.056 68.168

 C20 134.497 62.575 181.913 62.575 134.348 62.575

 C30 165.795 62.716 248.582 62.716 164.665 62.716

TGGA C40 197.829 62.768 317.268 62.768 373.212 62.768

HC S21 120.276 60.000 165.421 60.000 139.039 60.000

 F32 146.317 84.180 205.101 101.886 147.306 88.151

 F41 158.461 68.168 268.375 68.168 281.333 68.168

Table 4. Experimental results utilizing different GA types and mutation operators, where α
indicates average fitness per generation at each run, averaged over 100 runs, and β indicates the
best fitness values achieved during these runs.

ISM EM GA
TYPE D.L. α β α β

 C20 145.655 62.575 110.786 71.431

 C30 147.590 62.716 142.798 62.716

SSGA C40 207.804 62.768 157.104 121.454

 S21 116.598 60.000 98.714 60.000

 F32 159.191 91.094 118.792 108.694

 F41 207.856 77.609 151.658 120.573

 C20 149.799 62.575 110.654 62.575

 C30 186.314 62.716 131.118 88.975

SSGA C40 243.077 62.768 144.962 114.914

HC S21 129.523 60.000 99.411 60.000

 F32 157.291 89.288 114.841 106.003

 F41 205.571 68.168 134.152 92.426

 C20 173.683 62.575 167.233 62.575

 C30 236.148 62.716 213.842 60.000

TGGA C40 344.740 62.768 278.614 62.768

 S21 169.553 60.000 151.198 60.000

 F32 201.821 92.945 182.890 84.180

 F41 287.101 68.168 241.825 68.168

 C20 153.128 62.575 147.378 62.575

 C30 198.448 62.716 187.580 62.716

TGGA C40 309.523 62.768 282.683 62.768

HC S21 149.920 60.000 133.237 60.000

 F32 172.591 84.180 159.893 86.734

 F41 239.901 68.168 241.260 68.168

Table 5. Experimental results utilizing different GA types and selection methods for
recombination, where α indicates average fitness per generation at each run, averaged over 100
runs, and β indicates the best fitness values achieved during these runs.

TOURNAMENT RANDOM RANKING

GA TYPE D.L. α β α β α β

 C20 126.436 62.575 126.944 62.575 131.282 62.575

 C30 140.705 62.716 173.790 62.716 121.087 62.716

SSGA C40 177.456 64.008 228.010 64.034 128.714 62.768

 S21 101.145 60.000 114.465 60.000 107.359 60.000

 F32 128.573 91.623 150.232 101.646 138.168 91.094

 F41 160.240 77.609 201.873 92.138 177.157 92.025

 C20 113.707 62.575 143.931 62.575 133.041 62.575

 C30 141.000 62.716 182.180 63.048 152.969 63.525

SSGA C40 177.561 62.768 217.941 63.117 186.557 62.768

HC S21 106.584 60.000 130.238 60.000 106.579 60.000

 F32 127.228 89.288 146.701 97.347 134.269 91.094

 F41 157.085 80.433 186.761 68.168 165.738 68.168

 C20 134.429 62.575 224.846 71.359 152.098 62.575

 C30 153.537 60.000 330.044 90.165 191.405 63.852

TGGA C40 228.951 62.768 476.435 65.886 229.646 62.768

 S21 120.017 60.000 201.758 60.000 159.352 60.000

 F32 141.048 84.180 268.649 111.198 167.369 96.122

 F41 162.891 68.168 379.565 78.357 250.932 68.168

 C20 120.202 62.575 193.156 62.575 137.401 62.575

 C30 130.820 62.716 278.075 62.716 170.147 62.716

TGGA C40 151.887 62.768 428.456 62.768 307.965 62.768

HC S21 106.970 60.000 172.790 60.000 144.976 60.000

 F32 117.335 84.180 232.659 84.180 148.732 86.734

 F41 121.668 68.168 352.459 68.168 266.375 68.168

5 Conclusions

Considering path representation, several different and well known operators are tested
utilizing Genetic Algorithms and Memetic Algorithms to solve some small instances of
Travelling Salesrep Problem in 2D, combining with hill climbing. Emprical results
yield the success of following operators from the best to the worst: OX1, 2PTX and
PMX as crossover, and EM and ISM as mutation and hill climbing method. Note that
2PTX uses a patch-up algorithm, producing a modified crossover combining OX1 and
scramble mutation that has not been tested before. Hence, the best combination of
operators is OX1 and EM for both TGGA and SSGA. Furthermore, results show that
hill climbing improves the solution in any GA type. Using a transgenerational memetic

algorithm with OX1 and EM, TSP is solved for Turkish cities. To our knowledge, this is
the first time; the optimal path is obtained for this instance.

References

1. E. H. L. Aarts and M. G. A. Verhoeven, Genetic local search for the traveling
salesman problem, Handbook of Evolutionary Computation, pp.G9.5:1-7, IOP
publishing Ltd and Oxford University Press. (1997)
2. A. Alkan, E. Ozcan, Memetic Algorithms for Timetabling, IEEE Congress on
Evolutionary Computation, pp. 1796-1802. (2003)
3. W. Banzhaf, The “molecular” traveling salesman, Biological Cybernetics, vol. 64,
pp. 7–14. (1990)
4. L. Davis, Applying adaptive algorithms to epistatic domains, Proceedings of the
International Joint Conference on Artificial Intelligence, vol. 1, pp. 161– 163. (1985)
5. D. B. Fogel, An evolutionary approach to the travelling salesman problem,
Biological Cybernetics, vol. 60, no. 2, pp. 139–144. (1988)
6. D. Fogel, A parallel processing approach to a multiple travelling salesman problem
using evolutionary programming, Proceedings of the Fourth annual Symposium on
Parallel Processing, (Fullerton, California), pp. 318–326. (1990)
7. B. Freisleben, and P. Merz, New Genetic Local Search Operators for the Traveling
Salesman Problem, Proc. of 4th Conf. on Parallel Problem Solving from Nature - PPSN
IV, vol. 1141, pp. 890-900, Springer. (1996)
8. M. R. Garey, R.L. Graham, and D. S. Johnson. Some NP-complete geometric
problems, In 8th Annual ACM Symposium on Theory of, pp 10-22. (1976)
9. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading (MA). (1989)
10. D. E. Goldberg, and R. Lingle Jr., Alleles, loci, and the traveling salesman problem,
in Proceedings of the First International Conference on Genetic Algorithms and Their
Applications (J. J. Grefenstette, ed.), Lawrence Erlbaum Associates, Publishers. (1985)
11. J. H. Holland, Adaptation in Natural and Artificial Systems, Univ. Mich. Press.
(1975)
12. S. Jung and B. Moon, The Natural Crossover for the 2D Euclidean TSP, Genetic and
Evolutionary Computation Conference, pp. 1003-1010. (2000)
13. N. Krasnogor, and J. Smith, A Memetic Algorithm With Self-Adaptive Local
Search: TSP as a case study, Proc. of the Int’l Genetic and Evolutionary Computation
Conference - GECCO2000. (2000)
14. J. J. Grefenstette, Incorporating problem specific knowledge into genetic algorithms,
Genetic Algorithms and Simulated Annealing, ed. L. Davis, Morgan Kaufmann, Los
Altos, CA pp. 42–60. (1987)
15. M. P. P. Larranaga, C. M. H Kuijpers and R. H. Murga, Decomposing bayesian
networks: triangulation of the moral graph with genetic algorithms, Statistics and
Computing (UK), vol. 7, no. 1, pp. 19–34. (1997)
16. P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic, Genetic
Algorithms for the Travelling Salesman Problem: A Review of Representations and
Operators, Artif. Intell. Rev. 13(2): 129-170. (1999)

17. S. Lin, Computer solutions of the traveling salesman problem, Bell Syst. Tech. J., 44
2245–69. (1965)
18. S. Lin, and B. W. Kernighan, An effective heuristic algorithm for the traveling
salesman problem, Operations Research, 21:498–516. (1973)
19. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs.
Berlin: Springer. (1992)
20. P. Moscato, and M. G. Norman, A Memetic Approach for the Traveling Salesman
Problem Implementation of a Computational Ecology for Combinatorial Optimization
on Message-Passing Systems, Parallel Computing and Transputer Applications, pp.
177-186. (1992)
21. H. Mühlenbein, M. G. Schleuter, and O. Krämer, Evolution algorithms in
combinatorial optimization, Parallel Computing, vol. 7, pp. 65–85. (1988)
22. H. Mühlenbein, Parallel genetic algorithms, population genetics and combinatorial
optimization, Proceedings of the Third International Conference on Genetic Algorithms
(J. D. Schaffer, ed.), (San Mateo, CA), Morgan Kaufman. (1989)
23. Y. Nagata and S. Kobayashi, Edge assembly crossover: A high-power genetic
algorithm for the travelling salesman problem, Proc. Of the 7th Int’l Conf. on GAs.
(1997)
24. I. M. Oliver, D. J. Smith, and J. R. C. Holland, A study of permutation crossover
operators on the travelling salesman problem, Genetic algorithms and their
applications: Proc. of the second Int. Conf. On Genetic Algorithms (J. J. Grefenstette,
ed.), (Hillsdale, NJ), pp. 224–230, Lawrence Erlbaum Assoc. (1987)
25. E. Ozcan, and C. K. Mohan, Steady State Memetic Algorithm for Partial Shape
Matching, 7th Annual Conference on Evolutionary Programming, pp. 527-536. (1998)
26. E. Ozcan, E. Onbasioglu, Genetic Algorithms for Parallel Code Optimization, IEEE
Congress on Evolutionary Computation, to appear. (2004)
27. N. J. Radcliffe, and P.D. Surry, Formal memetic algorithms, Evolutionary
Computing: AISB Workshop, Springer Verlag, LNCS 865, pp. 1-16. (1994)
28. D. Seo and B. Moon, Voronoi Quantized Crossover for Traveling Salesman
Problem, Genetic and Evolutionary Computation Conference, pp. 544-552. (2002)
29. G. Syswerda, Schedule optimization using genetic algorithms, ch. 21, pp. 332–349.
(1991)
30. G. Tao and Z. Michalewicz, Inver-over operator for the TSP, Parallel Problem
Solving from Nature – PPSN V (A. E. Eiben, T. Back, M. Schoenauer, and H.-P.
Schwefel, eds.), (Berlin), pp. 803–812, Springer. Lecture Notes in Computer Science
1498. (1998)
31. D. Whitley, T. Starkweather, and D. Fuquay, Scheduling problems and traveling
salesman: The genetic edge recombination operator, Proceedings of the Third
International Conference on Genetic Algorithms (J. D. Schaffer, ed.), (San Mateo, CA),
Morgan Kaufman. (1989)
32. G. Ucoluk, Genetic Algorithm Solution of the TSP Avoiding Special Crossover and
Mutation, Intelligent Automation and Soft Computing, 3(8), TSI Press. (2002)

