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Abstract: There is a variety of approaches developed by researchers to solve different 
instances of timetabling problems. During these studies different data formats 
are used to represent a timetabling problem instance and its solution, causing 
difficulties in the evaluation and comparison of approaches and sharing data. 
In this paper, a model for timetabling problems and a new XML data format 
for them based on MathML is proposed.  
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1. INTRODUCTION 

Timetabling problems consist in feasible assignment of time-slots to a set 
of events, subject to a set of constraints. The timetabling problem is an NP 
complete problem [13]. There are a growing number of solutions to different 
types of timetabling problems having different types of constraints [1-12, 15, 
18-22]. Since there is no common standard on specifying a timetabling 
problem instance and its solution proposed by a researcher, most of the 
results cannot be compared and benchmarking becomes almost impossible. 
Proposal for a common data format for timetabling is initiated by Andrew 
Cumming at ICPTAT’95. Studies in the area yield a language named SSTL 
[7, 16]. SSTL has not become a common format as expected, possibly 
because; it is not that easy to convert existing data to SSTL. Furthermore, 
most of the research in timetabling is due to some practical need, making the 
researchers concentrate on solving the problem at their hand, ignoring the 
data format. 



2 Ender Özcan
 

Causmaecker et. al. [2] argues that timetabling research community can 
benefit from Semantic Web, focusing the timetabling ontology, rather than 
one of the layers of the architecture that requires definition of an Extensible 
Markup Language (XML). XML lets users to create their own set of tags, 
enabling them to specify the structure of their documents. Furthermore, 
XML can be used to define a set of grammar rules to define markup 
languages. It is an efficient way of representing data on the web as a basis 
for machine to machine communication. XML documents can be considered 
to be a globally linked database. There are already defined XML based 
languages. For example, MathML provides means to use mathematical 
expressions in the web; Scalable Vector Graphics (SVG) is a language for 
describing two-dimensional graphics in XML. All the details about 
technologies related to XML can be found in W3C site [23].  

Timetabling problems can be formulized using set theory as described in 
Section 3 in detail, where a constraint is a function operating on the sets. 
Hence, MathML provides a basis for the representation of timetabling 
components. For example, MathML allows users to define completely new 
content symbols that represent a function or a type or another content 
markup element. This important feature can be used to standardize some 
timetabling constraints, providing flexibility for users to define their own 
constraints as well. 

In this paper, Timetabling Markup Language (TTML), an XML based 
data format for timetabling problems is presented utilizing MathML content 
markup.  

2. TTML: TIMETABLING MARKUP LANGUAGE  

It is vital to clearly define and represent the elements of a timetabling 
problem using TTML. The same requirements explained in previous works 
will be considered during the process [7, 16].  

This section is an overview of TTML tags for content markup to generate 
a well-formed document. For a world wide accepted format for representing 
timetabling problems, a working group should come together under W3C 
from researchers and vendors. TTML will be developed further whether this 
action is taken or not. Instead of creating a new approach, TTML extends 
MathML, intensifying the importance of modelling. The elements of TTML 
are built around MathML. The aim is to address the underlying issues, and 
come up with possible solutions during the modelling. Note that the 
conversion between different XML documents with similar contents is easy 
and this conversion does not require a valid document. Hence, XML Schema 
is left as a further study. All bold TTML elements are optional elements, “|” 
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denotes or and “[]” denotes one or more occurrence of the element 
enclosed. 

2.1 MathML 

MathML is an XML based standard for describing mathematical 
expressions [23]. Presentation markup defines a particular rendering for an 
expression, while content markup in the MathML provides a precise 
encoding of the essential mathematical structure of an expression. Some of 
the content markup elements include relations, calculus and vector calculus, 
theory of sets, sequences and series, elementary classical functions and 
statistics. Note that declare element is a MathML constructor for 
associating default attribute values and values with mathematical objects. In 
TTML, declare is used to associate a name with the defined sets. 
Attributes desc and name are proposed for declare element in TTML, 
denoting a short description of the declared item and a unique name 
associated with it, respectively. Unless it is mentioned otherwise the order of 
TTML elements are strict. 

2.2 Modelling Timetabling Problem Instances 

An XML document requires one unique root element. The root element is 
chosen to be time-tabling for a timetabling problem instance. Our first 
aim should be enabling data exchange; hence a TTML document must 
include input data and the constraints for the problem instance. Additionally, 
for the research community, in order to make comparisons, test results 
obtained from applying an algorithm to the input data should be attached. 
Further attachments might be required, such as output formats for the 
solution. For example, course section meeting schedules can be generated as 
a solution to a timetabling problem, but both schedules of all teachers and 
students can be required as an output. Hence, a TTML document might 
declare multiple output formats for the same solution. Main and first level of 
child elements of a TTML document are illustrated in Figure 1(a). A TTML 
document can include an output format or test results, optionally. Element 
time-tabling can have attributes such as, last update, problem type 
(e.g., university course timetabling, highschool timetabling, exam 
timetabling, employee shift timetabling), etc. 
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3. MODELLING INPUT DATA 

Timetabling problems are constraint optimization problems that can be 
represented using (V, L, C), forming input data, where V = {v1, v2, …, vi, …, 
vP} is a set of variables, L = { d1, d2, …, di, …, dP },is a nonempty set of 
domains of variables, defining the set of possible values for each variable in 
V and C is a set of constraints, where each constraint is defined for some 
subsets of the variables, specifying the allowable combinations of values for 
it. This 3-tuple forms the input data for a timetabling problem.   

In a timetabling problem, a list or a higher dimensional array of attributes 
(properties) belonging to a set might be required. Let attributed set indicate a 
set where all the members have attributes. For example, the number of 
students registered to each course, the distances between classrooms, 
capacity of the classrooms can be considered as attributes of the related sets. 
Then the set of courses and the set of classrooms are attributed sets. Note 
that attribute values might be used while defining the constraints. 
Considering timetabling problems, we can limit the domain of the attribute 
values to , Z , and S . 

 
 
 
 
 
 
 
 
 
 
   (a)           (b)          (c) 

Figure 1. Main and lower level of child elements of a TTML document 

Main and first level of child elements of input data are illustrated in 
Figure 1(b). Elements author, desc and aref describe the author of the 
timetabling input data, a brief description of the problem and associated 
references (which might be more than one), respectively. Element 
variables contains a declaration of a single set of variables, identifying 
each member (Figure 2(a)). 

3.1 Attributed Sets 

Two approaches can be applied to support attributed sets, so that attribute 
values could be entered as input data. Assuming that higher dimensions can 

-<time-tabling> 
  +<input-data> 
  +<output> 
  +<test-results> 

-<input-data> 
 [+<author>] 
 +<desc> 
 -<aref> 
  [+<li>] 
+<variables> 

  +<domains> 
  +<constraints> 

-<domains> 
 -<time> 

+<res> 
+<declare> 

 +<duration> 
  -<declare> 
 [+<declare>] 
 -<domainsvar> 

+<declare> 
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be mapped into a single dimension, a vector can be associated with each 
set member as shown in Figure 2(b). If there are more than one set of 
attributes, then it is not that straightforward how to distinguish between 
them, since they will all be together in the attribute vector. So, TTML shall 
support the second approach, allowing declaration of single or higher 
dimensions of attributes associated with the set using attrset as shown 
in Figure 2(c).  

Element attrset contains two or more declarations. First declaration is 
a set, and the rest of the declarations (at least one) are the related attributes of 
it. Attribute declarations must contain vector or matrix elements where 
each attribute value will be accessible via selector function in MathML 
(Figure 2(c)). All set declarations can be replaced by attributed set 
declarations in TTML. If the element attrset is used to represent a set, 
then the first declaration is although a set, the order of the elements in the set 
becomes important, for this reason for the rest of the attribute declarations, 
that order will be used to identify an attribute value. For example, 24 is the 
number of registered students. Note that an attributed set might contain more 
than one set of attributes. It is assumed that the corresponding attribute value 
of a set member is associated by keeping the same order, wherever the 
member is defined. For example, assuming CSE462 is the first member of 
the attributed set then NoOfStudents attribute value of it will be the first 
entry of the corresponding declaration, which is 24 as shown in Figure 2. 
Define attrval element, accepting the attributed set member and attribute 
set name as input and returning the attribute value of an attribute set 
member.  
 

 
 
 
 
 
 
 
 
 
 
 
 
     (a)          (b)         (c) 

Figure 2. Possible approaches to support attributed sets as input data in TTML 

<variables>  
 <declare> 
 <ci>V</ci> 
  <set> 

<ci>CSE462 
</ci> 
<ci>BUS400 
</ci> 
   

  </set> 
 </declare> 
</variables> 

<cn>  
 <declare> 
 <ci>CSE462 
 </ci> 
  <vector>     
  <cn>24</cn> 
  </vector> 
 </declare> 
</cn> 

<attrset>  
<!— Assume V is 
 declared in here--> 
 <declare> 
 <ci>NoOfStudents</ci> 
 <vector>              
    <cn>24</cn> 

<cn>35</cn> 
 

  </vector> 
 </declare> 
</attrset> 
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4. MODELLING DOMAINS OF VARIABLES 

A candidate solution 'V of a timetabling problem is defined by an 
assignment of values from the domain to the variables: 

' ' ' '
1 1{ ,..., ,..., }i i P PV v v v v v v= = = = , where '

i iv d∈ and  
di ⊆D1 x D2 x … x Dl x … x Dn, 1≤n 

While defining the constraints this assignment function might be needed. 
For this reason, a TTML element assignvar is defined as a unary 
function requiring a single argument which must be a member of the set of 
variables, returning the assigned value. For example, assignvar(vi) 
returns '

iv . A domain consists of either time intervals (time set) or Cartesian 
product of several sets, one of them being the time set (D1=T). If a domain is 
a Cartesian product of multiple sets then domainsvar element should be 
used for domain declaration in TTML. In such a case, the assignment might 
be an n-tuple, represented by a vector in TTML, allowing access of any 
dimension via selector function. For example, assuming a set of courses 
as a set of variables, assignvar(vi)  might return (4,A200), indicating an 
assignment of the ith course to the 4th time interval in the timetable which 
will meet in the classroom A200. Selecting the 1st element in the vector 
returns 4, 2nd element returns A200.  

It is possible that in some timetabling problems, durations might be also 
in the domain of a variable. TTML shall support declaration of duration set 
using duration element. Each member of duration set must be of type 
duration as explained in the following section. All of the related sets must be 
declared in a TTML document as domains of variables as shown in Figure 
1(c).  

In timetabling problems, a timetable is either discrete or continuous. In 
TTML, a combination of both is also supported for generality. Time intervals 
in a timetable might have equal or unequal length, or be periodic or non-
periodic. In some problems date, in some others date and time might be 
required. TTML shall support all. 

4.1 Modelling Time Interval and Duration 

A time interval can be represented using a starting time and a duration. 
MathML does not contain any type definition related to time or duration, but 
it allows user-defined types. Similar definitions for dateTime and 
duration types in XML schema are proposed to describe a time interval in 
TTML. In order to get rid of the confusion and be able to use a total order on 
time, Coordinated Universal Time (UTC) is chosen using the syntax CCYY-
MM-DDThh:mm:ss. Duration type syntax is PnYnMnDTnHnMnS, 
indicating the number (n) of years (Y), months (M), and so on. Any 
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substring generated using the syntaxes defined above will be valid, assuming 
that the string includes at least one time item. Duration set as a domain of a 
variable will be composed of members that are of duration type. This set 
shall be bound to a name using a declaration as shown in Figure 1(c), if 
used. TTML shall support three functions; tistart, tiduration and 
tiend returning the starting time, duration and end of a time interval, 
requiring a single parameter. 

4.2 Modelling Timetables 

User should be able to define its own formatting string, emphasizing the 
time elements relevant to the problem and then the timetable. In TTML, res 
element will be used to state the format of the time used in the timetable 
definition. For example, the quantity 10-10T10:00 <sep/> P1H 
represents a time interval at the 10th day of October with duration 1 hour, 
based on the formatting string <res>MM-DDThh:mm</res>. A timetable is, 
ultimately, a set of time intervals. TTML shall support this most general 
approach, enabling shortcuts. An attribute, named as interval is added to 
the set element to identify, whether the time intervals are continuous or 
discrete. For example, the time set in Figure 3(a), identifies a discrete 
timetable with 4 time intervals, where in the first day, first interval starts at 
10 with 50 minute duration, second one starts at 11 with 50 minute duration, 
and in the second day, first interval starts at 10 with 50 minute duration, 
second one starts at 11 with 50 minute duration. A timetable can be assumed 
to be a two dimensional structure, as the name suggests. We can consider 
that, this structure contains a number of columns. Each column element is 
ordered within itself and each column is ordered as well, providing a total 
order on time. Three functions are proposed for defining a timetable as a 
domain of variables: spread, spreadcolumn, and tmatrix. Usage 
of these functions is illustrated in Figure 3(b), (c), and (d). The 
spreadcolumn function repeats a given set of time intervals for a given 
number of times by interleaving a given duration in between them and 
returns a time set (Figure 3(b)). The spread function repeats a given time 
interval for a given number of times, forming a column, and then applies 
spreadcolumn, using a given interleave and repetition (Figure 3(c)).  

In some discrete timetabling problems, instead of time intervals, indices 
indicating a timetable slot can be used. Function tmatrix, generates a discrete 
timetable of a given number of rows and columns, in which each timetable 
slot is identified by its row and column index and time line proceeds in 
column major order on the matrix generated (Figure 3(c)). Both 
spreadcolumn and spread own interval attribute indicating whether the 
timetable is discrete or continuous. Furthermore, in discrete case, constraints 
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will refer to timetable slots using start times for the corresponding time 
interval, by default. It has been observed that time slots in a discrete 
timetable might also be referred using two indices; their row and column 
index, or using a single index, while defining the constraints. 

 
 
 

 
 
 
 
 
 
 
 
 
                    (b) 
 
      (a) 
 
 
 
 
 
 
 

 
      (d)              (c) 

Figure 3. Defining a timetable in TTML 
 
For example, Figure 3(a), (b), (c) describes the timetable illustrated in 

Figure 4. Ignoring the dashed lines, Figure 3(d) identifies the very same 
table. There are three ways to refer to the marked time slot in the timetable: 
2T10, (1,2), 3 or 2. Single indices 3 and 2 are produced by a column major 
and row major scan on the timetable, respectively. TTML shall support row-
column and column major order single indexing for referrals during 
constraint declarations other than the default. For this reason, for all table 
defining functions having discrete intervals, an additional attribute, named as 
itype is proposed, indicating the type of the indexing mechanism to be 
used for timetable slots. The supported values are default, row-
column, and column-major. Depending on the itype, TTML shall 
allow user to identify the start index to be (0,0) or (1,1) for row-column, or 0 

<time> 
 <declare> 
 <ci>T</ci> 
<set  
  interval="discrete"> 

   <cn>1T10<sep/>P50M</cn> 
   <cn>1T11<sep/>P50M</cn> 
   <cn>2T10<sep/>P50M</cn> 
   <cn>2T11<sep/>P50M</cn> 
  </set> 
 <declare> 
</time> 

<apply> 
  <spreadcolumn interval= 
"discrete"/><ci><set> 
    <cn>1T10<sep/>P50M</cn> 
   <cn>1T11<sep/>P50M</cn> 
   </set> </ci> 
<!-- interleave --> 
<cn>P1D</cn>  
<!—- repetition --> 
  <cn>2</cn> 

</apply>

<apply> 
 <spread  
   interval="discrete"/> 
  <cn>1T10<sep/>P50M</cn> 
  <cn>P1H</cn> 
  <cn>2</cn> 
  <cn>P1D</cn> 
  <cn>2</cn> </apply> 

<apply> 
<!—column major order--> 
<tmatrix/>  
<cn>2</cn><!--row--> 

   <cn>2 </cn><!--column--> 
<apply> 
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or 1 for column-major. start attribute belonging to table defining 
functions will get value either 0 or 1. 
 
 
 
 
 
 
 
 

Figure 4. Timetable described in Figure 3 and indexing mechanisms using a single index. 

5. MODELLING CONSTRAINTS 

Constraints are classified as hard and soft for timetabling problems. Hard 
constraints are the most common constraints. Soft constraints are the 
preferences that are strongly desired. In general, six different constraint 
types can be identified for TTPs: edge constraints, exclusions, presets, 
ordering constraints, event-spread constraint and attribute constraints 
(includes capacity constraints). The details about these constraints can be 
found in [14].  

The problem of determining the minimum number of time slots needed 
subject to some basic constraints (edge constraints, exclusions, presets), is a 
graph colouring problem, studied by many researchers [17, 22]. Constraints 
are functions to be applied on variables or subsets of variables or their 
related attributes. Since MathML supports user defined functions, 
constraints in TTML are proposed to be declaration of functions grouped as 
hard / soft.  
Example: Assume that we have two sets of courses; ES and CS and it is 
required that no pair of variables should be scheduled at the same time, 
where each pair is an element of the Cartesian product of ES and CS.  

Pairing up all the events that should not overlap and use it as an input data 
would not be practical, yet a feature that should be supported in TTML. 
Instead, while defining the constraint function, the sets in question can be 
used directly and computation of the Cartesian product of sets can be 
supported by TTML, possibly as in Figure 5. Being a function, each 
constraint requires parameters in TTML. Hence, TTML should allow users 
to define subsets of variables via classifiers, representing logical groupings 
in a hierarchical way. By this way, user will be able to use the same 
constraint function for different sets defined in the same TTML document.  

10 

11 

12 

1 2 
Column Major Scan 

Row Major Scan 
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Define a classifier to be a set which is either a subset of variables, named 
as base classifier or a set of classifiers. Notice that classifiers can form a 
hierarchy, just like rooted trees. For this reason a similar terminology will be 
used. A parent classifier is a classifier having non base classifiers as 
members. Each member of a parent classifier is called child classifier.  By 
default, variables set form a base classifier that should not be redeclared. 
Revisiting the example, ES and CS classifiers can be defined as base 
classifiers, and then the constraint function in Figure 5 would be supported.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. A constraint function imposing that no two events one from ES and the other from 
CS sets should overlap assuming a discrete timetable 

 
In TTML, before the constraint functions are defined, classifiers that will 

be used in the constraint functions must be declared. Element set is used 
to declare child and base classifiers in a recursive manner. Element 
rootcl is used to declare root classifiers only. Each set is bind to a name 
using declare element. A parent classifier might contain a classifier that is 
already defined. TTML should avoid redeclarations of the same classifiers. 
Considering all above concerns, constraints element is designed as 
illustrated in Figure 6.  

Additionally, a function is needed to convert a parent classifier into a 
subset of variables. For example, assume that we have two base classifiers, 
one identifying courses with laboratories (ESL), the other identifying 
courses without labs (ESN) with ES code and ES is a parent classifier such 
that; ES={ESL, ESN}. Assuming the same for courses in CS code; 

<apply>  
  <forall/> <bvar> <ci> x </ci> <ci> y </ci> </bvar> 
  <condition>  
    <apply>  <and/> 
    <apply> <in/><ci> x </ci><ci> ES </ci> </apply>  
    <apply> <in/><ci> y </ci><ci> CS </ci> </apply>  
    <apply/>  
  </condition>  
  <apply> <neq/>  
 <ci><apply> <selector/><ci> 
  <apply><assignvar/> <ci> x </ci></apply> <ci/> 
  <cn>1<cn/></apply></ci>  
 <ci><apply> <selector/><ci> 
  <apply><assignvar/> <ci> y </ci></apply><ci/> 
  <cn>1<cn/></apply></ci>  
  </apply>  
</apply>  
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CS={CSL, CSN}. Then the constraint function in Figure 5 cannot be applied 
on ES and CS. Union of all the members of base classifiers of ES and CS 
should be generated. Define self projection of a parent classifier to be a base 
classifier, generated by applying union on each member classifier 
recursively down to the base classifiers. Hence applying self projection on 
ES and CS would return the expected arguments for the constraint function 
in Figure 5. Define child projection of a parent classifier to be a set of base 
classifiers, generated by applying self projection on each member classifier 
recursively down to the base classifiers. As an example applying child 
projection on a parent classifier ALL, defined as ALL={ES, CS}, would 
return a two member set of self projections of ES and CS. TTML shall 
support self projection using self-project element and child projection 
using child-project element, requiring a single argument that is a 
parent classifier.   
 
 

 
 

      
 
 
 
 
 
Figure 6. Main and the lower level child elements of constraints, where function element 
represents a specific constraint function. 

Constraints part includes a set of constraint items, indicated by coi 
element, where each item can be defined as a function with or without 
binding the returned result to an identifier using declare element. The reason 
that the user is allowed to bind the result to an identifier is to support 
sequential filtering mechanism. The output of applying a constraint can be 
fed into another constraint as an input. The output of a constraint is 
discussed in the following section.  

5.1 TTML Constraint Functions 

Leaving all the constraints to be defined by the user, might lead some 
problems during data sharing. For example, two different ways can be used 
to define a semantically same function. For this reason, some basic standard 
functions should be identified covering at least most of the constraint types. 
This would also reduce the effort to write all well known constraint 
functions in MathML.  

-<rootcl> 
 +<declare> 
 +<ci> 
 -<set> 
 [ (+<ci> | 

      +<ci> 
     +<declare>) 
   ] 

-<constraints>  
-<classifiers> 
 [+<rootcl>] 
+<hard> |  
+<soft> | 
+<hard> 
+<soft> 

-<hard | soft> 
[-<coi> 
-<apply> 
  +<function> |
-<declare> 
+<ci> 

  +<apply>] 
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ID Functions Explanation Semantic 
O0 <notsame/> 

• vi 
• vk 

vi and vk are not 
same 

assignvardim(vi)≠assign
vardim(vk) 

O1 <nooverlap/> 
• vi 
• vk 

No overlap 
between vi and vk 

tiend(assignvart(vi)) 
≤ 
tistart(assignvart(vk)) 

O2 <preset/> 
• vi 
• S 

Include the set S 
as the domain of vi

assignvart(vi) 
∈ 
S 

O3 <exclude/> 
• vi 
• S 

Exclude the set S 
from the domain 
of vi 

assignvart(vi) ∉ S 

O4 <ordering 
comp= 
">|<|=" />  

• vi 
• vk 

vi is after (smaller) 
| before (larger) | 
same as (equal to) 
vk 

assignvart(vi) 
(>|<|=) 
assignvart(vk) 

O5 <eventspr 
comp="<|>|=|≤|
≥" /> 

• vi 
• vk 
• d 

The difference 
between vi and vk 
must be less than| 
greater than | 
equal to | greater 
than or equal to | 
less than or equal 
to d 

tiend(assignvart(vi)) 
+d (>| <|=| ≤|≥) 
tistart(assignvart(vk)) 

O6 <fullspr per= 
"duration" 
all= "yes|no"
comp=">|<|=|av
r|≤|≥" />  

• Vi 
• d 

The total number of assignments of each 
variable in set Vi per duration throughout the 
whole timetable has to be greater than | less 
than | equal to | on average | less than or equal 
to | greater than or equal to d (if the interval 
contains any assignment (all=no)) 

O7 <freespr per= 
"duration" 
block="on|off"
all="yes|no" 
comp=">|<|=|av
r|≤|≥" />  

• Vi 

The total number of empty slots between each 
variable assignment (assuming consecutive 
assignments as single block of assignment, if 
block=on) in set Vi per duration throughout 
the whole timetable has to be greater than | 
less than | equal to| on average | less than or 
equal to | greater than or equal to d (if the 
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• d interval contains any assignment (all=no)) 
O8 <attrcomp 

comp=">|<|=|≤|
≥" />  

• vi 
• a 
• p 
• b 
• r 

 

Compares the 
selected attribute p 
value of the 
variable vi along a 
defined dimension 
a and selected 
attribute r value of 
the assignment 
along a defined 
dimension b 

attrval( 

assignvara(vi), p)  
(>|<|=|≤|≥) 
attrval(assignvarb(vi),
r) 

O9 <resnoclash/> 
• vi 
• vk 

If the assignments 
of the selected 
dimension 
(domain) are same 
for a pair of 
variables, then 
there must be no 
overlap between 
the time 
assignment of vi 
and vk,  

If  

assignvardim(vi)) 
==assignvardim(vk)) 
then 
tiend(assignvart(vi)) 
≤ 
tistart(assignvart(vk)) 

O10 <chksum per= 
"duration" 
tt="common|sep
erate" 
comp=">|<|=|av
r|≤|≥” />  

• Vi 
• d 
• r 

Forms a data structure where each entry spans 
time slots of the timetable duration long. If r 
is default and tt is common, then the function 
scans assignment of all the elements in Vi and 
using the timetable mappings of each entry, it 
increments the related field in the data 
structure, After the scan is complete, quantity 
at each field is compared with d, using the 
selected criterion. If r is a selected attribute, 
then the quantity in a field is incremented by 
the corresponding attribute value of an 
element in Vi. Setting tt to separate creates a 
data structure for each member classifier in Vi.

 
Figure 7. Functions assuming that assignvart(vi)<assignvart (vk), where vi and vk are 
variables and assuming that t represents the time dimension of the assignment 
 

It is assumed that constraint functions are control functions checking 
some conditions and with the elements that do not satisfy a constraint is up 
to the problem solver. Figure 7 displays the standard constraint functions 
supported by TTML. O0-O5 functions return the set of variables (or pairs of 
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variables) that does not satisfy the related constraint. O5 returns all the pair 
of variables that does not satisfy the event spread constraint along with the 
real gap between two events. O6 and O7 functions are used to define how a 
group of events should be distributed over the timetable. O6 function is used 
for determining the distribution of filled slots, while O7 is used for 
determining the distribution of empty slots between filled slots due to a set 
of events. For example, a user might impose a constraint of a workload for a 
student per day. Note that the workload might be required to be distributed 
to whole week, or this expected workload might be required excluding the 
days when a student does not have any course. Also, in a student course 
schedule, minimum empty slots might be required between course meeting 
blocks. O6 and O7 return a positive real value as compared to d. O8 
function is for comparing attribute values. For example, the number of 
students taking a course should not exceed the capacity of a classroom. The 
number of student is an attribute of a variable, while capacity is an attribute 
of a classroom. O8 function is supported for such constraint declarations, 
returning the variables that do not satisfy the related constraint. O9 function 
checks whether two assigned values along a dimension are same or not. If 
they have same value, then checks for time overlap. This function is for 
scheduling resources, other than the ones variables represent, without a 
clash. For example, the constraint imposing that the courses should not be 
scheduled to the same classrooms at the same time can be defined using O9 
(Figure 8 (c)). O9 function returns all the pairs of variables that do not 
satisfy the constraint. O10 function returns an array having an equal size 
with the timetable divided by the duration, where each entry is an 
aggregation of a selected quantity at a group of timetable slots determined 
by the duration. An entry of the array is a pair. One of the pairs is the 
absolute difference between the total sum and the entered value and the other 
is a Boolean flag indicating the comparison result. For example, in a final 
exam timetabling problem, a schedule disallowing 1500 students to be seated 
at the same time might be required. O10 is a useful construct to define such 
constraints. 

For no overlap, we know that comparison is made with a pair of time 
interval items, so no dimension selection is needed, even if the timetabling 
problem involves a Cartesian product of multiple sets as domains of 
variables. But in such a case, for other functions, dimension should be 
selected using dim attribute, where corresponding value should be either an 
index or a name, indicating a domain set, otherwise the n-tuple resulting 
from assignvar should be used. Except O1, O6, O7, O8 functions, all the 
rest have dim attribute in TTML. O9 cannot have time as a value of its dim 
attribute and O8 function accepts dimension as an input. O1, O6 and O7 can 
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be used to define only time related constraints on a variable set, where as the 
rest can be used to define constraints on a selected dimension (domain). 

There are 3 more input cases for O1-O5, other than single events: 
1. A binary function accepting a single set: 
2. A binary function accepting two sets 
3. A unary function accepting a single set 

For case 1, 2 and 3, self projections of the input sets will be taken, and 
then the related function will be applied on the resulting base classifier. For 
example, nooverlap function can accept a base classifier as input, indicating 
that no pair in the set should overlap, or it could accept a parent classifier 
which will be reduced to a base classifier by self projection. Case 1 can be 
enriched by several more interpretations. Single set parameter might be a 
parent classifier and the user would like to apply the binary function on any 
pair in each child projection. For binary and unary functions accepting sets 
as their parameters, attribute projection is proposed with values 
“single | self | child”, indicating a base classifier, self projection of 
a parent classifier or a child projection of a parent classifier, respectively. 
Note that O6, O7 and O10 do not accept a single variable as their parameter. 
Using this feature, the function definition in Figure 5 reduces to the function 
call in the constraint declaration in Figure 8(a).  

 
 
 
 

 
 
 
 
 
 
 
 
 
     (a)          (b)         (c) 
Figure 8. Declaration of a constraint as a function (a), a filtering example (b), the same affect 
of (b) requiring no filtering, where ALL=ES U CS (c) 
 

A filtering example is illustrated in Figure 8(b). It is more appropriate to 
use standard functions, although the same affect can be obtained using 
filtering as shown in Figure 8(a)-(c). 

<coi> 
 <declare> 
  <ci>S1</ci> 
<apply>  
<nooverlap 

projection ="single"/> 
 <ci>ES</ci> 
 <ci>CS</ci>  
</apply>  
</declare> 

</coi> 

<coi> 
 <apply>  
<notsame 

   dim="room"/> 
   <ci>S1 
 </ci> 

 </apply>  
</coi> 

<coi> 
 <apply>  
<resnoclash 
 dim="room"/> 

    <ci>ALL 
  </ci> 

 </apply>  
</coi> 
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6. MODELLING OUTPUT AND TEST RESULTS 

Modelling output is necessary for a general tool to be able to generate 
expected visual timetables for a given timetabling problem instance. For 
example, the schedules of each instructor or/and the schedule of students 
belonging to the same set can be asked to be produced. In the schedule, user 
might prefer to see the classroom assignments as well. For this reason, 
output element should allow displaying listed items, where each item is a 
different view of variable assignments. Each li is assigned info, an attribute 
indicating the assigned values of dimensions that will be printed out into the 
timetable slot. More than one dimension can be referred in info, separated by 
commas. Furthermore, a user might expect to see the classroom schedules. 
For this reason, info can get variables as an attribute value. Then 
selecting a classroom in li and variables an info attribute value, will yield a 
timetable output of the selected classroom schedule.  

Each item can be a single variable, a set of variables (a base classifier) or 
sets of set of variables (a parent classifier). If it is a set of variables, user 
might require an output for each variable (each), or a single output for all 
variables (all). If it is a parent classifier, user might require an output for 
each variable in the set of self projection (each), or a single output for all 
variables in the set of self projection (all), or an output for each child 
projection (child). For this reason, another attribute is supported to be 
used with li, which is gentype, requiring one of the values each, all or 
child. 

Test results are for researchers, containing the best assignment of 
variables, author of the test results, references, a short description about the 
problem solver (algorithm), the best result obtained and the evaluation 
function. Each assignment of a variable is marked by asi element. The 
order of each assignment is assumed to be in the order of how variables are 
defined. Since each assignment might consist of several values, depending 
on the domains of variables, each domain item is included inside the element 
di. Main and the lower level child elements of output, test result and the 
best assignment of variables are shown in Figure 9(a), (b) and (c), 
respectively. 

 
 

 
 
 
 
 
 
 

-<output> 
   [+<li>] 

+<test-results> 
   [-<result>] 
     [+<author>]
     +<pref> 
     +<desc> 
     +<best> 
     +<penalty> 
     +<eval> 

+<best> 
   [-<asi>] 
     [+<di>] 
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   (a)          (b)          (c) 
Figure 9. Main and the lower level child elements of  (a) output and  (b) test results (c) best 
assignment of variables 

In most of the timetabling applications, penalizing an unsatisfied 
constraint is traditional. For supporting related evaluation functions TTML 
allows optional declaration of a penalty value using penalty element for 
each defined constraint.  

7. CONCLUSIONS 

TTML can model all real-world timetabling problems based on MathML. 
In some situations, user might be required to use some non-standard 
variable, domain and constraint declarations. TTML is not a widely accepted 
standard, but using TTML with standard constraint functions, most of the 
university course timetabling, highschool timetabling, final exam timetabling 
and some of the shift timetabling problems can be modelled. TTML requires 
standardization of more constraint functions to cover more of the employee 
timetabling problem instances. 

TTML is designed to include even the test results for comparison. For the 
time being, test results consist of the best results compiled from different 
tests. This definition can be modified to include more information for each 
test on the runs, such as statistics of number of evaluations, statistics of 
timings, or properties of the machine on which the experiments are 
performed, etc. A full TTML document can be retrieved from a web site by 
an expert application for timetabling. This application can perform 
experiments on the given data subject to given constraints, and then compare 
its results with the best results obtained previously. Furthermore, the 
application can update the TTML document using its best results by 
modifying the test results part of the retrieved TTML document. TTML 
requires more work in modelling the evaluation function, additional to 
determining more standard constraint functions. 

TTML provides all the advantages and strengths of XML. Applications 
can be carried to the Internet, becoming services. A TTML processor can be 
designed having three major components: a parser, problem solver and a 
solution interpreter. A multipurpose TTML processor is the ultimate goal 
that solves different types of timetabling problems. Using TTML data 
sharing will be easy and fast. Additionally, TTML provides means to include 
different parts of other TTML documents in order to make use of previously 
defined components and their features (variables, constraints, etc.), using 
Xlink and Xpath technologies ([23]), where the same functionality is 
provided by SSTL using an object oriented methodology. The requirements 
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for a standard data format can be summarized as universality (assuming a 
closed world), completeness and convertibility. The latter requirement is 
satisfied by TTML, just by being an XML standard. TTML, powered by 
MathML is a strong candidate for satisfying all these requirements. 

Furthermore, recent studies concentrate on case based reasoning 
approaches, which can benefit from the use of TTML. [4] defines similarity 
measures to support such approaches. In some problems, it is important to 
determine the strongly connected components (possibly the largest one) in a 
graph, mapping timetabling problem into a graph colouring problem. 
Finding maximal clique is an NP complete problem. If TTML is used and 
the variables are grouped into classifiers, then the problem of determining 
the strongly connected components reduces to locating classifier sets as 
parameters of a related constraint.  

A TTML validator is not implemented, since there are many general 
validators available over the Internet. Figure 10 includes a well-formed 
TTML document. The first TTML application, named CONFETI is 
implemented as a Java applet, providing a user interface to convert final 
exam timetabling text data into a TTML document. CONFETI will be used 
to build an instance repository providing TTML documents for final exam 
timetabling using existing data. Initially, Carter’s benchmark data sets are, 
converted to TTML, based on the constraints defined in [6], successfully. 
The second application will be available soon; a full TTML processor based 
on a memetic algorithm for final exam timetabling, named FES (Final Exam 
Scheduler). The results will be reported soon. The latest developments in 
TTML and instance repositories will be available at 
http://cse.yeditepe.edu.tr/~eozcan/research/TTML. 
 

 
<?xml version="1.0"?> 
<time-tabling> 

<input-data type="University-Course-Timetabling" 
lastUpdate="2003-01-22T13:20:00.000-05:00"> 

    <author>Ender Ozcan</author> 
  <desc>An example TTML document</desc> 
  <variables> 
   <attrset> 
    <declare> <ci>V</ci> 
    <vector> 
     <ci duration="2"> CSE211.01</ci> 
     <ci duration="2"> CSE211.02</ci> 
     <ci> CSE311.01</ci> 
     <ci> CSE462.01</ci> 
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    </vector>  

</declare>     
    <declare> <ci>noOfStudents</ci> 
    <vector> 
     <ci> 34</ci> 
     <ci> 27</ci> 
     <ci> 20</ci> 
     <ci> 25</ci> 
    </vector>  

</declare> 
   </attrset> 
  </variables> 
  <domains> 
   <time> 
    <declare> <ci>T</ci> 
    <apply> 
     <tmatrix itype="row-column" start="1"> 
      <cn> 9</cn> <cn> 5</cn> 
     </tmatrix> 
    </apply>  

</declare> 
   </time> 
   <attrset> 

 <declare> <ci>classrooms</ci> 
     <vector> 
     <ci> A100</ci> 
     <ci> B101</ci> 
     <ci> B103</ci> 
     <ci> A201</ci> 
     </vector>   

 </declare> 
  <declare> <ci>capacity</ci> 

     <vector> 
     <ci> 50</ci> 
     <ci> 50</ci> 
     <ci> 50</ci> 
     <ci> 30</ci> 
     </vector>   

</declare> 
    </attrset> 

   <domainsvar> 
    <declare><ci>R</ci> 

  <apply><cartesianproduct/> 
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      <ci> T </ci> 
      <ci> classrooms </ci> 
    </apply> 

     </declare> 
    </domainsvar> 
  </domains> 
  <constraints> 
   <classifiers> 
    <rootcl> <declare> <ci>lecturers</ci> 

  <set> <ci> <declare> <ci> Ender Ozcan </ci> 
     <set> 
     <ci> CSE211.01</ci> 
     <ci> CSE311.01</ci> 
     </set>   

</declare> </ci> 
  <ci> <declare> <ci> Ferda Dogan </ci> 

     <set> 
     <ci> CSE211.02</ci> 
     <ci> CSE462.01</ci> 
     </set>   

</declare> </ci> 
    </set> </declare> </rootcl> 

  <rootcl> <declare> <ci>curriculum-terms</ci> 
  <set> <ci> <declare> <ci> Term#2 </ci> 

     <set> 
     <ci> CSE211.01</ci> 
     <ci> CSE211.02</ci> 
     <ci> CSE311.01</ci> 
     </set>   

</declare> </ci> 
  <ci> <declare> <ci> Term#3 </ci> 

     <set> 
     <ci> CSE462.01</ci> 
     </set>   

</declare> </ci> 
    </set> </declare> </rootcl> 
   </classifiers> 
   <hard> 
    <coi> 
     <apply> 
      <nooverlap projection="child"/> 
       <ci>curriculum-terms</ci> 
     </apply> 
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    </coi> 
    <coi> 
     <apply> 
      <nooverlap projection="child"/> 
       <ci>lecturers</ci> 
     </apply> 
    </coi> <coi> 
     <apply> 
      <preset dim="classroom"/> 
       <ci>CSE211.01</ci> 
       <cn>A100</cn> 
     </apply> 
    </coi> 
    <coi> 
     <apply> 
      <exclude dim="T"/> 
       <ci>CSE311.01</ci> 
       <cn><vector> <cn>1<sep/>1</cn>  

<cn>2<sep/>2</cn></vector> 
</cn> 

     </apply> 
    </coi> 

<coi> 
 <apply>  
<resnoclash projection="single" 
 dim="classrooms"/> 

    <ci>V</ci> 
 </apply>  
</coi> 

   </hard> 
   <soft> 
        <coi> 

<apply>  
<attrcomp projection="single" comp="&lt;="/> 

    <ci>V</ci> 
    <ci>T</ci> 
    <ci>noOfStudents</ci> 
    <ci>classrooms</ci> 

<ci>capacity</ci> 
 </apply>  
</coi> 

   </soft> 
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  </constraints> 
</input-data> 

  <output> 
     <li projection="child">lecturers</li> 
  </output> 
 <test-results> 
     <result> 
    <author>Ender Ozcan</author> 
    <desc> Problem is solved by TEDI, following is  

the best solution obtained in 50 runs 
</desc> 

    <best> 
     <asi> <di>4<sep/>1</di> <di>A100</di> </asi> 
     <asi> <di>4<sep/>2</di> <di>B101</di> </asi> 
     <asi> <di>4<sep/>3</di> <di>A201</di> </asi> 
     <asi> <di>4<sep/>4</di> <di>B103</di> </asi> 
    </best> 

 </result> 
  </test-results> 
</time-tabling> 

 
 

Figure 10. An example TTML definition of a timetabling problem instance 
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