
Automating the Generation of VNS
Components with Grammatical Evolution

Ender Özcan, John Drake and Nikolaos Kililis

School of Computer Science, University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

{Ender.Ozcan, psxjd2, nxk09u}@nottingham.ac.uk

Abstract. The vehicle routing problem (VRP) is a family of problems
whereby a fleet of vehicles must service the commodity demands of a set
of geographically scattered customers from one or more depots, subject
to a number of constraints. Early hyper-heuristic research focussed on
selecting and applying a low-level heuristic at a given stage of an optimi-
sation process. Recent trends have led to a number of approaches being
developed to automatically generate heuristics for a number of combina-
torial optimisation problems. Previous work on the VRP has shown that
the application of hyper-heuristic approaches can yield successful results.
In this paper we investigate the potential of grammatical evolution as
a method to evolve the components of a variable neighbourhood search
(VNS) framework. In particular two components are generated; construc-
tive heuristics to create initial solutions and neighbourhood move oper-
ators to change the state of a given solution. The proposed method is
tested on standard benchmark instances of two common VRP variants.

1 Introduction

Optimisation problems often create a search space which is too large to enumer-
ate and exhaustively search for an optimal solution. Various heuristics and meta-
heuristics have been successfully applied to such problems. One drawback of such
approaches is the necessity to manually adapt the method used to solve different
problem domains or classes of problem. Hyper-heuristics are a class of high-level
search techniques which automate the heuristic design process and aim to raise
the level of generality at which search methods operate [1]. Hyper-heuristics are
broadly split into two main categories, those which select a low-level heuristic
to apply at a given point in a search and those which create new heuristics from
a set of low level components [2]. Here we are concerned with the second cate-
gory, those methodologies which generate new heuristics. Whilst most research
effort in this field has been on developing heuristics which construct a solution
from scratch, a less studied area is the generation of perturbative or local search
heuristics. Genetic Programming (GP) [3] has been widely used in the literature
to generate heuristics for strip packing [4], bin packing [5–7], job shop schedul-
ing [8], knapsack problems [9] and boolean satisfiability [10–13]. Grammatical

Evolution [14] is a grammar-based variation of GP which has been used to auto-
matically design local search heuristics bin packing and stock cutting problems.
The vehicle routing problem (VRP) is an NP-Complete [15] combinatorial opti-
misation problem, which requires the determination of the optimal set of routes
to be followed by a fleet of vehicles in order to service the commodity demands
of a set of customers. Previously, hyper-heuristic methods [16] have shown to
perform particularly well on a number of variants of the VRP. In this paper we
explore the potential of grammatical evolution as a method to generate both
constructive and perturbative heuristics for the VRP and embed these ideas in
a variable neighbourhood search (VNS) framework.

2 Hyper-heuristics

The underlying principles of hyper-heuristics were used as early as the 1960’s
in the work of Fisher and Thompson [17], where combining job-shop schedul-
ing rules by selecting an appropriate rule for the given state of a problem was
shown to outperform using each of the rules individually. The term was first
used in the field of combinatorial optimisation by Cowling et al. [18] defining
hyper-heuristics as heuristics to choose heuristics. Unlike traditional computa-
tional search methods which operate directly on a search space of solutions,
hyper-heuristics operate exclusively on a search space of heuristics or heuristic
components. Burke et al. [2, 19] define a hyper-heuristic as a search method or
learning mechanism for selecting or generating heuristics to solve computational
search problem. This definition distinguishes between the two main classes of
hyper-heuristics, those which intelligently select a heuristic to apply to a prob-
lem and those which are concerned with automatically generating new heuristics.

The automated generation of heuristics is a relatively new field attracting an
increasing amount of attention. Genetic Programming (GP) has been success-
fully used to evolve heuristics for a wide range of problems. In genetic program-
ming, populations of computer programs are evolved using the naturally inspired
notions of inheritance, selection and variation. Unlike Genetic Algorithms which
produce fixed-length encoded representations of candidate solutions to a given
problem, the evolved program itself when executed is the solution. Geiger et
al. [8] used GP to evolve dispatching rules for a job shop scheduling problem.
Burke et al. create heuristics for for strip packing [4] and bin packing problems [5–
7] with human-competitive results. Bader-El-Din and Poli [10] also used GP to
quickly generate ‘disposable’ heuristics for the satisfiability problem generat-
ing heuristics again with comparable performance to human-designed methods.
Fukunaga [11–13] also used GP to generate local search heuristics for boolean
satisfiability. Drake et al. [20] managed a constructive heuristic by using GP to
evolve the order in which to add items to a knapsack solving the MKP. Further
information on using genetic programming as a hyper-heuristic is provided by
Burke et al. [21].

3 Grammatical Evolution

Grammatical Evolution (GE) [14] is a recently developed grammar-based form
of genetic programming. The evolutionary process in a grammatical evolution
system is performed on binary or decimal integer strings of variable length rather
than on actual programs. Such strings are then mapped to a sentence (in our case
a program) using the production rules of a grammar expressed in BNF (Backus
Naur Form). Unlike GP, GE provides a distinction between the genotype and
phenotype as is the case in nature. In GE the search process is performed over
the genotype (a binary or decimal integer string) and the fitness function eval-
uates the program (the phenotype) which is obtained. There are a number of
advantages to approaching the search process in this way. Any strategy that
operates on binary strings can be used to perform the search, this is not strictly
limited to evolutionary approaches. The search is also not limited by tree struc-
ture and the need to ensure solutions are valid. Within the BNF notation a
possible production rule can be defined as:

<symbolA> ::= <symbolB> | (symbolC)

In the example above, <symbolA> is a non-terminal which expands to either
<symbolB> or (symbolC). <symbolB> is also a non-terminal, while (symbolc)
is a terminal symbol indicated by brackets. The process typically starts with a
single non-terminal start symbol and a set of production rules that define with
which symbols this non-terminal can be replaced. A sentence can consist of any
number of non-terminal and terminal symbols. Terminals are atomic components
of a sentence containing no production rules as they will not be replaced. Each
non-terminal is replaced with any non-terminal symbols produced subsequently
replaced using their own corresponding production rules. Often there are mul-
tiple production rules to replace the current non-terminal symbol in question
and a number of choices for terminal symbols. In order to select a symbol at a
given point the variable length binary or decimal integer string representing the
genotype in the GE system is used. In the case of a binary string, the genome is
split into 8-bit portions known as codons. The integer value of a single codon can
then take any value between 0 and 255. If the genotype is represented directly as
a decimal integer string then this conversion is unnecessary. Each codon is used
with the grammar to decide which choice to make when replacing a non-terminal
symbol using a given production rule. The first codon is used to select which
of the production rules will replace the first non-terminal symbol. This is done
by calculating the value of the codon modulus the number of production rules
to choose from. As an example, for a codon with value 43 given 6 production
rules, production rule 1 is chosen (note that the first production rule is at index
0) as 43 mod 6 is 1. If this production rule creates a sentence containing further
non-terminal symbols the second codon is used to select the production rule for
the first non-terminal set in the new sentence. This process is continued until
the sentence is made up of only terminal symbols and the mapping process is
complete. In this study, the sentences produced take the form of Java code rep-

resenting portions of low-level heuristics. A more detailed explanation of a GE
system is provided by O’Neill and Ryan [14].

Recently, Burke et al. [22] have used Grammatical Evolution to generate
low-level heuristics for bin packing. This paper generates heuristics which can
consistently obtain solutions which use only one bin more than the optimal
lower bound and often the optimal number of bins itself. GE was also seen to
be suitably flexible enough to generate different move operators for different
classes of bin packing problems as appropriate. Keller and Poli [23, 24] also use a
grammar-based genetic programming system to evolve solvers for the travelling
salesman problem.

4 Vehicle Routing Problems

The vehicle routing problem (VRP) is an NP-Complete [15] combinatorial opti-
misation problem where a number of customers are to be serviced by a fleet of
vehicles subject to a number of constraints. Different objectives can be considered
depending on the goal of the problem. Typical objectives include; minimisation
of cost with respect to distance travelled, minimisation of the global travel time,
minimisation of the number of vehicles required to service all customers, min-
imisation of the penalty costs associated with partial service of customers. The
objective could also be a weighted combination of such objectives. Real-world
commodity distribution in logistics is a complex problem with constrains varying
depending on the application. It is therefore natural that many different variants
of the VRP exist, each simplifying the problem to a smaller set of constraints
which impose the most important restrictions in each specific application of the
problem. A large number of exact [25, 26] and meta-heuristic [27, 28] methods
have been applied in the literature to solve such problems.

Recently there has been an increasing gain of emphasis on solution methods
which operate across different VRP variants. One of the state-of-the-art results
obtained by such unified heuristics is the hyper-heuristic approach of Pisinger
and Ropke [16]. This work is based on the Adaptive Large Neighbourhood Search
(ALNS) framework initially presented by Ropke and Pisinger [29]. The proposed
framework is a selection hyper-heuristic which when given a complete solution,
traverses the search space through the application of heuristics which remove a
number of requests from the solution and subsequently, heuristics to re-insert
the removed requests. The selection of the next removal or insertion heuristic to
use is based on statistical information gathered during the search. This work also
provided a unified model for the VRP allowing five VRP variants to be tested
following transformation to the Rich Pickup and Delivery Problem with Time
Windows (RPDPTW). Here we will use this model to test our method on the
two best known VRP variants; the vehicle routing problem with time windows
(VRPTW) and the capacitated vehicle routing problem (CVRP).

5 Grammatical Evolution Hyper-heuristics for the VRP

Variable Neighbourhood Search (VNS) [30] is a well studied meta-heuristic
methodology for global optimisation. A basic VNS algorithm is outlined in Al-
gorithm 1.

Algorithm 1: Outline of a standard VNS algorithm

N: set of k neighbourhood structures, {N1, N2,...,Nk};
f: solution evaluation function;
x← Construct initial solution;
repeat

k ← 1;
repeat

Shaking: x′ ← new point in neighbourhood Nk(x);
Local Search: x′′ ← result of local search from x′;
if f(x′′) < f(x) then

x← x′′ ;
k ← 1 ;

else
k ← k + 1;

end

until k = kmax;

until stopping criteria met ;

Operating on a complete solution initialised using a chosen method, VNS
explores increasingly distant neighbours of the current solution using a pre-
defined set of neighbourhood move operators. This process is known as ‘shaking’.
Following this, local search is performed to reach a local optimum from the
point reached by the shaking procedure. The incumbent solution is replaced
by a solution generated by a given neighbourhood move and subsequent local
search if such a move will yields improvement in solution quality. This can be
considered as a random descent, first improvement method. In the case where
an improved solution is not found, the size of neighbourhood move is increased,
thus effectively changing the neighbourhood structure used. This ensures the
search is diversified sufficiently by performing increasingly larger neighbourhood
moves in order to reach more promising areas of the search space when stuck in
local optima.

Within this framework we will use grammatical evolution to generate the
construction heuristic initialising a solution and ruin and insertion heuristics to
perform the shaking procedure. Essentially we will evolve the order in which
nodes are inserted into and removed from a solution through the use of a gram-
mar. The grammar used is outlined in Figure 1. From the starting symbol <S>,
three heuristic components are evolved using a single genome to select produc-
tion rules. The set of terminal functions representing information fields which
must be retrieved from the current solution state is shown in Table 1. Some
of the information fields are not used by some problem variants and will con-

tain null values however it is still important to include such fields to enable
the hyper-heuristic to generate heuristics across a broader class of routing prob-
lems. Those symbols prefixed ‘rqi-’ correspond to information about individual
requests whilst those prefixed ‘rti-’ correspond to information information about
a route.

<S> ::= <InitialSolution> <Ruin> <Recreate>

<InitialSolution> ::= <Recreate> | (empty-solution)

<Recreate> ::= <RecreateOrdered> | <RecreateStepwise>

<RecreateOrdered> ::= <RequestFieldOp> <Order>

<RecreateStepwise> ::= <Steps> <StepEnd>

<Ruin> ::= <RuinOrdered> | <RuinConditional> | <RequestSelection>

<RuinOrdered> ::= <RouteSelectionLength> <RouteFieldOp> <Order> <RequestSelection>

<RuinConditional> ::= <RouteFieldOp> <RelationalOp> <RouteFieldOp> <RequestSelection>

<RequestSelection> ::= <RequestSelectionOrdered> | <RequestSelectionConditional>

<RequestSelectionOrdered> ::= <RequestFieldOp> <Order>

<RequestSelectionConditional> ::= <RequestFieldOp> <RelationalOp> <RequestFieldOp>

<RouteSelectionLength> ::= (numroutes-RC) | (percentage-RC)

<op> ::= (add) | (sub) | (mul) | (div) | <MaxMin>

<Steps> ::= <NextStep> <Steps> | <NextStep>

<NextStep> ::= <MaxMin> <RequestFieldOp>

<MaxMin> ::= (max) | (min)

<StepEnd> ::= (step-cycle) | (repeat-last)

<RouteFieldOp> ::= <op> <RouteFieldOp> <RouteFieldOp> | <RouteField>

<RouteField> ::= (rti-iuc) | (rti-d) | (rti-rc)

<RequestFieldOp> ::= <op> <RequestFieldOp> <RequestFieldOp> | <RequestField>

<RequestField> ::= (rqi-d) | (rqi-pat) | (rqi-pdt) | (rqi-puc) | (rqi-dat) | (rqi-ddt) |

(rqi-duc) | (rqi-prc) |(rqi-drc) | (rqi-pwt) | (rqi-pindx) |

(rqi-dwt) | (rqi-dindx) | (rqi-pst) | (rqi-ptws) | (rqi-ptwe) |

(rqi-pprevd) | (rqi-pnextd) | (rqi-dst) | (rqi-dtws) | (rqi-dtwe) |

(rqi-dprevd) | (rqi-dnextd)

<Order> ::= (ascending) | (descending)

<RelationalOp> ::= (lt) | (gt) | (lte) | (gte) | (eq) | (neq)

Fig. 1. The grammar defining the components and structure of the heuristics

A standard set of non-terminal symbols is used to represent a number of
basic binary arithmetic and relational operators shown in Table 2. Instead of
the traditional divide function here we use protected divide. As there is always
a possibility that the denominator could be zero, protected divide replaces zero
with 0.001. In the case of relational operators the comparison is always made
from left to right.

The constructive component of the heuristic constructs an initial feasible so-
lution from an empty solution, it is also possible to leave the initial solution
empty. The recreate component works in much the same way without the option
of leaving the solution empty. Following the RPDPTW model unallocated re-
quests are permitted however they are associated with a high penalty cost. Two
methods for selecting the next request to insert are used, ordered and stepwise.
Ordered selection uses a component composed of binary arithmetic operators
and solution state information to rank each unallocated request. The order in
which requests are inserted into the solution is derived from this ranking with
the direction in which requests are considered determined by one of two terminal
symbols, (ascending) and (descending). Stepwise selection evolves a sequence of
different criteria to use at each ’step’ when considering which request to insert.
If the number of potential requests to insert is greater than the number of se-

Table 1. Set of terminal symbols which correspond to information request and route
information within a solution

Symbol Description

rqi-d Commodity demand of a request
rqi-pat Arrival time of the vehicle at the pickup node
rqi-pdt Departure time of the vehicle at the pickup node
rqi-puc Used vehicle capacity when leaving the pickup node
rqi-dat Arrival time of the vehicle at the delivery node
rqi-ddt Departure time of the vehicle at the delivery node
rqi-duc Used vehicle capacity when leaving the delivery node
rqi-prc Residual vehicle capacity when leaving the pickup node
rqi-drc Residual vehicle capacity when leaving the delivery node
rqi-pwt Time the vehicle must wait at the pickup node
rqi-pindx The visit index of the pickup node within the route
rqi-dwt Time the vehicle must wait at the delivery node
rqi-dindx The visit index of the delivery node within the route
rqi-pst Service time of the pickup node of the request
rqi-ptws Opening time of the pickup node time window
rqi-ptwe Closing time of the pickup node time window
rqi-pprevd Distance between pickup node and previous node within the route
rqi-pnextd Distance between the pickup and following node within the route
rqi-dst Service time of the delivery node of the request
rqi-dtws Opening time of the delivery node time window
rqi-dtwe Closing time of the delivery node time window
rqi-dprevd Distance between the delivery and previous node within the route
rqi-dnextd Distance between the delivery and following node within the route
rti-iuc The used capacity when vehicle leaves depot
rti-irc The residual capacity when vehicle leaves depot
rti-d Total distance of route

Table 2. Set of non-terminals which represent binary arithmetic and relational oper-
ators

Symbol Description

add Add two inputs
sub Subtract second input from first input
mul Multiply two inputs
div Protected divide function
max Maximum value between two inputs
min Minimum value between two inputs
lt Less than (<)
gt Greater than (>)
lte Less than or equal to (≤)
gte Greater than or equal (≥)
eq Equal
neq Not equal

lection steps defined one of two options are available, (step-cycle) will return to
the first step and cycle through the sequence of criteria again and (repeat-last)
will re-use the last criteria in the sequence until all requests are inserted.

As the ruin phase works with a complete solution, selecting the routes from
which to remove requests is not a trivial decision. A simple solution is to allow
requests to be removed from any route however here we also allow the heuristic
to evolve a subset of routes from which to choose. The number of routes to be
selected is one of two random constants, either a number between 1 and the total
number of routes (numroutes-RC) or a number between 0 and 1 representing the
percentage of routes to be selected (percentage-RC). The order in which a subset
of routes are considered is either ordered or conditional. Conditional selection
iterates over the complete set of routes and returns a subset of routes which
satisfy a condition set by a criteria evolved in the grammar. If number of routes
selected is less than the number specified by the random constant, the remaining
routes are selected randomly. The ruin heuristic is parametric with the number
of requests to remove determined by the value of k taken from the overall VNS
framework. Once the routes are selected the order in which requests are removed
must be defined. Two methods for selecting the next request to remove are used,
ordered selection as defined previously and conditional selection (as with the
selection of routes however the iteration is performed over requests rather than
routes). In the case of conditional selection, if less than k requests are selected
using the evolved condition the remaining requests are removed randomly.

The parameters of the VNS search algorithm in which the generated con-
struction, ruin and insertion heuristics operate, are set to initial k = 1, maxi-
mum k = 30 with k increased by 1 for each non-improving step. k is reset to 1
when an improving move is made. The local search used is a hill-climber which
removes a request from an existing route, and relocates it to a different route
so that the best improvement was achieved. Finally the stopping criterion used
was 10 consecutive iterations of non-improvement after 30 non-improving steps.
All experiments were performed in an offline manner i.e. a separate run of the
GE system is performed on each individual instance. The parameters used in
the GE runs are summarised in Table 3.

Table 3. Summary of Grammatical Evolution Parameters

Parameter Value

Generations 50
Population Size 1024
Crossover Probability 0.9
Mutation Probability 0.05
Reproduction Probability 0.05
Maximum Tree Depth 17
Selection Method Tournament Selection, size 7

6 Results

Table 4 shows the results of the GE hyper-heuristic (GE-PHH) on the first 10
instances for the CVRP from Augerat et al. [31] 1. These instances contain either
5 or 6 vehicles and between 31 and 38 customers. The optimal solution is known
for all of these instances and has been obtained by a number of methods in the
literature [32]. ‘Proximity’ is calculated as Optimal V alue/Result Obtained. To
make some assessment of the generality of our method, experiments are also
performed on instances taken from Solomon [33] with results shown in Table 5.
There are three types of instance in this set; ‘R’ instances contain customers
whose geographic locations have been randomly generated, ‘C’ instances com-
prise of clusters of customers and ‘RC’ instances consist of a mixture of both
types of customers.

Table 4. Results of GE-PHH on the first 10 instances of Augerat et al. [31]

Instance Name Optimal Value GE-PHH (Vehicles) Proximity

A-n32-k5 784 811.80 (5) 0.97
A-n33-k5 661 664.79 (5) 0.99
A-n33-k6 742 785.45 (6) 0.94
A-n34-k5 778 828.01 (5) 0.94
A-n36-k5 799 849.22 (5) 0.94
A-n37-k5 669 678.92 (5) 0.99
A-n37-k6 949 1020.06 (6) 0.93
A-n38-k5 730 826.83 (5) 0.88
A-n39-k5 822 905.23 (5) 0.91
A-n39-k6 831 838.75 (6) 0.99

Average 0.95

In all cases the best solutions obtained for each instance use the optimal
number of vehicles. From these results we can see that the generated heuristics
are able to reach promising regions of the search space however this does not
necessarily lead to global optima. This limitation may be due to the nature of the
local search operator used. As the local search only considers moving a request
from one route to another. In some near optimal solutions requests must be
exchanged within a single route to reach the global optimum. We observe that
the application of the system on VRPTW does not seem to produce as high
quality results as for the CVRP. This could be due to the set of components
not being well suited to cover the temporal requirements of time window related
problems. The system performs particularly poorly on the ‘C102.100’ instance
having a negative impact on the average proximity.

1 These instances and optimal solutions were taken from www.coin-
or.org/SYMPHONY/branchandcut/VRP/data/index.htm

Table 5. Results of GE-PHH on a selection of instances from Solomon [33]

Instance Name Optimal Value GE-PHH (Vehicles) Proximity

C101.100 827.3 902.64716 (10) 0.92
C102.100 827.3 1198.97254 (10) 0.69
R101.100 1637.7 1766.807 (20) 0.93
R102.100 1466.6 1596.96749 (18) 0.92
RC101.100 1619.8 1871.2241 (15) 0.87
RC102.100 1457.4 1771.4629 (14) 0.82

Average 0.86

7 Conclusions and Future Work

In this preliminary work we have shown that grammatical evolution shows po-
tential as a hyper-heuristic to generate components of a VNS system to solve
the VRP. This method is defined as a hyper-heuristic as it operates on a search
space of heuristics rather than directly on a search space of solutions. To our
knowledge, this is the first time in literature a GE hyper-heuristic has been used
to solve the vehicle routing problem. This method has shown that automatically
generating heuristics for the VRP could be an interesting future research direc-
tion. We are currently working on evolving each of the components in isolation
rather than using a single genome and grammar to evolve the whole system. As
mentioned in the previous section this method was restricted somewhat by the
choice of local search operator. There are a large number of operators in the lit-
erature for the travelling salesman problem (TSP) which could be implemented
to also allow request swaps within a route. There are also a variety of standard
construction heuristics for the VRP in the literature. These could replace the
constructive phase of our method leaving the focus on evolving the ruin and
recreate heuristics within the VNS framework.

References

1. Ross, P.: Hyper-heuristics. In Burke, E.K., Kendall, G., eds.: Search Methodologies:
Intrd. Tut. in Optimization and Decision Support Tec. Springer (2005) 529–556

2. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A
Classification of Hyper-heuristics Approaches. In: Handbook of Metaheuristics
2nd ed. Springer (2010) 449–468

3. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection. The MIT Press, Cambridge, MA (1992)

4. Burke, E.K., Hyde, M., Kendall, G., Woodward, J.: A genetic programming hyper-
heuristic approach for evolving 2-d strip packing heuristics. IEEE Transactions on
Evolutionary Computation 14(6) (2010) 942–958

5. Burke, E.K., Hyde, M.R., Kendall, G.: Evolving bin packing heuristics with genetic
programming. In: PPSN 2006. Volume 4193 of LNCS., Springer (2006) 860–869

6. Burke, E.K., Woodward, J., Hyde, M., Kendall, G.: Automatic heuristic generation
with genetic programming: Evolving a jack-of-alltrades or a master of one. In:
GECCO 2007. (2007) 1559–1565

7. Burke, E.K., Hyde, M., Kendall, G., Woodward, J.: Automating the packing heuris-
tic design process with genetic programming. Evolutionary Computation 20(1)
(2012) 63–89

8. Geiger, C.D., Uzsoy, R., Aytug, H.: Rapid modeling and discovery of priority
dispatching rules: An autonomous learning approach. Journal of Scheduling 9(1)
(2006) 7–34

9. Kumar, R., Joshi, A.H., Banka, K.K., Rockett, P.I.: Evolution of hyperheuristics
for the biobjective 0/1 knapsack problem by multiobjective genetic programming.
In: GECCO 2008, ACM (2008) 1227–1234

10. Bader-El-Den, M., Poli, R.: Generating sat local-search heuristics using a gp hyper-
heuristic framework. In Monmarch, N., Talbi, E.G., Collet, P., Schoenauer, M.,
Lutton, E., eds.: Artificial Evolution. Volume 4926 of LNCS., Springer Berlin /
Heidelberg (2008) 37–49

11. Fukunaga, A.S.: Automated discovery of composite sat variable-selection heuris-
tics. In: Artificial intelligence. (2002) 641–648

12. Fukunaga, A.S.: Evolving local search heuristics for sat using genetic programming.
In: GECCO 2004. Volume 3103 of LNCS., Springer-Verlag (2004) 483494

13. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability
testing. Evolutionary Computation 16(1) (2008) 31–61

14. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language. Volume 4 of Genetic programming. Kluwer Aca-
demic Publishers (2003)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

16. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Computers
and Operations Research 34(8) (2007) 2403–2435

17. Fisher, M., Thompson, G.: Probabilistic learning combinations of local job-shop
scheduling rules. In: Factory Scheduling Conference. (1961)

18. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: PATAT 2000, London, UK, Springer-Verlag (2001) 176–190

19. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-
heuristics: A survey of the state of the art. Technical Report No. NOTTCS-TR-
SUB-0906241418-2747, School of Computer Science and Information Technology,
University of Nottingham (2010)

20. John H. Drake, Matthew Hyde, K.I., Özcan, E.: A genetic programming hyper-
heuristic for the multidimensional knapsack problem. In: CIS 2012. (2012) 76–80

21. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: Ex-
ploring Hyper-heuristic Methodologies with Genetic Programming. In: Computa-
tional Intelligence: Collaboration, Fusion and Emergence. Springer-Verlag (2009)
177–201

22. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search
heuristics. IEEE Transactions on Evolutionary Computation 16(3) (2012) 406–
417

23. Keller, R.E., Poli, R.: Linear genetic programming of metaheuristics. In: GECCO
2007, ACM (2007) 1753–1753

24. Keller, R.E., Poli, R.: Linear genetic programming of parsimonious metaheuristics.
In: CEC 2007. (2007) 4508–4515

25. Laporte, G.: The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research 59(3) (1992) 345 – 358

26. Toth, P., Vigo, D.: Models, relaxations and exact approaches for the capacitated
vehicle routing problem. Discrete Applied Mathematics 123(13) (2002) 487 – 512

27. J-F Cordeau, M. Gendreau, G.L.J.Y.P., Semet, F.: A guide to vehicle routing
heuristics. The Journal of the Operational Research Society 53(5) (2002) 512–522

28. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii:
Metaheuristics. Transportation Science 39(1) (2005) 119–139

29. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science 40(4)
(2006) 455–472

30. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers and Oper-
ations Research 24(1) (1997) 1097–1100

31. Augerat, P., Rinaldi, G., Belenguer, J., Benavent, E., Corberan, A., Naddef, D.:
Computational results with a branch and cut code for the capacitated vehicle
routing problem. Technical report, RR 949-M, Universite Joseph Fourier, Grenoble
(1995)

32. Ralphs, T., Kopman, L., Pulleyblank, W., Jr, L.T.: On the capacitated vehicle
routing problem. Mathematical Programming Series B 94 (2003) 343359

33. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2) (1987) 254–265

