
Noname manuscript No.
(will be inserted by the editor)

Co-evolving add and delete heuristics

Jerry Swan · Ender Özcan · Graham
Kendall

Received: date / Accepted: date

Abstract Hyper-heuristics are (meta-)heuristics that operate at a high level
to choose or generate a set of low-level (meta-)heuristics to solve difficult search
and optimisation problems. Evolutionary algorithms are well-known nature-
inspired meta-heuristics that simulate Darwinian evolution. In this article, we
introduce an evolutionary-based hyper-heuristic in which a set of low-level
heuristics compete to solve timetabling problems.

Keywords Hyper-heuristics · Coevolution · Ruin-and-recreate

1 Introduction

Hyper-heuristics are (meta-)heuristics that operate at a high level to choose
or generate a set of low level (meta-)heuristics to solve difficult search and
optimisation problems [?],[?]. Heuristics can be used to search the solution
space directly or construct a solution based on a sequence of moves. In most
of the previous studies, the type of the low-level heuristics used is uniform, i.e.
they are either constructive or perturbative (improvement) heuristics. Hyper-
heuristics aim to replace bespoke approaches by general methodologies for
solving different problems. They provide a “good enough - soon enough - cheap
enough” framework for problem solving.

Timetabling problems are NP hard [?], real-world constraint optimisation
problems. A timetabling problem requires scheduling of given events using
limited resources, subject to a set of constraints. Evolutionary algorithms are
well-known nature-inspired meta-heuristics that simulate Darwinian evolution.
In this paper, we introduce an evolutionary based hyper-heuristic in which a
set of low level heuristics compete to solve timetabling problems.

Automated Scheduling, Optimisation and Planning (ASAP) Research Group,
School of Computer Science, University of Nottingham,
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK.
{jps,exo,gxk}@cs.nott.ac.uk

2 Jerry Swan et al.

(∗ Generate f e a s i b l e b inary s t r i n g s . ‘+ ’ denotes concatenat ion .
I n i t i a l i z e with : genera teAddDe le teLi s t s (n , “01”) ; ∗)

function generateAddDeleteL i s t s (var n : Int , var b i t s :
B inaryStr ing) : L i s tOfBinarySt r ing

begin
var r e s u l t : L i s tOfBinaryStr ing ;
i f (n = 1)
begin

r e s u l t := r e s u l t + b i t s ;
end ;
else
begin

r e s u l t := r e s u l t + generateAddDele teL i s t s (n−1, b i t s+ “01”) ;
r e s u l t := r e s u l t + generateAddDele teL i s t s (n−1,“0”+ b i t s+“1”) ;
i f (b i t s doesn ′ t have p r e f i x “01”)
begin

r e s u l t := r e s u l t + generateAddDele teL i s t s (n−1,“01”+ b i t s) ;
end ;

end ;
r e turn r e s u l t ;

end .

Listing 1 Generate feasible binary strings

1.1 Low-level heuristics

A solution to a timetabling problem can be reconstructed from a previous
solution by successively deleting and adding (re-scheduling) events. In our
hyper-heuristic framework, we propose a sequence of delete-add (0-1) opera-
tions with a fixed length. Add and delete operations can be handled in many
different ways. The simplest approach for the delete operation is choosing an
event randomly and putting it into an unscheduled events list. On the other
hand, the add operation requires two consecutive actions to be taken. Firstly,
an event should be selected from the list of unscheduled events and then a
suitable period should be selected for scheduling.

A fixed-length binary string can be used to represent a series of add (1)
and delete (0) operations for reconstructing a new solution from an existing
one. A feasible string of length 2n can be formed by respecting the following
rules:

1. The number of ones must be equal to the number of zeros, that is n. Hence,
the string length is an even number.

2. The first entry in the string is always the delete operation, since there is
no unscheduled event at the start.

3. For any prefix of the string, the number of ones must be less than or equal
to the number of zeroes.

For example, given a solution S and a feasible string “0011”, two randomly
selected events are deleted from S, and S′ is formed by rescheduling them,
successively. On the other hand, “0110” is not a feasible string, since after

Co-evolving add and delete heuristics 3

procedure coevo lve (var pop : Populat ion)
begin

for (p in pop)
begin

var prev iousTimetable = p . getTimetable () ;
var newTimetable := applyADL(p . getADL ()) ;
i f (newTimeTable is better than prev iousTimetable)

p . setTimetable (newTimetable) ;
end
so r tByFi tnes s (pop) ;

(∗Divide the population into 4 parts...∗)
(∗copy 1st quarter into 2nd quarter:∗)
copy (pop , 0 , popSize

4
, popSize

4
, 2∗popSize

4
) ;

(∗copy 1st quarter into 3rd quarter:∗)
copy (pop , 0 , popSize

4
, 2∗popSize

4
, 3∗popSize

4
) ;

(∗1st quarter: mutate timetables, randomize ADLs∗)
mutateTimetableAndRandomizeADL (pop , 1 , popSize

4
) ;

(∗2nd quarter: mutate timetables∗)
mutateTimetable (popSize

4
, 2∗popSize

4
) ;

(∗3rd quarter: randomize ADLs∗)
mutateADL(2∗popSize

4
, 3∗popSize

4
, addDe l e t eL i s t s) ;

(∗4th quarter: re-initialize everything∗)
randomizeTimetableAndADL (pop , 3∗popSize

4
, popSize) ;

end .

Listing 2 Co-evolve timetables and add-delete lists

deleting and rescheduling an event, the unscheduled event list becomes empty
and the add operation at the third location is not possible. Listing ?? shows
a divide-and-conquer approach that generates such strings for a given n. For
n = 1, the only such string is “01′′, for n = 2, we have “0101′′, “0011′′ and for
n = 3, “010101′′, “001011′′, “001101′′, “000111”, “010011”. The running time
of the algorithm is O(3n). Hence, we will use practical values for n and after
generating the feasible strings, they compete for survival while constructing
timetables within an evolutionary framework, as described in listings ?? and
??.

2 Results

The results presented here are for the 8 publicly-available datasets of the exam-
timetabling track from the ITC2007 competition [?], with Müller’s celebrated
hybrid solver [?] ranking first on each dataset1. Gogos et al. [?] are second and

1 http://www.cs.qub.ac.uk/itc2007/winner/tomasmuller.htm

4 Jerry Swan et al.

procedure framework (var popSize : Int)
begin

{Generate f e a s i b l e Add−Dele te L i s t s }
var allADLs := g e n e r a t e L i s t s (n , “01”) ;

var populat ion := generateRandomPopulation (popSize , allADLs)
;

{Co−evo l v e popu la t ion o f (t ime tab l e ,ADL)}
while (termination condition not met)
begin

coevo lve (pop) ;
end

end .

Listing 3 Top-level co-evolutionary framework

dataset 1 dataset2 dataset3 dataset4 dataset5 dataset6 dataset7 dataset8

0,6133 0,942 0,13383 0,27333 0,5922 0,28800 0,5960 0,9590
0,6094 0,893 0,13364 0,30322 0,5333 0,30590 0,6179 0,9825
0,6027 0,933 0,13352 0,38651 0,5407 0,27830 0,6988 0,9738
0,6133 0,935 0,13367 0,29030 0,4734 0,31410 0,6914 0,9709
0,6487 0,927 0,14001 0,37850 0,5205 0,28055 0,6872 0,9772
0,6206 0,913 0,14298 0,29449 0,5831 0,27510 0,5950 0,9507
0,6131 0,972 0,13738 0,33802 0,4877 0,27890 0,5891 0,9814
0,5875 0,1009 0,14163 0,24174 0,5847 0,30560 0,5731 0,9587
0,6336 0,929 0,14334 0,27654 0,5023 0,29250 0,6842 0,9802
0,5992 0,948 0,14348 0,28195 0,5106 0,31600 0,7032 0,10164

Table 1 Results of co-evolutionary framework for public datasets of ITC2007 exam-
timetabling track

have rankings [3, 4, 3, 2, 3, 3, 2, 3] over these 8 datasets2 with average rank of
2.85. Table ?? gives the scores obtained by our program on a Pentium 4 dual-
core 3GHz PC with 2GB of RAM. The maximum runtime of our program was
set to 377 seconds (as determined by the competition benchmark program3.
The respective rankings for our program were [2, 3, 2, 4, 5, 2, 3, 2], yielding
an average rank of 2.875, which would place us in joint second with Gogos over
these 8 datasets. Table ?? shows (x̄, σ) of the results of each dataset for Ml̈ler,
Gogos and our program for the cases where all 10 sample runs are feasible (i.e.
are of the form 0, x for some x).

3 Conclusion

We have presented a co-evolutionary variant on the ‘ruin-and-repair’ strategy
that ranks joint second with the pre-existing finalists on the publicly-available
datasets of the ITC2007 competition exam-timetabling track.

2 http://www.cs.qub.ac.uk/itc2007/winner/christosgogos.htm
3 Available at http://www.cs.qub.ac.uk/itc2007/index_files/benchmarking.htm

Co-evolving add and delete heuristics 5

Name dataset 1 dataset2 dataset3 dataset4

Müller (4574.9, 159.7731) (414,11.49879) - -
Gogos (6064,108.8087) (1048.6,32.57879) (14133.5,227.9553) -
Swan (6141.4, 173.3187) (940.1,31.89375) (13834.8,440.9013) -

Name dataset5 dataset6 dataset7 dataset8

Müller (3320.7,209.9524) (27808.5,1115.487) (4399.143,123.4942) (7922.429,126.9696)
Gogos (4229.1,75.01178) - (6759.5,100.5134) (10809,180.8265)
Swan (5328.5,420.9968) (29349.5,1567.905) (6435.9,533.9795) (9750.8,181.7635)

Table 2 (x̄, σ) of feasible solutions for public ITC2007 datasets

Future work involves investigating alternative entity relationships between
solution and add-delete string (e.g. N:1 and 1:N as opposed to the 1:1 ap-
proach adopted here) and associating some probability (possibly adaptively
determined) with this relationship.

In addition, it is interesting to note from Table that while our approach
generally exhibits a higher standard deviation, it also yields a greater number
of feasible solutions, failing only on dataset 4 in this respect. This is perhaps a
counter-intuitive result, since one might expect the ‘repair’ aspect of our ‘ruin-
and-repair’ strategy to encounter many infeasible solutions. Hence, there is
further work to be done in explaining the underlying reasons for this behaviour.

References

1. Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Handbook
of Meta-Heuristics, chap. Hyper-Heuristics: An Emerging Direction in Modern Search
Technology, pp. 457–474. Kluwer (2003). URL http://www.asap.cs.nott.ac.uk/

publications/pdf/hhchapv002.pdf

2. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow
problems. SIAM J. Comput. 5(4), 691–703 (1976)

3. Gogos, C., Alefragis, P., Housos, E.: A multi-staged algorithmic process for the solution
of the examination timetabling problem. In: The 7th International Conference on the
Practice and Theory of Automated Timetabling (2008)

4. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Gaspero,
L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The
second international timetabling competition. INFORMS JOURNAL ON COMPUTING
22(1), 120–130 (2010). DOI 10.1287/ijoc.1090.0320

5. Müller, T.: Itc2007 solver description: a hybrid approach. Annals OR 172(1), 429–446
(2009)

6. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics. Intell.
Data Anal. 12(1), 3–23 (2008)

