
1

Towards an XML based standard for Timetabling
Problems: TTML

Ender Özcan
Yeditepe Üniversitesi
eozcan@cse.yeditepe.edu.tr

Abstract: There is a variety of approaches developed by researchers to solve different
instances of timetabling problems. During these studies different data formats
are used to represent a timetabling problem instance and its solution, causing
difficulties in the evaluation and comparison of approaches and sharing data.
In this paper, a model for timetabling problems and a new XML data format
for them based on MathML is proposed.

Keywords: timetabling, standard data format, scheduling, XML, MathML

1. INTRODUCTION

Timetabling problems consist in feasible assignment of time-slots to a set
of events, subject to a set of constraints. The timetabling problem is an NP
complete problem [13]. There are a growing number of solutions to different
types of timetabling problems having different types of constraints [1-12, 15,
18-22]. Since there is no common standard on specifying a timetabling
problem instance and its solution proposed by a researcher, most of the
results cannot be compared and benchmarking becomes almost impossible.
Proposal for a common data format for timetabling is initiated by Andrew
Cumming at ICPTAT’95. Studies in the area yield a language named SSTL
[7, 16]. SSTL has not become a common format as expected, possibly
because; it is not that easy to convert existing data to SSTL. Furthermore,
most of the research in timetabling is due to some practical need, making the
researchers concentrate on solving the problem at their hand, ignoring the
data format.

2 Ender Özcan

Causmaecker et. al. [2] argues that timetabling research community can
benefit from Semantic Web, focusing the timetabling ontology, rather than
one of the layers of the architecture that requires definition of an Extensible
Markup Language (XML). XML lets users to create their own set of tags,
enabling them to specify the structure of their documents. Furthermore,
XML can be used to define a set of grammar rules to define markup
languages. It is an efficient way of representing data on the web as a basis
for machine to machine communication. XML documents can be considered
to be a globally linked database. There are already defined XML based
languages. For example, MathML provides means to use mathematical
expressions in the web; Scalable Vector Graphics (SVG) is a language for
describing two-dimensional graphics in XML. All the details about
technologies related to XML can be found in W3C site [23].

Timetabling problems can be formulized using set theory as described in
Section 3 in detail, where a constraint is a function operating on the sets.
Hence, MathML provides a basis for the representation of timetabling
components. For example, MathML allows users to define completely new
content symbols that represent a function or a type or another content
markup element. This important feature can be used to standardize some
timetabling constraints, providing flexibility for users to define their own
constraints as well.

In this paper, Timetabling Markup Language (TTML), an XML based
data format for timetabling problems is presented utilizing MathML content
markup.

2. TTML: TIMETABLING MARKUP LANGUAGE

It is vital to clearly define and represent the elements of a timetabling
problem using TTML. The same requirements explained in previous works
will be considered during the process [7, 16].

This section is an overview of TTML tags for content markup to generate
a well-formed document. For a world wide accepted format for representing
timetabling problems, a working group should come together under W3C
from researchers and vendors. TTML will be developed further whether this
action is taken or not. Instead of creating a new approach, TTML extends
MathML, intensifying the importance of modelling. The elements of TTML
are built around MathML. The aim is to address the underlying issues, and
come up with possible solutions during the modelling. Note that the
conversion between different XML documents with similar contents is easy
and this conversion does not require a valid document. Hence, XML Schema
is left as a further study. All bold TTML elements are optional elements, “|”

Towards an XML based standard for Timetabling Problems: TTML 3

denotes or and “[]” denotes one or more occurrence of the element
enclosed.

2.1 MathML

MathML is an XML based standard for describing mathematical
expressions [23]. Presentation markup defines a particular rendering for an
expression, while content markup in the MathML provides a precise
encoding of the essential mathematical structure of an expression. Some of
the content markup elements include relations, calculus and vector calculus,
theory of sets, sequences and series, elementary classical functions and
statistics. Note that declare element is a MathML constructor for
associating default attribute values and values with mathematical objects. In
TTML, declare is used to associate a name with the defined sets.
Attributes desc and name are proposed for declare element in TTML,
denoting a short description of the declared item and a unique name
associated with it, respectively. Unless it is mentioned otherwise the order of
TTML elements are strict.

2.2 Modelling Timetabling Problem Instances

An XML document requires one unique root element. The root element is
chosen to be time-tabling for a timetabling problem instance. Our first
aim should be enabling data exchange; hence a TTML document must
include input data and the constraints for the problem instance. Additionally,
for the research community, in order to make comparisons, test results
obtained from applying an algorithm to the input data should be attached.
Further attachments might be required, such as output formats for the
solution. For example, course section meeting schedules can be generated as
a solution to a timetabling problem, but both schedules of all teachers and
students can be required as an output. Hence, a TTML document might
declare multiple output formats for the same solution. Main and first level of
child elements of a TTML document are illustrated in Figure 1(a). A TTML
document can include an output format or test results, optionally. Element
time-tabling can have attributes such as, last update, problem type
(e.g., university course timetabling, highschool timetabling, exam
timetabling, employee shift timetabling), etc.

4 Ender Özcan

3. MODELLING INPUT DATA

Timetabling problems are constraint optimization problems that can be
represented using (V, L, C), forming input data, where V = {v1, v2, …, vi, …,
vP} is a set of variables, L = { d1, d2, …, di, …, dP },is a nonempty set of
domains of variables, defining the set of possible values for each variable in
V and C is a set of constraints, where each constraint is defined for some
subsets of the variables, specifying the allowable combinations of values for
it. This 3-tuple forms the input data for a timetabling problem.

In a timetabling problem, a list or a higher dimensional array of attributes
(properties) belonging to a set might be required. Let attributed set indicate a
set where all the members have attributes. For example, the number of
students registered to each course, the distances between classrooms,
capacity of the classrooms can be considered as attributes of the related sets.
Then the set of courses and the set of classrooms are attributed sets. Note
that attribute values might be used while defining the constraints.
Considering timetabling problems, we can limit the domain of the attribute
values to , Z , and S .

 (a) (b) (c)

Figure 1. Main and lower level of child elements of a TTML document

Main and first level of child elements of input data are illustrated in
Figure 1(b). Elements author, desc and aref describe the author of the
timetabling input data, a brief description of the problem and associated
references (which might be more than one), respectively. Element
variables contains a declaration of a single set of variables, identifying
each member (Figure 2(a)).

3.1 Attributed Sets

Two approaches can be applied to support attributed sets, so that attribute
values could be entered as input data. Assuming that higher dimensions can

-<time-tabling>
 +<input-data>
 +<output>
 +<test-results>

-<input-data>
 [+<author>]
 +<desc>
 -<aref>
 [+]
+<variables>

 +<domains>
 +<constraints>

-<domains>
 -<time>

+<res>
+<declare>

 +<duration>
 -<declare>
 [+<declare>]
 -<domainsvar>

+<declare>

Towards an XML based standard for Timetabling Problems: TTML 5

be mapped into a single dimension, a vector can be associated with each
set member as shown in Figure 2(b). If there are more than one set of
attributes, then it is not that straightforward how to distinguish between
them, since they will all be together in the attribute vector. So, TTML shall
support the second approach, allowing declaration of single or higher
dimensions of attributes associated with the set using attrset as shown
in Figure 2(c).

Element attrset contains two or more declarations. First declaration is
a set, and the rest of the declarations (at least one) are the related attributes of
it. Attribute declarations must contain vector or matrix elements where
each attribute value will be accessible via selector function in MathML
(Figure 2(c)). All set declarations can be replaced by attributed set
declarations in TTML. If the element attrset is used to represent a set,
then the first declaration is although a set, the order of the elements in the set
becomes important, for this reason for the rest of the attribute declarations,
that order will be used to identify an attribute value. For example, 24 is the
number of registered students. Note that an attributed set might contain more
than one set of attributes. It is assumed that the corresponding attribute value
of a set member is associated by keeping the same order, wherever the
member is defined. For example, assuming CSE462 is the first member of
the attributed set then NoOfStudents attribute value of it will be the first
entry of the corresponding declaration, which is 24 as shown in Figure 2.
Define attrval element, accepting the attributed set member and attribute
set name as input and returning the attribute value of an attribute set
member.

 (a) (b) (c)

Figure 2. Possible approaches to support attributed sets as input data in TTML

<variables>
 <declare>
 <ci>V</ci>
 <set>

<ci>CSE462
</ci>
<ci>BUS400
</ci>

 </set>
 </declare>
</variables>

<cn>
 <declare>
 <ci>CSE462
 </ci>
 <vector>
 <cn>24</cn>
 </vector>
 </declare>
</cn>

<attrset>
<!— Assume V is
 declared in here-->
 <declare>
 <ci>NoOfStudents</ci>
 <vector>
 <cn>24</cn>

<cn>35</cn>

 </vector>
 </declare>
</attrset>

6 Ender Özcan

4. MODELLING DOMAINS OF VARIABLES

A candidate solution 'V of a timetabling problem is defined by an
assignment of values from the domain to the variables:

' ' ' '
1 1{ ,..., ,..., }i i P PV v v v v v v= = = = , where '

i iv d∈ and
di ⊆D1 x D2 x … x Dl x … x Dn, 1≤n

While defining the constraints this assignment function might be needed.
For this reason, a TTML element assignvar is defined as a unary
function requiring a single argument which must be a member of the set of
variables, returning the assigned value. For example, assignvar(vi)
returns '

iv . A domain consists of either time intervals (time set) or Cartesian
product of several sets, one of them being the time set (D1=T). If a domain is
a Cartesian product of multiple sets then domainsvar element should be
used for domain declaration in TTML. In such a case, the assignment might
be an n-tuple, represented by a vector in TTML, allowing access of any
dimension via selector function. For example, assuming a set of courses
as a set of variables, assignvar(vi) might return (4,A200), indicating an
assignment of the ith course to the 4th time interval in the timetable which
will meet in the classroom A200. Selecting the 1st element in the vector
returns 4, 2nd element returns A200.

It is possible that in some timetabling problems, durations might be also
in the domain of a variable. TTML shall support declaration of duration set
using duration element. Each member of duration set must be of type
duration as explained in the following section. All of the related sets must be
declared in a TTML document as domains of variables as shown in Figure
1(c).

In timetabling problems, a timetable is either discrete or continuous. In
TTML, a combination of both is also supported for generality. Time intervals
in a timetable might have equal or unequal length, or be periodic or non-
periodic. In some problems date, in some others date and time might be
required. TTML shall support all.

4.1 Modelling Time Interval and Duration

A time interval can be represented using a starting time and a duration.
MathML does not contain any type definition related to time or duration, but
it allows user-defined types. Similar definitions for dateTime and
duration types in XML schema are proposed to describe a time interval in
TTML. In order to get rid of the confusion and be able to use a total order on
time, Coordinated Universal Time (UTC) is chosen using the syntax CCYY-
MM-DDThh:mm:ss. Duration type syntax is PnYnMnDTnHnMnS,
indicating the number (n) of years (Y), months (M), and so on. Any

Towards an XML based standard for Timetabling Problems: TTML 7

substring generated using the syntaxes defined above will be valid, assuming
that the string includes at least one time item. Duration set as a domain of a
variable will be composed of members that are of duration type. This set
shall be bound to a name using a declaration as shown in Figure 1(c), if
used. TTML shall support three functions; tistart, tiduration and
tiend returning the starting time, duration and end of a time interval,
requiring a single parameter.

4.2 Modelling Timetables

User should be able to define its own formatting string, emphasizing the
time elements relevant to the problem and then the timetable. In TTML, res
element will be used to state the format of the time used in the timetable
definition. For example, the quantity 10-10T10:00 <sep/> P1H
represents a time interval at the 10th day of October with duration 1 hour,
based on the formatting string <res>MM-DDThh:mm</res>. A timetable is,
ultimately, a set of time intervals. TTML shall support this most general
approach, enabling shortcuts. An attribute, named as interval is added to
the set element to identify, whether the time intervals are continuous or
discrete. For example, the time set in Figure 3(a), identifies a discrete
timetable with 4 time intervals, where in the first day, first interval starts at
10 with 50 minute duration, second one starts at 11 with 50 minute duration,
and in the second day, first interval starts at 10 with 50 minute duration,
second one starts at 11 with 50 minute duration. A timetable can be assumed
to be a two dimensional structure, as the name suggests. We can consider
that, this structure contains a number of columns. Each column element is
ordered within itself and each column is ordered as well, providing a total
order on time. Three functions are proposed for defining a timetable as a
domain of variables: spread, spreadcolumn, and tmatrix. Usage
of these functions is illustrated in Figure 3(b), (c), and (d). The
spreadcolumn function repeats a given set of time intervals for a given
number of times by interleaving a given duration in between them and
returns a time set (Figure 3(b)). The spread function repeats a given time
interval for a given number of times, forming a column, and then applies
spreadcolumn, using a given interleave and repetition (Figure 3(c)).

In some discrete timetabling problems, instead of time intervals, indices
indicating a timetable slot can be used. Function tmatrix, generates a discrete
timetable of a given number of rows and columns, in which each timetable
slot is identified by its row and column index and time line proceeds in
column major order on the matrix generated (Figure 3(c)). Both
spreadcolumn and spread own interval attribute indicating whether the
timetable is discrete or continuous. Furthermore, in discrete case, constraints

8 Ender Özcan

will refer to timetable slots using start times for the corresponding time
interval, by default. It has been observed that time slots in a discrete
timetable might also be referred using two indices; their row and column
index, or using a single index, while defining the constraints.

 (b)

 (a)

 (d) (c)

Figure 3. Defining a timetable in TTML

For example, Figure 3(a), (b), (c) describes the timetable illustrated in

Figure 4. Ignoring the dashed lines, Figure 3(d) identifies the very same
table. There are three ways to refer to the marked time slot in the timetable:
2T10, (1,2), 3 or 2. Single indices 3 and 2 are produced by a column major
and row major scan on the timetable, respectively. TTML shall support row-
column and column major order single indexing for referrals during
constraint declarations other than the default. For this reason, for all table
defining functions having discrete intervals, an additional attribute, named as
itype is proposed, indicating the type of the indexing mechanism to be
used for timetable slots. The supported values are default, row-
column, and column-major. Depending on the itype, TTML shall
allow user to identify the start index to be (0,0) or (1,1) for row-column, or 0

<time>
 <declare>
 <ci>T</ci>
<set
 interval="discrete">

 <cn>1T10<sep/>P50M</cn>
 <cn>1T11<sep/>P50M</cn>
 <cn>2T10<sep/>P50M</cn>
 <cn>2T11<sep/>P50M</cn>
 </set>
 <declare>
</time>

<apply>
 <spreadcolumn interval=
"discrete"/><ci><set>
 <cn>1T10<sep/>P50M</cn>
 <cn>1T11<sep/>P50M</cn>
 </set> </ci>
<!-- interleave -->
<cn>P1D</cn>
<!—- repetition -->
 <cn>2</cn>

</apply>

<apply>
 <spread
 interval="discrete"/>
 <cn>1T10<sep/>P50M</cn>
 <cn>P1H</cn>
 <cn>2</cn>
 <cn>P1D</cn>
 <cn>2</cn> </apply>

<apply>
<!—column major order-->
<tmatrix/>
<cn>2</cn><!--row-->

 <cn>2 </cn><!--column-->
<apply>

Towards an XML based standard for Timetabling Problems: TTML 9

or 1 for column-major. start attribute belonging to table defining
functions will get value either 0 or 1.

Figure 4. Timetable described in Figure 3 and indexing mechanisms using a single index.

5. MODELLING CONSTRAINTS

Constraints are classified as hard and soft for timetabling problems. Hard
constraints are the most common constraints. Soft constraints are the
preferences that are strongly desired. In general, six different constraint
types can be identified for TTPs: edge constraints, exclusions, presets,
ordering constraints, event-spread constraint and attribute constraints
(includes capacity constraints). The details about these constraints can be
found in [14].

The problem of determining the minimum number of time slots needed
subject to some basic constraints (edge constraints, exclusions, presets), is a
graph colouring problem, studied by many researchers [17, 22]. Constraints
are functions to be applied on variables or subsets of variables or their
related attributes. Since MathML supports user defined functions,
constraints in TTML are proposed to be declaration of functions grouped as
hard / soft.
Example: Assume that we have two sets of courses; ES and CS and it is
required that no pair of variables should be scheduled at the same time,
where each pair is an element of the Cartesian product of ES and CS.

Pairing up all the events that should not overlap and use it as an input data
would not be practical, yet a feature that should be supported in TTML.
Instead, while defining the constraint function, the sets in question can be
used directly and computation of the Cartesian product of sets can be
supported by TTML, possibly as in Figure 5. Being a function, each
constraint requires parameters in TTML. Hence, TTML should allow users
to define subsets of variables via classifiers, representing logical groupings
in a hierarchical way. By this way, user will be able to use the same
constraint function for different sets defined in the same TTML document.

10

11

12

1 2
Column Major Scan

Row Major Scan

10 Ender Özcan

Define a classifier to be a set which is either a subset of variables, named
as base classifier or a set of classifiers. Notice that classifiers can form a
hierarchy, just like rooted trees. For this reason a similar terminology will be
used. A parent classifier is a classifier having non base classifiers as
members. Each member of a parent classifier is called child classifier. By
default, variables set form a base classifier that should not be redeclared.
Revisiting the example, ES and CS classifiers can be defined as base
classifiers, and then the constraint function in Figure 5 would be supported.

Figure 5. A constraint function imposing that no two events one from ES and the other from
CS sets should overlap assuming a discrete timetable

In TTML, before the constraint functions are defined, classifiers that will

be used in the constraint functions must be declared. Element set is used
to declare child and base classifiers in a recursive manner. Element
rootcl is used to declare root classifiers only. Each set is bind to a name
using declare element. A parent classifier might contain a classifier that is
already defined. TTML should avoid redeclarations of the same classifiers.
Considering all above concerns, constraints element is designed as
illustrated in Figure 6.

Additionally, a function is needed to convert a parent classifier into a
subset of variables. For example, assume that we have two base classifiers,
one identifying courses with laboratories (ESL), the other identifying
courses without labs (ESN) with ES code and ES is a parent classifier such
that; ES={ESL, ESN}. Assuming the same for courses in CS code;

<apply>
 <forall/> <bvar> <ci> x </ci> <ci> y </ci> </bvar>
 <condition>
 <apply> <and/>
 <apply> <in/><ci> x </ci><ci> ES </ci> </apply>
 <apply> <in/><ci> y </ci><ci> CS </ci> </apply>
 <apply/>
 </condition>
 <apply> <neq/>
 <ci><apply> <selector/><ci>
 <apply><assignvar/> <ci> x </ci></apply> <ci/>
 <cn>1<cn/></apply></ci>
 <ci><apply> <selector/><ci>
 <apply><assignvar/> <ci> y </ci></apply><ci/>
 <cn>1<cn/></apply></ci>
 </apply>
</apply>

Towards an XML based standard for Timetabling Problems: TTML 11

CS={CSL, CSN}. Then the constraint function in Figure 5 cannot be applied
on ES and CS. Union of all the members of base classifiers of ES and CS
should be generated. Define self projection of a parent classifier to be a base
classifier, generated by applying union on each member classifier
recursively down to the base classifiers. Hence applying self projection on
ES and CS would return the expected arguments for the constraint function
in Figure 5. Define child projection of a parent classifier to be a set of base
classifiers, generated by applying self projection on each member classifier
recursively down to the base classifiers. As an example applying child
projection on a parent classifier ALL, defined as ALL={ES, CS}, would
return a two member set of self projections of ES and CS. TTML shall
support self projection using self-project element and child projection
using child-project element, requiring a single argument that is a
parent classifier.

Figure 6. Main and the lower level child elements of constraints, where function element
represents a specific constraint function.

Constraints part includes a set of constraint items, indicated by coi
element, where each item can be defined as a function with or without
binding the returned result to an identifier using declare element. The reason
that the user is allowed to bind the result to an identifier is to support
sequential filtering mechanism. The output of applying a constraint can be
fed into another constraint as an input. The output of a constraint is
discussed in the following section.

5.1 TTML Constraint Functions

Leaving all the constraints to be defined by the user, might lead some
problems during data sharing. For example, two different ways can be used
to define a semantically same function. For this reason, some basic standard
functions should be identified covering at least most of the constraint types.
This would also reduce the effort to write all well known constraint
functions in MathML.

-<rootcl>
 +<declare>
 +<ci>
 -<set>
 [(+<ci> |

 +<ci>
 +<declare>)
]

-<constraints>
-<classifiers>
 [+<rootcl>]
+<hard> |
+<soft> |
+<hard>
+<soft>

-<hard | soft>
[-<coi>
-<apply>
 +<function> |
-<declare>
+<ci>

 +<apply>]

12 Ender Özcan

ID Functions Explanation Semantic
O0 <notsame/>

• vi
• vk

vi and vk are not
same

assignvardim(vi)≠assign
vardim(vk)

O1 <nooverlap/>
• vi
• vk

No overlap
between vi and vk

tiend(assignvart(vi))
≤
tistart(assignvart(vk))

O2 <preset/>
• vi
• S

Include the set S
as the domain of vi

assignvart(vi)
∈
S

O3 <exclude/>
• vi
• S

Exclude the set S
from the domain
of vi

assignvart(vi) ∉ S

O4 <ordering
comp=
">|<|=" />

• vi
• vk

vi is after (smaller)
| before (larger) |
same as (equal to)
vk

assignvart(vi)
(>|<|=)
assignvart(vk)

O5 <eventspr
comp="<|>|=|≤|
≥" />

• vi
• vk
• d

The difference
between vi and vk
must be less than|
greater than |
equal to | greater
than or equal to |
less than or equal
to d

tiend(assignvart(vi))
+d (>| <|=| ≤|≥)
tistart(assignvart(vk))

O6 <fullspr per=
"duration"
all= "yes|no"
comp=">|<|=|av
r|≤|≥" />

• Vi
• d

The total number of assignments of each
variable in set Vi per duration throughout the
whole timetable has to be greater than | less
than | equal to | on average | less than or equal
to | greater than or equal to d (if the interval
contains any assignment (all=no))

O7 <freespr per=
"duration"
block="on|off"
all="yes|no"
comp=">|<|=|av
r|≤|≥" />

• Vi

The total number of empty slots between each
variable assignment (assuming consecutive
assignments as single block of assignment, if
block=on) in set Vi per duration throughout
the whole timetable has to be greater than |
less than | equal to| on average | less than or
equal to | greater than or equal to d (if the

Towards an XML based standard for Timetabling Problems: TTML 13

• d interval contains any assignment (all=no))
O8 <attrcomp

comp=">|<|=|≤|
≥" />

• vi
• a
• p
• b
• r

Compares the
selected attribute p
value of the
variable vi along a
defined dimension
a and selected
attribute r value of
the assignment
along a defined
dimension b

attrval(

assignvara(vi), p)
(>|<|=|≤|≥)
attrval(assignvarb(vi),
r)

O9 <resnoclash/>
• vi
• vk

If the assignments
of the selected
dimension
(domain) are same
for a pair of
variables, then
there must be no
overlap between
the time
assignment of vi
and vk,

If

assignvardim(vi))
==assignvardim(vk))
then
tiend(assignvart(vi))
≤
tistart(assignvart(vk))

O10 <chksum per=
"duration"
tt="common|sep
erate"
comp=">|<|=|av
r|≤|≥” />

• Vi
• d
• r

Forms a data structure where each entry spans
time slots of the timetable duration long. If r
is default and tt is common, then the function
scans assignment of all the elements in Vi and
using the timetable mappings of each entry, it
increments the related field in the data
structure, After the scan is complete, quantity
at each field is compared with d, using the
selected criterion. If r is a selected attribute,
then the quantity in a field is incremented by
the corresponding attribute value of an
element in Vi. Setting tt to separate creates a
data structure for each member classifier in Vi.

Figure 7. Functions assuming that assignvart(vi)<assignvart (vk), where vi and vk are
variables and assuming that t represents the time dimension of the assignment

It is assumed that constraint functions are control functions checking
some conditions and with the elements that do not satisfy a constraint is up
to the problem solver. Figure 7 displays the standard constraint functions
supported by TTML. O0-O5 functions return the set of variables (or pairs of

14 Ender Özcan

variables) that does not satisfy the related constraint. O5 returns all the pair
of variables that does not satisfy the event spread constraint along with the
real gap between two events. O6 and O7 functions are used to define how a
group of events should be distributed over the timetable. O6 function is used
for determining the distribution of filled slots, while O7 is used for
determining the distribution of empty slots between filled slots due to a set
of events. For example, a user might impose a constraint of a workload for a
student per day. Note that the workload might be required to be distributed
to whole week, or this expected workload might be required excluding the
days when a student does not have any course. Also, in a student course
schedule, minimum empty slots might be required between course meeting
blocks. O6 and O7 return a positive real value as compared to d. O8
function is for comparing attribute values. For example, the number of
students taking a course should not exceed the capacity of a classroom. The
number of student is an attribute of a variable, while capacity is an attribute
of a classroom. O8 function is supported for such constraint declarations,
returning the variables that do not satisfy the related constraint. O9 function
checks whether two assigned values along a dimension are same or not. If
they have same value, then checks for time overlap. This function is for
scheduling resources, other than the ones variables represent, without a
clash. For example, the constraint imposing that the courses should not be
scheduled to the same classrooms at the same time can be defined using O9
(Figure 8 (c)). O9 function returns all the pairs of variables that do not
satisfy the constraint. O10 function returns an array having an equal size
with the timetable divided by the duration, where each entry is an
aggregation of a selected quantity at a group of timetable slots determined
by the duration. An entry of the array is a pair. One of the pairs is the
absolute difference between the total sum and the entered value and the other
is a Boolean flag indicating the comparison result. For example, in a final
exam timetabling problem, a schedule disallowing 1500 students to be seated
at the same time might be required. O10 is a useful construct to define such
constraints.

For no overlap, we know that comparison is made with a pair of time
interval items, so no dimension selection is needed, even if the timetabling
problem involves a Cartesian product of multiple sets as domains of
variables. But in such a case, for other functions, dimension should be
selected using dim attribute, where corresponding value should be either an
index or a name, indicating a domain set, otherwise the n-tuple resulting
from assignvar should be used. Except O1, O6, O7, O8 functions, all the
rest have dim attribute in TTML. O9 cannot have time as a value of its dim
attribute and O8 function accepts dimension as an input. O1, O6 and O7 can

Towards an XML based standard for Timetabling Problems: TTML 15

be used to define only time related constraints on a variable set, where as the
rest can be used to define constraints on a selected dimension (domain).

There are 3 more input cases for O1-O5, other than single events:
1. A binary function accepting a single set:
2. A binary function accepting two sets
3. A unary function accepting a single set

For case 1, 2 and 3, self projections of the input sets will be taken, and
then the related function will be applied on the resulting base classifier. For
example, nooverlap function can accept a base classifier as input, indicating
that no pair in the set should overlap, or it could accept a parent classifier
which will be reduced to a base classifier by self projection. Case 1 can be
enriched by several more interpretations. Single set parameter might be a
parent classifier and the user would like to apply the binary function on any
pair in each child projection. For binary and unary functions accepting sets
as their parameters, attribute projection is proposed with values
“single | self | child”, indicating a base classifier, self projection of
a parent classifier or a child projection of a parent classifier, respectively.
Note that O6, O7 and O10 do not accept a single variable as their parameter.
Using this feature, the function definition in Figure 5 reduces to the function
call in the constraint declaration in Figure 8(a).

 (a) (b) (c)
Figure 8. Declaration of a constraint as a function (a), a filtering example (b), the same affect
of (b) requiring no filtering, where ALL=ES U CS (c)

A filtering example is illustrated in Figure 8(b). It is more appropriate to
use standard functions, although the same affect can be obtained using
filtering as shown in Figure 8(a)-(c).

<coi>
 <declare>
 <ci>S1</ci>
<apply>
<nooverlap

projection ="single"/>
 <ci>ES</ci>
 <ci>CS</ci>
</apply>
</declare>

</coi>

<coi>
 <apply>
<notsame

 dim="room"/>
 <ci>S1
 </ci>

 </apply>
</coi>

<coi>
 <apply>
<resnoclash
 dim="room"/>

 <ci>ALL
 </ci>

 </apply>
</coi>

16 Ender Özcan

6. MODELLING OUTPUT AND TEST RESULTS

Modelling output is necessary for a general tool to be able to generate
expected visual timetables for a given timetabling problem instance. For
example, the schedules of each instructor or/and the schedule of students
belonging to the same set can be asked to be produced. In the schedule, user
might prefer to see the classroom assignments as well. For this reason,
output element should allow displaying listed items, where each item is a
different view of variable assignments. Each li is assigned info, an attribute
indicating the assigned values of dimensions that will be printed out into the
timetable slot. More than one dimension can be referred in info, separated by
commas. Furthermore, a user might expect to see the classroom schedules.
For this reason, info can get variables as an attribute value. Then
selecting a classroom in li and variables an info attribute value, will yield a
timetable output of the selected classroom schedule.

Each item can be a single variable, a set of variables (a base classifier) or
sets of set of variables (a parent classifier). If it is a set of variables, user
might require an output for each variable (each), or a single output for all
variables (all). If it is a parent classifier, user might require an output for
each variable in the set of self projection (each), or a single output for all
variables in the set of self projection (all), or an output for each child
projection (child). For this reason, another attribute is supported to be
used with li, which is gentype, requiring one of the values each, all or
child.

Test results are for researchers, containing the best assignment of
variables, author of the test results, references, a short description about the
problem solver (algorithm), the best result obtained and the evaluation
function. Each assignment of a variable is marked by asi element. The
order of each assignment is assumed to be in the order of how variables are
defined. Since each assignment might consist of several values, depending
on the domains of variables, each domain item is included inside the element
di. Main and the lower level child elements of output, test result and the
best assignment of variables are shown in Figure 9(a), (b) and (c),
respectively.

-<output>
 [+]

+<test-results>
 [-<result>]
 [+<author>]
 +<pref>
 +<desc>
 +<best>
 +<penalty>
 +<eval>

+<best>
 [-<asi>]
 [+<di>]

Towards an XML based standard for Timetabling Problems: TTML 17

 (a) (b) (c)
Figure 9. Main and the lower level child elements of (a) output and (b) test results (c) best
assignment of variables

In most of the timetabling applications, penalizing an unsatisfied
constraint is traditional. For supporting related evaluation functions TTML
allows optional declaration of a penalty value using penalty element for
each defined constraint.

7. CONCLUSIONS

TTML can model all real-world timetabling problems based on MathML.
In some situations, user might be required to use some non-standard
variable, domain and constraint declarations. TTML is not a widely accepted
standard, but using TTML with standard constraint functions, most of the
university course timetabling, highschool timetabling, final exam timetabling
and some of the shift timetabling problems can be modelled. TTML requires
standardization of more constraint functions to cover more of the employee
timetabling problem instances.

TTML is designed to include even the test results for comparison. For the
time being, test results consist of the best results compiled from different
tests. This definition can be modified to include more information for each
test on the runs, such as statistics of number of evaluations, statistics of
timings, or properties of the machine on which the experiments are
performed, etc. A full TTML document can be retrieved from a web site by
an expert application for timetabling. This application can perform
experiments on the given data subject to given constraints, and then compare
its results with the best results obtained previously. Furthermore, the
application can update the TTML document using its best results by
modifying the test results part of the retrieved TTML document. TTML
requires more work in modelling the evaluation function, additional to
determining more standard constraint functions.

TTML provides all the advantages and strengths of XML. Applications
can be carried to the Internet, becoming services. A TTML processor can be
designed having three major components: a parser, problem solver and a
solution interpreter. A multipurpose TTML processor is the ultimate goal
that solves different types of timetabling problems. Using TTML data
sharing will be easy and fast. Additionally, TTML provides means to include
different parts of other TTML documents in order to make use of previously
defined components and their features (variables, constraints, etc.), using
Xlink and Xpath technologies ([23]), where the same functionality is
provided by SSTL using an object oriented methodology. The requirements

18 Ender Özcan

for a standard data format can be summarized as universality (assuming a
closed world), completeness and convertibility. The latter requirement is
satisfied by TTML, just by being an XML standard. TTML, powered by
MathML is a strong candidate for satisfying all these requirements.

Furthermore, recent studies concentrate on case based reasoning
approaches, which can benefit from the use of TTML. [4] defines similarity
measures to support such approaches. In some problems, it is important to
determine the strongly connected components (possibly the largest one) in a
graph, mapping timetabling problem into a graph colouring problem.
Finding maximal clique is an NP complete problem. If TTML is used and
the variables are grouped into classifiers, then the problem of determining
the strongly connected components reduces to locating classifier sets as
parameters of a related constraint.

A TTML validator is not implemented, since there are many general
validators available over the Internet. Figure 10 includes a well-formed
TTML document. The first TTML application, named CONFETI is
implemented as a Java applet, providing a user interface to convert final
exam timetabling text data into a TTML document. CONFETI will be used
to build an instance repository providing TTML documents for final exam
timetabling using existing data. Initially, Carter’s benchmark data sets are,
converted to TTML, based on the constraints defined in [6], successfully.
The second application will be available soon; a full TTML processor based
on a memetic algorithm for final exam timetabling, named FES (Final Exam
Scheduler). The results will be reported soon. The latest developments in
TTML and instance repositories will be available at
http://cse.yeditepe.edu.tr/~eozcan/research/TTML.

<?xml version="1.0"?>
<time-tabling>

<input-data type="University-Course-Timetabling"
lastUpdate="2003-01-22T13:20:00.000-05:00">

 <author>Ender Ozcan</author>
 <desc>An example TTML document</desc>
 <variables>
 <attrset>
 <declare> <ci>V</ci>
 <vector>
 <ci duration="2"> CSE211.01</ci>
 <ci duration="2"> CSE211.02</ci>
 <ci> CSE311.01</ci>
 <ci> CSE462.01</ci>

Towards an XML based standard for Timetabling Problems: TTML 19

 </vector>

</declare>
 <declare> <ci>noOfStudents</ci>
 <vector>
 <ci> 34</ci>
 <ci> 27</ci>
 <ci> 20</ci>
 <ci> 25</ci>
 </vector>

</declare>
 </attrset>
 </variables>
 <domains>
 <time>
 <declare> <ci>T</ci>
 <apply>
 <tmatrix itype="row-column" start="1">
 <cn> 9</cn> <cn> 5</cn>
 </tmatrix>
 </apply>

</declare>
 </time>
 <attrset>

 <declare> <ci>classrooms</ci>
 <vector>
 <ci> A100</ci>
 <ci> B101</ci>
 <ci> B103</ci>
 <ci> A201</ci>
 </vector>

 </declare>
 <declare> <ci>capacity</ci>

 <vector>
 <ci> 50</ci>
 <ci> 50</ci>
 <ci> 50</ci>
 <ci> 30</ci>
 </vector>

</declare>
 </attrset>

 <domainsvar>
 <declare><ci>R</ci>

 <apply><cartesianproduct/>

20 Ender Özcan

 <ci> T </ci>
 <ci> classrooms </ci>
 </apply>

 </declare>
 </domainsvar>
 </domains>
 <constraints>
 <classifiers>
 <rootcl> <declare> <ci>lecturers</ci>

 <set> <ci> <declare> <ci> Ender Ozcan </ci>
 <set>
 <ci> CSE211.01</ci>
 <ci> CSE311.01</ci>
 </set>

</declare> </ci>
 <ci> <declare> <ci> Ferda Dogan </ci>

 <set>
 <ci> CSE211.02</ci>
 <ci> CSE462.01</ci>
 </set>

</declare> </ci>
 </set> </declare> </rootcl>

 <rootcl> <declare> <ci>curriculum-terms</ci>
 <set> <ci> <declare> <ci> Term#2 </ci>

 <set>
 <ci> CSE211.01</ci>
 <ci> CSE211.02</ci>
 <ci> CSE311.01</ci>
 </set>

</declare> </ci>
 <ci> <declare> <ci> Term#3 </ci>

 <set>
 <ci> CSE462.01</ci>
 </set>

</declare> </ci>
 </set> </declare> </rootcl>
 </classifiers>
 <hard>
 <coi>
 <apply>
 <nooverlap projection="child"/>
 <ci>curriculum-terms</ci>
 </apply>

Towards an XML based standard for Timetabling Problems: TTML 21

 </coi>
 <coi>
 <apply>
 <nooverlap projection="child"/>
 <ci>lecturers</ci>
 </apply>
 </coi> <coi>
 <apply>
 <preset dim="classroom"/>
 <ci>CSE211.01</ci>
 <cn>A100</cn>
 </apply>
 </coi>
 <coi>
 <apply>
 <exclude dim="T"/>
 <ci>CSE311.01</ci>
 <cn><vector> <cn>1<sep/>1</cn>

<cn>2<sep/>2</cn></vector>
</cn>

 </apply>
 </coi>

<coi>
 <apply>
<resnoclash projection="single"
 dim="classrooms"/>

 <ci>V</ci>
 </apply>
</coi>

 </hard>
 <soft>
 <coi>

<apply>
<attrcomp projection="single" comp="<="/>

 <ci>V</ci>
 <ci>T</ci>
 <ci>noOfStudents</ci>
 <ci>classrooms</ci>

<ci>capacity</ci>
 </apply>
</coi>

 </soft>

22 Ender Özcan

 </constraints>
</input-data>

 <output>
 <li projection="child">lecturers
 </output>
 <test-results>
 <result>
 <author>Ender Ozcan</author>
 <desc> Problem is solved by TEDI, following is

the best solution obtained in 50 runs
</desc>

 <best>
 <asi> <di>4<sep/>1</di> <di>A100</di> </asi>
 <asi> <di>4<sep/>2</di> <di>B101</di> </asi>
 <asi> <di>4<sep/>3</di> <di>A201</di> </asi>
 <asi> <di>4<sep/>4</di> <di>B103</di> </asi>
 </best>

 </result>
 </test-results>
</time-tabling>

Figure 10. An example TTML definition of a timetabling problem instance

8. REFERENCES

1. D. Abramson, H. Dang and M. Krisnamoorthy, Simulated Annealing Cooling Schedules
for the School Timetabling Problem, Asia-Pacific Journal of Op. Res., 16: 1-22, 1999.

2. A. Alkan, E. Ozcan, Memetic Algorithms for Timetabling, Proc. of 2003 IEEE Congress
on Evolutionary Computation, pp. 1796-1802, December, 2003.

3. P. D. Causmaecker, P. Demeester, Y. Lu and G. Vanden, Using Web Standards for
Timetabling, PATAT’02, pp.238-258, 2002.

4. E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic and R. Qu, Similarity Measures
for Exam Timetabling Problems, Proc. of the 1st Multidisciplinary Inter. Conf. on
Scheduling: Theory and Applications, pp. 120-135, 2003.

5. E. K. Burke, D. Elliman, and R. Weare, A Genetic Algorithm Based Timetabling System,
Proc. of the 2nd East-West Int. Conf. on Comp. Tech. in Education, pp. 35-40, 1994.

6. E. K. Burke, J.P. Newall, R.F. Weare, A Memetic Algorithm for University Exam
Timetabling, Lecture Notes in Computer Science, 1153:241-250, Springer, 1996.

7. E. K. Burke, P. A. Pepper and J. H. Kingston, A Standard Data Format for Timetabling
Instances, Springer Lecture Notes in Computer Science, 1408:213-222, 1997.

8. A. Colorni, M. Dorigo, and V. Maniezzo, A genetic algorithm to solve the timetable
problem. Tech. rep. 90-060 revised, Politecnico di Milano, Italy, 1992.

9. D.Corne, P. Ross, H.L. Fang, Evolutionary Timetabling: Practice, Prospects and Work
in Progress, Proceedings of the UK Planning and Scheduling SIG Workshop, 1994.

Towards an XML based standard for Timetabling Problems: TTML 23

10. JP Cladeira, AC Rosa, School Timetabling using Genetic Search, PATAT’97, pp. 115-

122, 1997.
11. F.P.M. Dignum, W.P.M. Nuijten, L.M.A. Janssen, Solving a Time Tabling Problem by

Constraint Satisfaction, Tech. report, Eindhoven University of Technology, 1995.
12. W. Erben, J. Keppler, A Genetic Algorithm Solving a Weekly Course-Timetabling

Problem, Proc. of the First Int. Conf. on the Practice and Theory of Automated
Timetabling (ICPTAT), pp. 21-32, Napier University, Edinburgh, 1995.

13. S. Even, A. Itai, and A. Shamir, On the Complexity of Timetable and Multicommodity
Flow Problems, SIAM J. Comput., 5(4):691-703, December 1976.

14. H.L. Fang, Genetic Algorithms in Timetabling and Scheduling, PhD thesis, 1994.
15. A. Hertz, Finding a feasible course schedule using a tabu search, Discrete Applied

Mathematics, 35, 255-270, 1992.
16. J.H. Kingston, Modeling timetabling problems with STTL, Springer Lecture Notes in

Computer Science, 2079:309, 2001.
17. F.T. Leighton, A graph coloring algorithm for large scheduling problems, Journal of

Reasearch of the National Bureau of Standards, 84:489-506, 1979.
18. A. Monfroglio, Timetabling Through a Deductive Database: A Case Study, Data &

Knowledge Engineering, 3:1-27, 1988.
19. E. Ozcan, A. Alkan, Timetabling using a Steady State Genetic Algorithm, PATAT’02,

pp.104-107, 2002.
20. A. Schaerf, Tabu Search Techniques for Large High-School Timetabling Problems,

Proc. of the Fourteenth National Conference on AI, pp. 363-368, August, 1996.
21. G. Schmidt, and T. Strohlein, Time table construction-an annotated bibliography, The

Computer Journal, 23(4):307-316, 1979.
22. D. De Werra, An introduction to timetabling, European Journal of Operations Research,

19:151-162, 1985.
23. World Wide Web Consortium web site, http://www.w3c.org, 2004.

