
Iterated Local Search Using an Add and Delete

Hyper-heuristic for University Course Timetabling

Jorge A. Soria-Alcaraza,∗, Ender Özcanb, Jerry Swanc, Graham Kendallb,d,
Martin Carpioe

aDepartamento de Estudios Organizacionales, División de Ciencias Economico
Administrativas, Universidad de Guanajuato, México.

bUniversity of Nottingham, School of Computer Science Jubilee Campus, Wollaton Road,
Nottingham, NG8 1BB, UK

cYork Centre for Complex Systems Analysis, University of York, UK
dUniversity of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor

Darul Ehsan, Malaysia
eTecnológico Nacional de México, Instituto Tecnológico de León. México

Abstract

Hyper-heuristics are (meta-)heuristics that operate at a higher level to choose
or generate a set of low-level (meta-)heuristics in an attempt of solve difficult
optimization problems. Iterated Local Search (ILS) is a well-known approach
for discrete optimization, combining perturbation and hill-climbing within an
iterative framework. In this study, we introduce an ILS approach, strength-
ened by a hyper-heuristic which generates heuristics based on a fixed num-
ber of add and delete operations. The performance of the proposed hyper-
heuristic is tested across two different problem domains using real world
benchmark of course timetabling instances from the second International
Timetabling Competition Tracks 2 and 3. The results show that mixing add
and delete operations within an ILS framework yields an effective hyper-
heuristic approach.

Keywords: Hyper-heuristic, Iterated local search, Add-Delete List,
Methodology of design, Educational timetabling

∗corresponding author
Email addresses: jorge.soria@ugto.mx (Jorge A. Soria-Alcaraz),

ender.ozcan@nottingham.ac.uk (Ender Özcan), jerry.swan@york.ac.uk (Jerry
Swan), graham.kendall@nottingham.edu.my (Graham Kendall),
jmcarpio61@hotmail.com (Martin Carpio)

1. Introduction

Hyper-heuristics are (meta-)heuristics that choose or generate a set of low
level (meta-)heuristics in an attempt to solve difficult search and optimization
problems [1, 2]. Heuristics can be used to search the solution space directly or
construct a solution based on a sequence of moves. Hyper-heuristics aim to
replace bespoke approaches by more general methodologies with the goal of
reducing the expertise required to construct individual heuristics [3]. In most
of the previous studies on hyper-heuristics, low-level heuristics are uniform,
i.e. they are either constructive or perturbative (improvement) heuristics [4].

Educational timetabling problems are common and recurring real-world
constraint optimization problems which are known to be NP-hard [5, 6, 7].
An educational timetabling problem requires scheduling of a set of events
using limited resources subject to a set of constraints. There are a range
of educational timetabling problems, such as examination timetabling and
high school timetabling. This study focusses on the university course time-
tabling problem, which can be further categorized as either post-enrollment
problems, in which the student enrollment is available before the timetabling
process, and curriculum-based problems in which the curricula of the students
are known, but not the student enrollment [8]. There are two main types of
constraints in a timetabling problem: hard and soft constraints. The hard
constraints have to be satisfied in order to obtain a feasible solution, while
violations of soft constraints are allowed, since they represent preferences.
It is still the case at some universities that timetables are constructed by
hand. Considering the inherent difficulty of generating high-quality feasible
timetables which violate few soft constraints, it is usually desirable to auto-
mate timetable construction to improve upon solutions obtained by human
experts [9]. However, automation of timetabling is not an easy task, since
designing an automated method frequently requires a deep knowledge of the
problem itself as well as the particular characteristics of the instance to be
solved. This knowledge, in most cases, is not readily available to the typical
researcher/end-user.

In this study, we describe an iterated local search (ILS) algorithm hy-
bridized with a hyper-heuristic that generates heuristics based on add-delete
operations to solve examination and university course timetabling problems.
Re-usability, modularity and flexibility are some of the key features of the pro-

2

posed approach. To evaluate the generality of the generation hyper-heuristic,
it is tested on a range of problem instances across two different domains;
namely, post-enrollment university course timetabling and curriculum-based
university course timetabling, without modification of the underlying solu-
tion framework.

Although the problem domains we investigate are timetabling problems,
each domain exhibits differing characteristics, particularly with respect to the
complexity of the real-world constraints. This is the main reason why a recent
competition has used two tracks. The International Timetabling Competi-
tion series was organized to create a common ground for the cross-fertilization
of ideas, bridging the gap between theory and practice and creating a better
understanding between researchers and practitioners in this field [8]. The
second competition in the series (ITC2007) was on educational timetabling,
containing an examination timetabling track and two separate tracks for post-
enrollment and curriculum-based university course timetabling [8]. We have
investigated the performance of the proposed approach on the last instances.
The results show that our approach is promising.

This paper is organized as follows. Section 2 provides an overview of
educational timetabling problems, particularly university course timetabling.
This section also discusses solution methodologies. Section 3 discusses the
specifics of the solution methodology including the relevant data structures
and the add-delete representation. Section 4 summarizes the experimental
results. Finally, Section 5 presents the conclusions and future work.

2. Background

2.1. Hyper-heuristics

The term “hyper-heuristic” is relatively new, having first appeared in a
technical report by Denzinger et al. [62] as a strategy to combine artifi-
cial intelligence methods. The un-hyphenated version of the term initially
appeared in Cowling et al. [3] describing hyper-heuristics as heuristics to
choose heuristics in the context of combinatorial optimization. However, the
idea of automating the design of heuristic methods is not new and can be
traced back to the 1960’s in works such as Fisher et al. [11] and Crowston
et al. [12].

The main motivation behind hyper-heuristic research is to reduce the need
for a human experts in designing effective algorithms, and consequently to
raise the level of generality at which search methodologies are able to operate.

3

Hyper-heuristics share the quest for greater autonomy and generality with
appraoches such as autonomous search by Hamadi et al. [13], reactive search
by Battiti [14], adaptive operator selection by Maturana et al. [15], adaptive
memetic algorithms [16], automated tuning [17] and parameter control by
Lobo et al. [18]. In a recent book chapter by Burke et al. [4], the authors ex-
tended the definition of hyper-heuristics and provided a unified classification
which captures more recent work that is being undertaken in this field. A
hyper-heuristic is defined as a “search method or learning mechanism for se-
lecting or generating heuristics to solve computational search problems”. The
classification of approaches considers two dimensions: (i) the nature of the
heuristics’ search space, and (ii) the different sources of feedback information
from the search space. According to the nature of search space, we have;

• Heuristic selection: methodologies for choosing or selecting existing
heuristics.

• Heuristic generation: methodologies for generating new heuristics from
given components.

Orthogonal to the notion of selective versus generative is the distinction
between constructive and perturbative mechanisms for searching the solution
space, i.e. whether it operates via partial or complete solutions respectively.

This study describes an ILS which uses a generative hyper-heuristic for
creating perturbation heuristics (move operators). The important feature
of the proposed approach is the use of an add-delete list (i.e. a sequence
of insertions or deletions of partial solution states) which acts like a ruin-
recreate operator as proposed by Swan et al. [19]. This idea of removing and
reinserting parts of the solution has produced encouraging results in previous
work, for example: Schrimpf et al. for Vehicle Routing [20] and Misevicius
et al. [21] [22] for Quadratic Assignment. It is important to note that not
all add-delete lists are feasible. In Section 3.2.1, we describe a divide-and-
conquer algorithm for building a feasible add-delete list.

Figure 1 illustrates the traditional framework for selective hyper-heuristics,
with the domain barrier insulating the high-level search strategy from the
underlying problem domain. The high-level strategy selects and applies a
low-level heuristic (move operator) from the available set considering only
(the history of) domain-independent information from the search process.
It is worth mentioning, however, that low-level heuristics which encapsulate

4

Figure 1: General framework of a selection hyper-heuristic based on Cowling et al. [3].

domain-specific information can be (and usually are) incorporated in the pool
of available heuristics.

When a hyper-heuristic uses some feedback from the search process, it
can be considered as a learning algorithm (Figure 1). According to the source
of the feedback during learning, Burke et al. [4] distinguishes between online
and offline learning hyper-heuristics, i.e. online learning takes place whilst a
given algorithm is solving a problem instance.

In offline learning, the idea is to gather knowledge (e.g. in the form of rules
or programs), from a set of training instances, in expectation of generalizing
to unseen instances. Genetic Programming is one of the most commonly
used methods for heuristic generation. Examples of off-line heuristic genera-
tion include [23], [24] with [25] introducing a policy-matrix representation to
inform the generation of heuristics. The add-delete hyper-heuristic proposed
in this study is a novel online heuristic-generation method.

2.2. Educational Timetabling

Although it has been extensively studied, educational timetabling prob-
lems are still of interest to many researchers and practitioners. There are
many types of educational timetabling problems and this section focuses on
a specific type of educational timetabling problem, that is, university course
timetabling, in which the main objective is to assign each subject a timeslot
such that that they attend all lectures to which they are enrolled. Formally,

5

Table 1: A summary of previous studies on education timetabling problems are provided
in chronological order (Exam: examination timetabling, Post: post-enrollment course
timetabling, Curr: curricula-based course timetabling, Univ: university timetabling,
HSchool: high school timetabling .

Year Problem Approach Source
1985 Exam and Curr Graph heuristics Werra [26]
1986 Exam Linear programing Carter [27]
1995 Curr Complexity analysis Cooper et al. [6]
1996 Univ Logic programing Lajos [28]
1996 Exam Logic programing Boizumault et al. [29]
1997 HSchool Genetic algorithms Colorni et al. [31]
1998 Exam Simulated annealing Thompson et al. [36]
2002 HSchool Complexity analysis Willemen [7]
2002 Univ Genetic algorithms Yu et al. [32]
2002 Curr Ant Colony System Socha et al. [34]
2007 Exam and Post Hyper-heuristics Burke et al. [39]
2007 Post Ant Colony System Mayer et al. [33]
2009 Exam Hyper-heuristics Qu et al. [41]
2010 Post Hyper-heuristics Soria-Alcaraz et al. [40]
2010 Post Adaptive Tabu Search Z. Lü et al. [30]
2010 Exam Variable Neighborhood Search E.K. Burke et al. [35]
2011 Curr and Post Constraint Programing H. Rudová et al. [37]
2012 Post Consraint Programing H. Cambazard et al. [38]

the university course timetabling problem can be considered as a Constraint
Satisfaction Problem (CSP) where the variables are events and the most
common constraints are time-related. A more detailed explanation of each
timetabling variant used in this paper can be found in Section 2.2.1. This
problem is reported as extremely challenging by Cooper et al. [6] and Will-
men et al. [7].

Many approaches have been proposed for solving variants of educational
timetabling problems, ranging from early approaches based on graph heuris-
tics [26], linear programming [27] and logic programming [28, 29] to meta-
heuristics including tabu search [30], genetic algorithms [31, 32], ant colony
optimization [33, 34], variable neighborhood search [35], simulated annealing
[36], among others. Various CSP solvers have also been proposed to solve
timetabling problems [37, 38]. In recent years, hyper-heuristics have been
applied to timetabling with encouraging results [39, 40, 41]. A chronological
order of the state of the art in Educational Timetabling can be seen in Table
1

6

Most of the studies in the last decade use benchmarks created for the In-
ternational Timetabling Competition ITC2007 (University Course timetabling
appearing in Tracks 2 and 3). The competition entries and datasets serve
as a benchmark for performance comparison for any newly-proposed solution
methodologies. We have therefore tested the performance of our approach on
the real-world instances from this competition, as described in the following
Section.

2.2.1. The Second International Timetabling Competition (ITC2007)

Three international timetabling competitions have been organized to date.
The most recent competition (ITC2011) was on high school timetabling, but
the first (ITC2002) and second (ITC2007) competitions were concerned with
university timetabling. In this study, we apply our approach to the post-
enrolment and curriculum-based course timetabling problem instances pro-
vided in the ITC2007 competition (Tracks 2 and 3, respectively). A solution
to an ITC2007 instance is evaluated as the sum of hard and soft constraint
violations. For the post enrollment track, there are no hard constraints.
Consequently, in this particular case the number of hard constraints viola-
tions is termed the Distance to feasibility metric, and it is defined as the
number of students that are affected by unplaced events. In general the cost
of a solution for each timetabling problem is denoted using a pair of values,
(hv, sv), where hv and sv are the sum of hard and soft constraint violations,
respectively. In order to compare two or more solutions, the pairs (hv, sv)
are ranked in a lexicographically ascending order. More details on ITC2007
can be found in [8].

The main characteristics of the post-enrollment course timetabling prob-
lem instances (Track 2) are as follows:

• A set of n events that are scheduled into 45 timeslots.

• A set of r rooms, each which has a specific seating capacity.

• A set of room-features that are satisfied by rooms and required by events.

• A set of s students who attend various different combinations of events.

The hard constraints are:

• No student should be required to attend more that one event at the same
time.

• In each case the room should satisfy the class requirements (be big enough
for all the attending students and/or required class features).

7

• Only one event is put into each room in any timeslot.

• Events should only be assigned to timeslots that are pre-defined as available.

• Where specified, events should be scheduled to occur in the correct order.

The soft constraints are:

• Students should not be scheduled to attend an event in the last timeslot of
a day.

• Students should not have to attend three or more events in successive times-
lots.

• Student should not be required to attend only one event in a particular day.

The main characteristics of the curriculum-based course timetabling prob-
lem (Track 3) instances are as follows:

• A set of n teaching days (typically 5 or 6). Each day is split into a fixed
number of t timeslots which are the same for all days. A period p is a pair
(ni, tj) composed by a day and a timeslot.

• A set of l lectures to be scheduled in distinct periods, a lecture is attended
by a given number of students.

• A set of r rooms with fixed capacity.

• A curriculum, i.e. a group of courses such that any pair of courses in the
group have students in common.

The hard constraints are:

• All lectures must be scheduled, and they must be assigned to distinct periods.

• Two lectures cannot take place in the same room in the same period.

• Lectures of courses from the same curriculum must be all scheduled in dif-
ferent periods.

• Lectures must meet the requirements and availability of teachers.

The soft constraints are:

• For each lecture, the number of students that attend the course must not
exceed the room’s capacity.

• Lectures of each course must be spread into the given minimum number of
days.

• Lectures in a curriculum should be adjacent to each other (consecutive pe-
riods).

8

• All lectures of a course should be given in the same room.

Some important studies in the scientific literature on solving ITC2007
Track 2 and 3 instances are as follows.
Track 2 - Post-Enrollment Course Timetabling
The winning algorithm of the 2007 competition Track 2 was presented in
[38]. This approach is a multi-stage local search algorithm considering several
neighborhoods, and involving aspects of tabu search and simulated annealing
at different stages.

The second ranking algorithm in ITC2007 Track 2 was [42], which for-
mulates the timetabling instances as constraint satisfaction problems, and
then uses a general purpose CSP solver to find solutions. In particular, they
used the solver proposed in [43], which uses a hybrid metaheuristic combin-
ing tabu search and iterated local search, and handles weighted constraints.
This algorithm was designed specifically for the competition.

In the later work of Cheschia et al. [44] a single-step metaheuristic ap-
proach based on simulated annealing is proposed, with a neighborhood com-
posed of moves that reschedule one event or swap two events. The solver is
able to deal with all the variants of the course timetabling problem (CTTP)
proposed in the literature, and provides new best-known solutions for many
instances.

In the work of Lewis et al. [45] a 3-stage local search algorithm is pre-
sented, in which a constructive phase is followed by two separate simulated
annealing phases. The algorithm’s behavior depends on the allotted running
time, as several parameters controlling the intensity of search are derived
from this. The algorithm provides good results on ITC2007 Track 1 in-
stances, but it is not superior to the top entries and fails to produce new
best-known solutions. The algorithm is also competition-specific.

In Jat et al. [46] a two phase approach is used. In the first phase, a guided
genetic algorithm is applied which integrates local search. The guided search
strategy uses a data structure that stores features of previous good indi-
viduals to guide the generation of offspring. A local search is then used to
improve the quality of the individuals. In the second phase, a tabu search
heuristic is used to further improve the solution, if possible. This approach
presents encouraging results and improves upon the best-known solutions for
ITC track 2 benchmark.
Track 3 - Curricula-Based Course Timetabling
The winning algorithm of this track was presented in Müller et al. [47]. Their

9

approach is a two-stage generic algorithm that uses a third party constraint
solver to create a good initial solution and improve it with an iterative for-
ward search process. In Lu et al. [48] a three-stage Adaptive Tabu Search
is presented. The first stage builds an initial feasible timetable through a
fast heuristic, then intensification and diversification phases are alternatively
applied using tabu search to reduce soft constraints violations. In Hao et
al. [49] a partition-based approach is used to compute new lower bounds
for theses instances. This divide and conquer approach uses iterative tabu
search to partition the initial problem into sub-problems which are solved
with an ILP solver. Computational results show that this approach is able
to improve on the current best lower bounds for 12 out of the 21 benchmark
instances, and to prove optimality for six of them. These new lower bounds
are useful to estimate the quality of the upper bounds obtained with various
heuristic approaches. Aśın Achá et al. [50] give an application of several
satisfiability solvers, where (by using different encodings) they were able to
compute and obtain new best solutions. Recently, Cacchiani [51] computed
new best solutions using an approach similar to [49]. However in this case
the partition is based on soft constraints instead of hard constraints.

3. Solution Approach

Iterated local search (ILS) is a relatively simple methodology that has
been successful in a variety of domains. It operates by iteratively alternating
between applying a move operator to an incumbent solution and performing
local search on the perturbed solution. This search principle has been redis-
covered multiple times within different research communities and given differ-
ent names [14]. The term iterated local search was proposed in Lourenço et al.
[52]. In this study, we describe an ILS approach strengthened by a novel add-
delete hyper-heuristic and investigate the performance of our approach across
a variety of university course timetabling problem instances from ITC2007.
The proposed approach is outlined in Algorithm 1, in which f is the fitness
function measuring the cost for a given solution. An initially-constructed
solution (s0) goes through perturbation (SimpleRandomPerturbation) and
local search (ImprovementStage) stages sequentially until the termination
criteria are satisfied. Whenever a new solution is produced, we ensure that
time and room capacity constraints are still respected using the data struc-
tures described in section 3.1. As required by the ITC2007 rules, execution
terminates as soon as a given time limit is reached. At each step, only

10

non-worsening solutions (timetables) are accepted. The cost function for
evaluating a given solution returns a pair of values as (hv, sv) as described in
Section 2.2.1. The value of hv has priority over sv, hence a solution with a
lower value of hv is always considered to be an improving solution regardless
of the sv value, while a solution with a lower value of sv and higher value of
hv is considered to be a worsening solution.

Algorithm 1 Iterated Local Search
1: s0 = GenerateInitialSolution
2: s∗ = ImprovementStage(s0) {Add-delete hyper-heuristic}
3: while !TerminationCriteria() do
4: s∗ = SimpleRandomPerturbation(s∗)
5: s′ = HillClimbing(s∗)
6: s∗

′
= ImprovementStage(s′) {Add-delete hyper-heuristic}

7: if f(s∗
′
) ≤ f(s∗) then

8: s∗ = s∗
′

9: end if
10: end while
11: return s∗

Algorithm 1 presents the High-level ILS algorithm which incorporates an
Add-Delete representation. Essentially this algorithm moves in the space of
partial solutions via a “ruin and recreate” strategy that deletes and subse-
quently reschedules events. In line 5 hill climbing is used to improve the
current solution. In this phase the algorithm searches for the variable/event
with the highest number of conflicts and then iteratively applies a single
heuristic until no improvement is possible. The heuristic is chosen uniformly
at random. This procedure is applied sequentially for 2% of the variables
having the highest number of conflicts. Preliminary experiments showed
that this is a practical and fast way to reach local optima. The search phase
in our ILS is performed by a novel hyper-heuristic as indicated by lines 2
and 6 of Algorithm 1. The hyper-heuristic is used to generate a sequence of
add-delete operations. The delete operation removes (un-assigns) a variable
(event) from the schedule, while the add operation reassigns an unscheduled
event to a time-slot based on a set of constraint satisfaction low level heuris-
tics. The add-delete list (ADL) is then used to modify a given solution. The
same ADL could result in a different new solution given a different input.
A complete timetable is processed based on this list and a new timetable is
built. The details of the local search algorithm is described in Section 3.2.

11

3.1. Methodology of Design for University Course Timetabling

In order to deal with a given university course timetabling problem in a
generic fashion (including instance-specific constraints) as provided in Section
2.2, the methodology of design developed by Soria-Alcaraz et al. [53, 54] is
utilised. The main idea of this methodology is to add an extra layer of
generality, the principal objective of which is to discard by design the largest
number of instance-specific constraints, in order to build a search space where
the heuristic strategy deals with a minimum number of constraints. Figure 2
shows graphically the main idea behind the Methodology of Design concept.
The main effort of any heuristic after the application of this layer of generality
is to search inside this feasible space in order to find an optimal solution,
where both hard and soft constraints are satisfied.

(a)Original Space (b) Proposed Space

Figure 2: (a)In the original context-dependent space feasible regions are spread over the
search space, a solver needs to manage infeasible solutions in order to travel between
feasible regions.(b) In the Methodology of Design search space, there is only a single feasible
region, at any given step a search algorithm can at least reach a real-world solution.

In order to work over a feasible space such as the one shown in Figure 2
(b) Soria et al. [54] proposes several generic structures, namely MMA matrix,
LPH list and LPA list to resolve by design the following hard constraints:

• When one or more events are not assigned into the timetable.

• When one or more events do not have a room/laboratory assigned to
them.

The satisfaction of these hard constraints are guaranteed by the selection of
values from two main generic structures LPH and LPA defined as follows:

12

Figure 3: Example of offered timeslots
Time Monday and Wednesday Tuesday and Thursday Friday

7 : 00 am to 8 : 50 t1 t2 t9
8 : 50 am to 10 : 30 t3 t4 t10
10 : 30 am to 12 : 15 t5 t6 t11
12 : 15 pm to 2 : 00 t7 t8 t12

Figure 4: LPH list
Events T imeslots

e0 = Chemistry (t1) or (t3) or (t5)
...

...
en (t7) or (t9)

LPH list: This structure contains the timeslots for each event to be timeta-
bled.

LPA list: This structure contains the list of classrooms with suitable capac-
ities allowed for each event.

A simple example showing why these lists satisfy the previous require-
ments follows. Consider an actual instance-based situation where an event
named Q1 needs to be scheduled two days per week. The timeslots offered by
the institution are shown in Figure 3 and the LPH and LPA lists for this toy
example can be seen in Figures 4 and 5. The teacher for this subject works
at school only Monday and Wednesday from 7 am to 12:15pm. This Event
also needs to be assigned into a laboratory with some specific equipment.
The only rooms capable of satisfying demands for this event are: {L1, L2}.

With this information, a Cartesian product LPH × LPA with feasible
time-space values for event Q1 can be easily constructed, this product is:
{(t1, L1), (t1, L2), (t3, L1), (t3, L2), (t5, L1), (t5, L2)}, and no matter which

Figure 5: LPA list
event Classrooms
e0 = Chemistry (L1)or (L2)
...

...
en (A)

13

pair ((timeslot, room)) we select from this list, this selection ensures (by
design) the feasibility for event Q1. The idea is to construct similar struc-
tures for each event in order to have a feasibility region for each possible
subject-timeslot assignment. A detailed analysis of the construction of these
structures in more complex scenarios can be found in Soria-Alcaraz et al.
[53, 54].

For the soft constraints, our ADL hyper-heuristic searches in the feasible
space (by means of the LPH × LPA list) for the elements that satisfy the
largest number of time-related criteria. One specific type of common soft
constraint is represented by the third generic structure: the MMA matrix.
This matrix is used to calculate how many students are enrolled in two sub-
jects/events and therefore these lectures must not be assigned to the same
timeslot.

MMA matrix: This symmetric matrix contains the number of students in
conflict for a given pair of events, i.e. the number of students who are
enrolled in a given pair of courses (these courses should not be assigned
in the same timeslot for any student). For example, the MMA matrix
shown in Figure 6 indicates that there exists three students who should
not be taking e2 and e3 at the same time. The MMA matrix is the
principal structure required for the computation of equation (2).

All such soft constraint violations represented in terms of the basic struc-
tures discussed below can be then minimized using the following equations:

minimize(
∑
∀i

FAVi
) (1)

FAVi
=
|Vi|∑
s=1

|Vi|∑
l=s+1

|Si(s) ∩ Si(l)| (2)

where FAVi
is the overall number of pairwise conflicts in a given timetable

(solution) at the the ith timeslot, Vi is the vector of events scheduled for
the ith timeslot which should not have been scheduled in the same timeslot,
Si(s) ∩ Si(l) is the joint set of students that simultaneously attend the sth

and lth events in the vector Vi.
By equation (2) a sum of student conflicts per timeslot is calculated

and the total conflict is obtained by summation of all student conflicts in
the timeslots. This is the main fitness function of the Methodology of De-
sign. However, in real-world problems it is usual for further constraints to

14

be present in the fitness function, as is the case with ITC 2007 Tracks 2
and 3. In such cases, it is easy to add the new constraints into Equation
(2) (where conflicts per timeslot are calculated) or Equation (1) (where total
conflicts per timetabling are obtained). For example, global constraints such
as Timeslots used can be added into Equation (1) simply by counting how
many timeslots are evaluated and adding a penalization if the sum of times-
lots used exceeds a certain rule. In this paper some additions are integrated
into the fitness function in order to have an adequate metric for timetabling
evaluation according to the rules of ITC 2007 Tracks 2 and 3 instances. These
adaptations are discussed in section 3.1.1.

Finally, it is important to say that with this kind of generic representation
the cost of maintaining a feasible solution across the search process is prac-
tically zero as long as the current solution meets the following requirements:

• Every event/subject is assigned into a pairwise timeslot-room.

• This Timeslot-Room pair is taken from the LPH × LPA list for each
event.

The main effort is then to search for the best combination of these feasible
values in order to reach a timetable with minimum conflicts.

3.1.1. Measuring Solution Quality Under Methodology of Design

Once we have our representation (based on LPA × LPH list), we can
easily measure the number of conflicts that a specific solution has. As a toy
example, consider a school that offers 5 subjects e1, . . . , e5, with only two
timeslots available t1, t2 and three classrooms l1, l2, l3. Figure 6 shows the
MMA matrix used in this example. The LPA × LPH list constructed for
this example can be seen on Figure 7. This shows several columns, the first
one contains the set of events/variables to be assigned and the second column
contains the current solution generated by our approach. This solution is
an integer array that represents a specific pair (classroom,timeslot) for each
variable. This pair is taken from the Cartesian product LPA×LPH shown
in bold font in the third column.

Suppose that a heuristic chooses as the current solution the next assign-
ment: e1 in (t2, l2), e2 in (t1, l3), e3 in (t2, l1), e4 in (t1, l1)and e5 in (t2, l3). This
solution represents a feasible timetable, but it is necessary to measure how
many conflicts it has. To do this we use Equations: (1) and (2) as follows:

15

Figure 6: MMA matrix example

e1 e2 e3 e4 e5
e1 − 2 4 0 1
e2 2 − 3 0 2
e3 4 3 − 1 2
e4 0 0 1 − 5
e5 1 2 2 5 −

Figure 7: LPA x LPH example

V ariable/event Selected value T imetabling (LPAxLPH)
e1 2 (t1, l1), (t1, l3), (t2, l2)
e2 1 (t1, l2), (t1, l3), (t2, l1)
e3 0 (t2, l1)
e4 0 (t1, l1)
e5 1 (t1, l1), (t2, l3)

• We group each event by its current timeslot. In this toy example we
have two timeslots: t1 which is associated with e2, e4, and t2 which is
associate with (e1, e3, e5)

• We calculate the conflict held by each vector/timeslot using the MMA
matrix: In the case of t1 we simply obtain the value MMAe2,e4 = 0.
In the case of t2 we get the conflict with Equation (2), The conflict in
t2 = MMAe1,e3 + MMAe1,e5 + MMAe3,e5 = 4 + 1 + 2 = 7

• We calculate the general conflict using Equation (1). In our case this
is 7 + 0 = 7.

The objective of any heuristic is to minimize the general conflict. This is
the basic way to calculate conflicts under the methodology of design. Other
characteristics desired by each institution can also be measured as well, for
example: conflicts in rooms/laboratories, specific events that must span a
minimum number of days or curriculum events that should be adjacent.

16

3.2. Improvement Using Add-Delete Lists

3.2.1. Forming a Feasible List of Add-Delete Operations
A solution to a timetabling problem can be reconstructed from a previous

solution by successively deleting and adding (re-scheduling) events. In our
hyper-heuristic framework, we employ a sequence of add-delete operations
with a fixed length. This representation will be referred to as ADL from
this point onward. A signed integer representation is used, allowing us to
differentiate between the events that need to be temporarily unscheduled and
the others to be reinserted into the timetable. A feasible ADL must adhere
to certain conditions:

• The length of an ADL is always even. An ADL always contains two opera-
tions, namely add (+ value) and delete (- value) for each distinct event, ei
in the list.

• The first appearance of an event must be a temporary delete operation (-).

• Performing an add operation on an event indicates the assignment of an
event ei and can appear at any time after its deletion.

• Before and after the application of ADL the current solution must represent
a complete and feasible timetable (each event is assigned a timeslot).

A simpler implementation of the ADL approach is given in Swan et al.
[19] where a binary-based ADL is proposed for the examination timetabling
problem. In this approach add-delete operations can be represented by a
fixed-length binary string. In this binary context a 0 value represents the
deletion of an event and a 1 value represents the re-scheduling of the pre-
viously deleted event to the partially constructed timetable. This binary
string is used to identify in which order a event/variable will be deleted and
reinserted into the timetable. Add and delete operations can be handled in
many ways. The simplest approach for a delete operation is to choose an
event randomly and put it into an ‘unscheduled events’ list. In contrast, an
add operation requires two consecutive actions to be taken: firstly, an event
should be selected from the list of unscheduled events and then a suitable
period should be selected for scheduling. The ADL is used by our hyper-
heuristic to construct a feasible timetable from a previous valid solution. This
is achieved by the successive application of the operations (delete and add)
coded in a given ADL. A feasible binary string of length 2n can be formed
using Algorithm 2. For simplicity of explanation, let’s assume we have global
variables String addDeleteList[MAX-SIZE] and int list length = 0:

17

Algorithm 2 int GenerateAddDeleteList(int n, String bitString)
1: if n = 1 then
2: addDeleteList[list length + +] = bitString;
3: return list length;
4: else
5: GenerateAddDeleteList(n− 1, bitString+‘01’);
6: GenerateAddDeleteList(n− 1,‘0’+bitString+‘1’);
7: if bits doesn’t have prefix ‘01’ then
8: GenerateAddDeleteList(n− 1,‘01’+bitString);
9: end if

10: end if
11: return list length

‘+’ denotes concatenation. Initialize with: GenerateAddDeleteList(n, ”01”)

Algorithm 2 outputs the list of all unique binary/add-delete strings con-
taining n add and delete operations in the addDeleteList array and returns
the size of the list in list length. This algorithm shows a divide-and-conquer
approach to generate add-delete strings for n events. For n = 1, the only
such string is “01”, for n = 2, we have {“0101”,“0011”} for n = 3, {“010101”,
“001011”, “001101”, “000111”,“010011”}. The parameter n is clearly impor-
tant, because it determines the degree of impact that an ADL can have on
the current solution. As might be expected, preliminary experiments suggest
that small values of n produce a small perturbation in the current solution,
i.e. a change to the time allocations of one or two events, while a larger
n means that more events are re-assigned into different timeslots. A more
detailed study of the impact of parameter n is given in Section 4. For a
binary ADL list with n = 2 (e.g. 0011), we consequently have two initial
delete operations (i.e. the elimination of two arbitrary events) followed by
two re-schedulings of the previously deleted events [19].

In this paper, we enrich this binary scheme by proposing an integer-based
ADL where, instead of only having values for deleting (0) and adding(1) we
have an id value for each specific event with two possible signs: (-) where
the specific event is chosen for temporary removal and (+) where the spe-
cific event is to be re-scheduled. So, given a solution S and n = 2, then
an ADL of “−4,−2, 2, 4” derived from “0011” indicates that the events e4
and e2 are temporarily deleted from S, and a new solution S ′ is formed
by rescheduling the events e2 and then e4. The actual length of the ADL
(n) is a parameter fixed by the user. This enriched representation can en-
code our original binary ADL (0011) into the following sequences of actions

18

(−4,−2, 2, 4),(−4,−2, 4, 2),(−2,−4, 2, 4) and (−2,−4, 4, 2). Each of these
integer-based ADLs describe two removal operations followed by two re-
scheduling operations. However, this representation now describes specific
order and events that we need to work with in the current perturbation.
With this new information, we could explore more sophisticated methods
for ruin-recreate heuristics. For example, we could keep a record of events
that usually appear in the ADL history, we can promote (or inhibit) specific
events to appear in future ADL’s.

3.2.2. Rescheduling Events based on Add-Delete Lists

The negative values (-) in an ADL represent events that are temporarily
removed from the current timetable. This causes a temporary relaxation in
the restrictions to other events. A positive value (+) represents the reassign-
ment of the selected event to a new timeslot. In our approach, an event is
chosen for rescheduling in the order in which appear in an add-delete list.
This rescheduling is performed by constraint satisfaction (CS) heuristics. The
heuristic is randomly-selected for each entry in the list and is taken from the
following set of low level heuristics:

• Min-Conflicts assigns an event to a valid timeslot generating the least
number of conflicts. Pseudo code of this heuristic can be seen in Algo-
rithm 3.

• First-fit assigns an event to a valid timeslot which contains the least
number of events attached to it.

• Worse-fit assigns an event to a valid timeslot which contains the largest
number of events attached to it.

• Modified Brelaz Heuristic was originally developed for graph colouring
[55]. This heuristic chooses the timeslot with the smallest saturation
degree (timeslot with the least number of events is selected), but in the
case of a tie, it chooses from those the timeslots with the largest future
degree. that is the one which has the largest number of unassigned
events. This heuristic assigns an event to this specific timeslot. Pseudo
code for this heuristic can be seen in Algorithm 4.

19

Algorithm 3 Min-Conflicts Heuristic for Timetabling
Require: var t: Timetable, var e: Event
1: Timeslots = t.getNumberOfT imeSlots()
2: var tList : List of Timetables
3: for i← 0 to Timeslots do
4: t′ = copy(t)
5: t′ = AssignEventInT imeslot(e, i, t′)
6: Evaluate(t′)
7: tList.add(t′)
8: end for
9: t∗ = tList.ReturnBestT imetable()

10: return t∗

Algorithm 4 Modified Brelaz Heuristic for Timetabling
Require: var t: Timetable, var e: Event
1: TimeslotCount = t.getNumberOfT imeSlots()
2: var tsList : List of Timeslots
3: for i← 0 to TimeslotCount do
4: timeslot = t.getT imeslot(i)
5: EvaluateAvialiableSpace(timeslot)
6: tsList.add(timeslot)
7: end for
8: tsList.OrderbyMaxSpace()
9: if ExistsT ie(tsList) then

10: var tset : List of Timeslots= tsList.getBestT ieSet()
11: tsList.InsertAtPosition(tset.getT imeslotwithMaxPossibleEvents(), 0)
12: end if
13: AssignEventInT imeslot(e, tsList.get(0), t)
14: return t

3.2.3. Add-Delete Hyper-heuristic

The add-delete hyper-heuristic, represented as a ImprovementStage (Al-
gorithm 5), attempts to iteratively improve a given solution by construct-
ing an effective ADL and applying it to the current solution. If the move
generates a non-worsening solution after the application of the ADL (this
means ∆ > 0) at time t, then this ADL influences the generation of a new
ADL in time t + 1 (line 3, Algorithm 5) so it is illustrated in Algorithm 6.
ImprovementStage maintains a history of recently used ADLs as a queue of
size w, denoted as q. This list is initially built randomly and is updated at
every step (line 9, Algorithm 5). An entry in q is a pair of values (ADLt,∆t)

20

indicating the ADL used at a given time t and the cost change after its ap-
plication. The update method described in line (9), Algorithm 5 is executed
by a simple process: a new pair (ADLt,∆t) is queued in q at a given step t
while the oldest entry in the |w + 1| position is de-queued (q is a FIFO list
of pairs(ADLt,∆t) with size w). This process ends whenever the termina-
tion criteria is satisfied. This was fixed as a maximum number of iterations
(1000), a value determined by preliminary experiments.

Algorithm 5 ImprovementStage
Require: ls← IncumbentSolution, Queue q ADLsize n
1: t = 0
2: while !LocalTerminationCriteria() do
3: ADLt = constructADL(q, n)
4: ls∗ = apply(ADLt, ls)
5: ∆t = f(ls)− f(ls∗)
6: if ∆t ≥ 0 then
7: ls = ls∗

8: end if
9: q ← update(q, ADLt,∆t)

10: t + +
11: end while
12: return ls

The proposed method for building an ADL in line 3, Algorithm 5 is an
online learning approach which keeps track of events associated with improv-
ing ADLs. This method utilizes all pairs for which ∆ > 0 in the current list
q (with non-zero ∆ indicating that the associated ADL generated an im-
provement) to construct a new ADL. If there is no ADL which generates an
improving move, then a random feasible string incorporating n add-delete
operations is built (line 3) as described in section 3.2.1. If there is a set of
ADLs which generate improving moves (latest and most successful add-delete
lists reported in q), then these ADLs are taken from this record to identify
which events will appear in the new ADL. Depending on the count of each
event in this set, a roulette wheel strategy is used to choose events for the
new ADL. The probability of each event ei being chosen (P (ei)) is computed
using Equation 3. This equation calculates the probability P (ei) of an event
ei at a given time to appear in an ADL. This expression counts the number
of appearances of a given event ei from q considering only improving ADLs
and divides this number between the total number of all events in it. For
example, given n = 2, and assuming that we have two ADLs generating an

21

improvement in q; “-2,-4,4,2” in which distinct events are 2 and 4, and “-
3,-4,4,3”, in which the distinct events are 3 and 4, counting the number of
each distinct event yields a singleton 2, singleton 3 and two 4s. Based on
these counts, the roulette wheel strategy chooses two events. Singletons 2
and 3 may be chosen with a probability of 1/4, while 4 may be chosen with a
probability of 1/2. Assuming that 4 and 3 are chosen, then a random feasible
string is constructed, which could be “-3,3,-4,4”.

P (ei) =
Number of appearances of ei in getImprovingADLs(q)

Total number of all events in getImprovingADLs(q)
(3)

Where getImprovingADLs() returns the ADLs from List q for which
(∆ > 0)

Algorithm 6 constructADL
Require: Queue q, ADLsize n
1: if NumberOfOnlyImprovingADLs(q) > 0 then
2: ADL← RouletteWheel(getImprovingADLs(q))
3: else
4: ADL← Conversion To Integer ADL(GenerateAddDeleteList(n, ”01”))
5: end if
6: return ADL

The process of constructing an ADL can be viewed as a generative process
for building perturbation operators. Once an ADL is built, it is used as
a perturbative heuristic which processes and returns a complete solution.
Hence, the proposed hyper-heuristic is a generative hyper-heuristic according
to the categorization provided in [4]. The ADL construction algorithm is
designed in such a way that the events that improves the overall cost of a
timetable is preferred in building a new ADL. Using the same events that
occur in the improving ADLs does not necessarily result in the same sequence
of those events. As long as a given add-delete sequence and events make an
improvement, they will be preferred during the search process. If the search
stagnates with these events and a sequence of add-delete operators, then a
diversification mechanism is applied to create a random feasible sequence
of add-delete operators using randomly-chosen events. This construction
approach takes a valid ADL binary string as a basis, an event ei and a
random pair (0,1) from the generated ADL to be converted into (−ei, ei).

22

4. Computational Results

In this section, we present the results of the application of our approach
to the ITC2007 benchmark.

4.1. Experimental Design and Performance Evaluation

Some initial experiments were executed to observe the influence of the
ADL length on the performance of our approach. Then two more sets of ex-
periments were performed for performance evaluation of our approach using
the public instances of ITC20071, Tracks 2 and 3. The post-enrollment-
based course timetabling and curriculum-based course timetabling competi-
tion tracks have 24 and 21 instances, respectively.

During the experiments, each trial uses the stopping criterion of ITC2007,
which is a time limit determined by a benchmark tool for each track. We
compare the performance of the proposed approach against top five algo-
rithms reported in the scientific literature as the state of art for each track.
The benchmarking tool, algorithms of the competitors, their performances
can be seen at the ITC2007 webpage1. In all tracks, results are taken from 10
independent trials/runs following the ITC 2007 rules. Intel core i7 machines
with 8 gigabytes of Ram and JavaTMJRE 18.4 on Linux Ubuntu 14.10 are
used during the experiments.

In order to compare the average performance of approaches, a non-parametric
statistical test is employed. In this study, we use CONTROLTEST, a tool
for non-parametric comparison between algorithms [56]2. Specifically, three
non-parametric tests were conducted: Friedman [57], Aligned Friedman [58],
and Quade [59] tests. All those tests give an average ranking to each algo-
rithm across a complete dataset, a lower rank signifier a better algorithm.
In our study, the null hypothesis H0 represents no significant differences be-
tween algorithms. The p-values also indicate how significant the results are:
the smaller the p-value the stronger the evidence against H0.

4.2. Tuning the ADL Length

The proposed approach has a crucial parameter, the length of the list.
This parameter can be seen as the memory size of our algorithm. A short
ADL length causes our hyper-heuristic with ADL (HHADL) approach to

1http://www.cs.qub.ac.uk/itc2007/
2http://sci2s.ugr.es/sicidm/

23

behave like a random selection strategy for the add-delete moves. On the
other hand, a long ADL length could misguide the HHADL approach due to
some degree of over-training, making it almost impossible to choose the next
best add-delete move.

We performed a set of initial experiments to tune the ADL length, denoted
as n with n=1, 4 and 10. We observed similar behaviors on all instances
from each track: during the early stages of the search process, a longer lists
(empirically determined to be n > 4) seem to be useful, while towards the
final phase of the search process, a list of length n = 4 performs better.
This phenomenon can be explained by the observation that n essentially
parameterizes the intensification-diversification trade-off for our approach.
Unfortunately, this simple approach is susceptible to being trapped in local
optima. A single increment in the ADL length value can nonetheless guide
the search to another point in the fitness landscape.

As a representative example, Figures 8(a) and 8(b) illustrate how the
proposed approach behaves on two arbitrarily selected instances of ITC2007,
that is Track 2, instance 1 and Track 3, instance 2. The plots show the
progress of the number of soft-constraint violations during the search process.
Three variants of the algorithm are distinguished only by the ADL length.
In both cases, the algorithm using n = 1 performs the worst, effectively using
random selection for choosing heuristics. The algorithm using n = 4 (indi-
cated by triangles) delivers a better performance in balancing intensification
and diversification. In the early stages, n = 4 intensifies achieving sudden
improvements, and then a local optimum is reached. That variant of our
approach diversifies and manages to escape. Using n = 10 initially performs
well, but it is eventually beaten by n = 4. As the ADL length increases,
the proposed approach consumes more time, so n = 10 is the worst setting
for the approach in terms of run-time efficiency. Moreover, as Figure 8(b)
illustrates, once attracted to a local optimum, it is difficult for this variant to
escape, since an ADL of length of 10 generates solutions with many resched-
uled events, often leading to improving solutions. Hence, the ADL length is
set to n = 4 in the following experiments.

24

0 1000 2000

10000

11000

12000

13000

14000

15000

(a)

0 1000 2000

8000

10000

12000

14000

(b)

Figure 8: Performance of the proposed approach for n=1, 4 and 10 on (a) Track 2 -
instance 1, (b) Track 2 - instance 3.

4.3. ADL vs Simple heuristics vs Random Selection

We proceed to test the most basic idea of any hyper-heuristic approach
presented by Burke et al. [4] : “different heuristics have different strengths
and weaknesses, it makes sense to see whether they can be combined in some
way so that each makes up for the weaknesses of another”. In this simulation,
we simply compare the performance of our ADL hyper-heuristic with n = 4

25

Table 2: The mean performance of ADL, Random Selection and other Heuristics.
Instance HHADL Random Brelaz Min-Conflicts First-Fit Worse-Fit
Track 2-1 1170.1 1402.12 1430.5 1663.7 1702.3 1812.3
Track 2-4 969.3 1056.7 1125.3 1373.4 1433.2 1571.1
Track 2-7 536.2 635.2 673.1 733.1 814.5 889.3
Track 2-12 618.4 876.4 833.14 866.3 952.6 1215.7
Track 2-15 756.2 824.6 915.8 1063.12 1177.5 1546.6
Track 3-1 62.6 91.8 88.4 92.5 110.3 150.3
Track 3-6 73.5 93.5 106.7 120.8 127.8 166.2
Track 3-8 68.2 84.2 72.1 90 92 134
Track 3-13 110.1 151.6 146.4 157.6 163.3 210.2
Track 3-20 62.7 82.3 79.4 92.4 95.7 115.8

for 1000 iterations against 1000 successive applications of each heuristic alone.
This experiment was repeated 30 times on a selected set of instances from
ITC2007 Tracks 2 and 3. We ran each experiment with a random initial
solution and each approach shared the same starting solution at each trial.
Also, we compare the proposed approach to a simple iterative algorithm that
randomly chooses and applies a heuristic at each step through 1000 iterations.
We include this performance comparison to gather further evidence on the
efficiency of our ADL approach as a search methodology.

The experimental results are summarized in Table 2 which shows the
mean number of soft constraint violations (Equations (1) and (2)) over 30
trials after running 1000 iterations of ADL, Random Selection and each
heuristic. HHADL consistently achieves the best results on all instances.
This supports the fact that the success of our approach is not due to a single
heuristic: rather it is due to the selection of different heuristics through ADL.
Moreover, ADL automatically produces a viable search strategy producing a
better mixture of heuristics selection through Random Selection.

4.4. ITC2007 Track 2

Table 3 shows the best results obtained by HHADL and the other com-
peting algorithms in the post-enrollment course timetabling problem. Bold
values represent the best known results for each instance. HHADL performs
the best on the instances 8, 13 and 15, classified as mid-size problems. In-
stances 8 and 15 contain 500 students and 200 subjects each. Instance 13
has 400 students and 300 subjects. One important characteristic is that
the proposed algorithm is always capable of finding a feasible solution. in
contrast some of the competition-specific procedures were not (e.g. Atsuna

26

Table 3: Comparison against state-of-the-art approaches on the 24 ITC-2007 Track 2
instances. Values indicate the best soft constraint (s) results (out of 10 runs), in all cases
solutions are feasible, i.e. the hard constraints are 0.

ITC-2007 Atsuna Cambazard Ceschia Lewis Jat & Yang HHADL
1 61 571 59 1166 501 630
2 547 993 0 1665 342 450
3 382 164 148 251 3770 300
4 529 310 25 424 234 602
5 5 5 0 47 0 6
6 0 0 0 412 0 0
7 0 6 0 6 0 0
8 0 0 0 65 0 0
9 0 1560 0 1819 989 640
10 0 2163 3 2091 499 663
11 548 178 142 288 246 344
12 869 146 267 474 172 198
13 0 0 1 298 0 0
14 0 1 0 127 0 35
15 379 0 0 108 0 0
16 191 2 0 138 0 140
17 1 0 0 0 0 0
18 0 0 0 25 0 0
19 x 1824 0 2146 84 400
20 1215 445 543 625 297 150
21 0 0 5 308 0 0
22 0 29 5 x 1142 32
23 438 238 1292 3101 963 238
24 720 21 0 841 274 640

for ITC2007-19). Instances from 20 to 24 were categorized as big instances
having 1,000 students and 400 subjects. This is relevant because despite
not being the best solution, our generic approach HHADL is still capable of
obtaining feasible solutions on these larger instances.

In terms of average performance, a ranking of our approach across all
ITC2007-2 datasets can be seen in Table 4. This table is ordered by QUADE
descending results, and the p-values computed using our HHADL approach
as control method were: Friedman 2.50×10−6, Aligned Friedman 1.12×10−4

and Quade 2.64×10−7. We also used Contrast Estimation based on medians
[60, 61] in this study. This statistical technique assumes that the expected
differences between algorithms are the same across problems. The magni-
tudes in this matrix reflect the performance difference between the pairs of
competing algorithms [56]. A positive magnitude in a given row represents
that the algorithm has better performance than the algorithm reported in the
given column. In the case of a negative magnitude the performance is con-
sidered worse. Contrast Estimation for ITC2007 Track 2 experiments can be
seen in Table 5. This estimation registers a better performance for our algo-

27

Table 4: Average Rankings of the algorithms for Track 2
Algorithm Friedman Alignment Friedman QUADE
Ceschia 2.39 48.81 2.23
HHADL 2.87 63.43 3.02
Jat & Yang 2.85 64.52 3.13
Cambazar 3.20 69.33 3.23
Atsuna 3.791 74.70 3.70
Lewis 5.27 114.18 5.26

Table 5: Contrast Estimation for Track 2
Atsuna Cambazar Ceschia Lewis Jat HHADL

Atsuna 0.000 -17.08 -36.92 166.3 -32.00 -28.33
Cambazar 17.08 0.000 -19.83 183.4 -14.92 -11.25

Ceschia 36.92 19.83 0.000 203.3 4.917 8.583
Lewis -166.3 -183.4 -203.3 0.000 -198.3 -194.7

Jat 32.00 14.92 -4.917 198.3 0.000 3.667
HHADL 28.33 11.25 -8.583 194.7 -3.667 0.000

rithm against Cambazar, Lewis and Atsuna algorithms but adhoc designed
algorithms like Ceschia and Jat surpass it. This is understandable since
our approach was designed with generality as an objective, whereas other
approaches were designed specifically to solve these instances. The overall
ranking of our generic approach against the top 5 participants of ITC2007
Track 2 is third.

4.5. ITC2007 Track 3

In this track, the performance of HHADL and the top five algorithms are
compared across the curriculum-based course timetabling problem instances.
The best and average performance of those approaches are provided in Table
6. Values in bold represent the best known results for each instance so far.

The best performance can be seen on instances 12 and 13. For those cases,
HHADL was capable of obtaining better results than the other approaches.
This is an interesting result since Müller’s approach is a generic algorithm
applied to the entire ITC2007 dataset, whereas Aśın and Cachiani are both
ITC-specific algorithms. Instance 9 can be categorized as a small instance
with 30 courses, 6 periods per day and small curricula of 14 events. Instances
11, 12 and 13 are mid-size instances with an average of 85 courses to assign
to 5 periods per day without violations on a curriculum order of 70 courses.

28

In terms of average performance, Table 7 shows the ranking of our ap-
proach based on average performance calculated by Friedman, Aligned Fried-
man and QUADE test, the p − values computed with HHADL as control
algorithm were 2.22× 10−16, 3.9× 10−4 and 1.11× 10−16, respectively. The
contrast estimation can be seen in Table 8. According to the results, the
HHADL approach performs as well as the state-of-the-art entry algorithms.

Table 6: Comparison of best results for ITC2007 Track 3
Müller Lü Hao Aśın Cacchiani HHADL
(2009) (2010) (2011) (2012) (2013)

ITC2007-1 5 5 4 0 5 5
ITC2007-2 60 55 12 16 16 15
ITC2007-3 84 71 38 28 52 30
ITC2007-4 37 43 35 35 35 35
ITC2007-5 330 309 183 48 166 68
ITC2007-6 48 53 22 27 11 18
ITC2007-7 20 28 6 6 6 6
ITC2007-8 41 49 37 37 37 37
ITC2007-9 109 105 72 35 92 35
ITC2007-10 16 21 4 4 2 4
ITC2007-11 0 0 0 0 0 0
ITC2007-12 333 343 109 99 100 90
ITC2007-13 285 66 59 59 57 55
ITC2007-14 61 61 51 51 48 50
ITC2007-15 84 71 38 28 52 30
ITC2007-16 36 39 16 18 13 15
ITC2007-17 83 91 48 56 48 50
ITC2007-18 83 69 24 27 52 27
ITC2007-19 70 65 56 46 48 49
ITC2007-20 27 47 2 4 4 4
ITC2007-21 103 106 61 42 42 43

Table 7: Average Rankings of the algorithms for Track 3
Algorithm Friedman Alignment Friedman QUADE
HHADL 2.40 37.64 2.21
Asin 2.47 38.73 2.31
Cacchiani 2.61 51.26 2.72
Hao 2.78 48.30 2.87
Muller 5.30 104.66 5.53
Lu 5.40 100.38 5.42

29

Table 8: Contrast Estimation for Track 3
Muller Lu Hao Asin Cacchiani HHADL

Muller 0.000 1.333 -26.50 -25.50 -24.17 -28.17
Lu -1.333 0.000 -27.83 -26.83 -25.50 -29.50

Hao 26.50 27.83 0.000 1.000 2.333 -1.667
Asin 25.50 26.83 -1.000 0.000 1.333 -2.667

Cacchiani 24.17 25.50 -2.333 -1.333 0.000 -4.000
HHADL 28.17 29.50 1.667 2.667 4.000 0.000

5. Conclusions and future work

This study describes a novel generative hyper-heuristic entitled ‘Add-
Delete Lists’ and details their application across two different problem do-
mains that is Tracks 2 and 3 of the 2007 International Timetabling Compe-
tition. An Add-Delete list is a ‘ruin-and-recreate’ sequence which is applied
to a solution representation.

The timetabling domain-description used here employs a layer of gener-
ality called Methodology of Design. This layer represents problem-specifics
as a collection of generic structures, such that it can operate across com-
petition tracks without modification (beyond the inevitable translation of
problem-specific constraints).

The ADL approach achieved competitive results when compared with
the five papers which report state of the art results in Tracks 2 and 3 and in
some cases reported best known results (more specifically in Track 3). It is
important to note that none of the track winners are the same, due essentially
to the existence of the ad hoc adaptation of the winning algorithms to specific
domains. Conversely, our proposed approach can be applied to both domains
and our results were obtained without requiring specific adaptation to a
specific competition track. This demonstrates that the ADL approach is
genuinely a hyper-heuristic, i.e. competitive across problem types without
requiring domain-specific knowledge to be manually embedded in the solver.

With regard to future work, the next step is to experiment with a dynamic
or self-adaptive mechanism for the ADL length. In addition, it might be
beneficial to investigate a new implementation of the window list used by
the ILS in which additional ADL traits are stored. In this paper only two
traits (appearance of specific events and event order) were used. In future
implementations, the ADL length and the specific CSP heuristic used to

30

reinsert an event could provide more information, allowing a more-informed
ADL construction at each search step.

Acknowledgements

This work was supported by Consejo Nacional de Ciencia y Tecnoloǵıa
(CONACYT) México, the Engineering and Physical Sciences Research Coun-
cil (EPSRC) Grant GR/S70197/01 and the University of Stirling UK.

[1] E. Özcan, B. Bilgin, E. E. Korkmaz, A comprehensive analysis of hyper-
heuristics, Intell. Data Anal. 12 (1) (2008) 3–23.

[2] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, R. Qu,
Hyper-heuristics: A survey of the state of the art, J Oper Res Soc 64 (12)
(2013) 1695–1724.

[3] P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach to schedul-
ing a sales summit, in: E. Burke, W. Erben (Eds.), Practice and Theory of
Automated Timetabling III, Vol. 2079 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2001, pp. 176–190.

[4] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J. Woodward, Hand-
book of Metaheuristics, Vol. 146 of International Series in Operations Re-
search & Management Science, Springer, 2010, Ch. A Classification of Hyper-
heuristic Approaches, pp. 449–468, chapter 15.

[5] S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicom-
modity flow problems, SIAM J. Comput. 5 (4) (1976) 691–703.

[6] T. B. Cooper, J. H. Kingston, The compexity of timetable construction prob-
lems, Ph.D. thesis, The University of Sydney (1995).

[7] R. J. Willemen, School timetable constructrion: Algorithms and complexity,
Ph.D. thesis, Institutefor Programming research and Algorithms (2002).

[8] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes,
L. D. Gaspero, R. Qu, E. K. Burke, Setting the research agenda in automated
timetabling: The second international timetabling competition, Informs Jour-
nal on computing 22 (1) (2010) 120–130.

[9] R. Lewis, Metaheuristics for university course timetabling, Ph.D. thesis, Uni-
versity of Notthingham. (August 2006).

31

[10] E. K. Burke, G. Kendall, E. Soubeiga, A tabu-search hyperheuristic for
timetabling and rostering, Journal of Heuristics 9 (6) (2003) 451–470.

[11] H. Fisher, G. L. Thompson, Probabilistic learning combinations of local job-
shop scheduling rules, in: J. F. Muth, G. L. Thompson (Eds.), Industrial
Scheduling, Prentice-Hall, Inc, New Jersey, 1963, pp. 225–251.

[12] W. B. Crowston, F. Glover, G. L. Thompson, J. D. Trawick, Probabilistic
and parametric learning combinations of local job shop scheduling rules, ONR
Research memorandum, GSIA, Carnegie Mellon University, Pittsburgh (117).

[13] Y. Hamadi, E. Monfroy, F. Saubion (Eds.), Autonomous Search, Springer,
2012.

[14] R. Battiti, M. Brunato, F. Mascia, Reactive Search and Intelligent Opti-
mization, Vol. 45 of Operations Research/Computer Science Interfaces Series,
Springer, 2009.

[15] J. Maturana, F. Lardeux, F. Saubion, Autonomous operator management for
evolutionary algorithms, Journal of Heuristics 16 (2010) 881–909.

[16] Y. S. Ong, M. H. Lim, N. Zhu, K. W. Wong, Classification of adaptive
memetic algorithms: a comparative study, IEEE Transactions on Systems,
Man, and Cybernetics, Part B 36 (1) (2006) 141–152.

[17] M. Birattari, Tuning Metaheuristics: A Machine Learning Perspective,
Springer, 2009.

[18] F. Lobo, C. Lima, Z. Michalewicz (Eds.), Parameter Setting in Evolutionary
Algorithms, Vol. 54 of Studies in Computational Intelligence, Springer, 2007.

[19] J. Swan, E. Özcan, G. Kendall, Co-evolving add and delete heuristics, in:
Proceedings of the Ninth International Conference on the Practice and Theory
of Automated Timetabling (PATAT 2012), 2012, pp. 395–399.

[20] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck, Record breaking
optimization results using the ruin and recreate principle, Journal of Compu-
tational Physics 159 (2) (2000) 139–171.

[21] A. Misevicius, Genetic algorithm hybridized with ruin and recreate procedure:
application to the quadratic assignment problem, Knowledge-Based Systems
16 (5) (2003) 261–268.

32

[22] A. Misevicius, Ruin and recreate principle based approach for the quadratic
assignment problem, in: Genetic and Evolutionary ComputationGECCO
2003, Springer, 2003, pp. 598–609.

[23] P. Ross, Hyper-heuristics, in: E. K. Burke, G. Kendall (Eds.), Search Method-
ologies: Introductory Tutorials in Optimization and Decision Support Tech-
niques, Springer, 2005, Ch. 17, pp. 529–556.

[24] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. R. Wood-
ward, Exploring hyper-heuristic methodologies with genetic programming, in:
J. Kacprzyk, L. C. Jain, C. L. Mumford, L. C. Jain (Eds.), Computational
Intelligence, Vol. 1 of Intelligent Systems Reference Library, Springer Berlin
Heidelberg, 2009, pp. 177–201.

[25] E. Özcan, A. J. Parkes, Policy matrix evolution for generation of heuristics,
in: Proceedings of the 13th annual conference on Genetic and evolutionary
computation, GECCO ’11, ACM, New York, NY, USA, 2011, pp. 2011–2018.

[26] D. de Werra, An introduction to timetabling, European Journal of Opera-
tional Research 19 (2) (1985) 151 – 162.

[27] M. Carter, A survey of practical applications of examination timetabling al-
gorithms, Operations Research 34 (1986) 193–202.

[28] G. Lajos, Complete university modular timetabling using constraint logic pro-
gramming, In E Burke and P Ross editors. Practice and Theory of Automated
Timetabling (PATAT) Incs 1153 (1996) 146–161.

[29] P. Boizumault, Y. Delon, L. Peridy, Logic programming for examination
timetabling, Logic Program 26 (1996) 217–233.

[30] Z. Lü, J.-K. Hao, Adaptive tabu search for course timetabling, European
Journal of Operational Research 200 (1) (2010) 235 – 244.

[31] A. Colorni, M. Dorigo, V. Maniezzo, Metaheuristics for high-school
timetabling, Computational Optimization and Applications 9 (1997) 277–298.

[32] E. Yu, K. S. Sung, A genetic algorithm for a university weekly courses
timetabling problem, International Transactions in Operational Research 9
(2002) 703–717.

[33] A. Mayer, C. Nothegger, A. Chwatal, G. Raidl, Solving the post enrol-
ment course timetabling problem by ant colony optimization, International
Timetabling Compertition 2007.

33

[34] K. Socha, J. Knowles, M. Samples, A max-min ant system for the university
course timetabling problem, in: M. Dorigo, G. D. caro, M. Samples (Eds.),
Proceedings of Ants 2002 - Third International Workshop on Ant Algorithms,
Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2002, pp. 1–13.

[35] E. Burke, A. Eckersley, B. McCollum, S. Petrovic, R. Qu, Hybrid variable
neighbourhood approaches to university exam timetabling, European Journal
of Operational Research 206 (1) (2010) 46 – 53.

[36] J. M. Thompson, K. A. Dowsland, A robust simulated annealing based exam-
ination timetabling system, Computers and Operations Research 25 (1998)
637–648.

[37] H. Rudová, T. Müller, K. Murray, Complex university course timetabling,
Journal of Scheduling 14 (2011) 187–207.

[38] H. Cambazard, E. Hebrard, B. OŚullivan, A. Papadopoulos, Local search
and constraint programming for the post enrolment-based course timetabling
problem, Annals of Operations Research 194 (2012) 111–135.

[39] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based
hyper-heuristic for educational timetabling problems, European Journal of
Operational Research 176 (1) (2007) 177 – 192.

[40] J. A. Soria-Alcaraz, H. Terashima-Marin, M. Carpio, Academic timetabling
design using hyper-heuristics, Advances in Soft Computing, ITT Springer-
Verlag 1 (2010) 158–164.

[41] R. Qu, E. K. Burke, B. McCollum, Adaptive automated construction of hy-
brid heuristics for exam timetabling and graph colouring problems, European
Journal of Operational Research 198 (2) (2009) 392 – 404.

[42] M. Atsuta, K. Nonobe, T. Ibaraki1, Itc-2007 track2: An approach using gen-
eral csp solver, International Timetabling Compertition 2007.

[43] K. Nonobe, T. Ibaraki, An improved tabu search method for the weighted
constraint satisfaction problem, INFOR 39 (2) (2001) 131–151.

[44] S. Ceschia, L. D. Gaspero, A. Schaerf, Design, engineering, and experimen-
tal analysis of a simulated annealing approach to the post-enrolment course
timetabling problem, Computers & Operations Research 39 (7) (2012) 1615
– 1624.

34

[45] R. Lewis, A time-dependent metaheuristic algorithm for post enrolment-based
course timetabling, Annals of Operations Research 194 (2012) 273–289.

[46] S. Jat, S. Yang, A hybrid genetic algorithm and tabu search approach for post
enrolment course timetabling, Journal of Scheduling 14 (6) (2011) 617–637.

[47] T. Müller, Itc2007 solver description: a hybrid approach, Annals OR 172 (1)
(2009) 429–446.

[48] Z. Lü, J.-K. Hao, Adaptive tabu search for course timetabling, European
Journal of Operational Research 200 (1) (2010) 235–244.

[49] J.-K. Hao, U. Benlic, Lower bounds for the itc-2007 curriculum-based course
timetabling problem, European Journal of Operational Research 212 (3)
(2011) 464–472.

[50] R. Aśın Achá, R. Nieuwenhuis, Curriculum-based course timetabling with sat
and maxsat, Annals of Operations Research (2012) 1–21.

[51] V. Cacchiani, A. Caprara, R. Roberti, P. Toth, A new lower bound for
curriculum-based course timetabling, Computers & Operations Research
40 (10) (2013) 2466–2477.

[52] H. Lourenço, O. Martin, T. Stützle, Iterated local search, in: F. Glover,
G. Kochenberger, F. S. Hillier (Eds.), Handbook of Metaheuristics, Vol. 57 of
International Series in Operations Research & Management Science, Springer
New York, 2003, pp. 320–353.

[53] A. Soria-Alcaraz Jorge, M. Carpio, H. Puga, M. Sotelo-Figueroa, Comparison
of Metaheuristic Algorithms with a Methodology of Design for the Evaluation
of Hard Constraints over the Course Timetabling Problem, Vol. 451 of Studies
in Computational Intelligence, Springer Berlin Heidelberg, 2013.

[54] A. Soria-Alcaraz Jorge, M. Carpio, H. Puga, M. Sotelo-Figueroa, Methodol-
ogy of design: A novel generic approach applied to the course timetabling
problem, in: P. Melin, O. Castillo (Eds.), Soft Computing Applications in
Optimization, Control, and Recognition, Vol. 294 of Studies in Fuzziness and
Soft Computing, Springer Berlin Heidelberg, 2013, pp. 287–319.

[55] B. Smith, The brlaz heuristic and optimal static orderings, in: J. Jaffar (Ed.),
Principles and Practice of Constraint Programming CP99, Vol. 1713 of Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg, 1999, pp. 405–
418.

35

[56] J. Derrac, S. Garćıa, D. Molina, F. Herrera, A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms, Swarm and Evolutionary Computation
1 (1) (2011) 3 – 18.

[57] M. Friedman, The use of ranks to avoid the assumption of normality implicit
in the analysis of variance, Journal of statistical association 32 (1937) 647–
701.

[58] M. Friedman, A comparison of alternative tests of significance for the problem
of m rankings., Annals of Mathematical statistics 11 (1940) 86–92.

[59] D. Quade, Using weighted rankings in the analysis of complete blocks with
additive blocks effects, Journal of the American Statistical Assosiation 74
(1979) 680–683.

[60] K. Doksum, Robust procedures for some linear models with one observation
per cell., Annals of Mathematical statistics 38 (1967) 878–883.

[61] S. Garcia, A. Fernandez, J. Luengo, F. Herrera, Advanced nonparametric
tests for multiple comparisons in the design of experiments in computational
intelligence and data mining., Experimental analysis of power, Information
science. 180 (2010) 2044–2064.

[62] Jörg Denzinger and Matthias Fuchs and Marc Fuchs, High Performance ATP
Systems by Combining Several AI Methods, In proc. fifteenth international
joint conference on artificial intelligence (IJCAI 97),1997,pp 102–107.

36

