
Batched Mode Hyper-heuristics

Shahriar Asta, Ender Özcan, and Andrew J. Parkes∗

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
{sba,exo,ajp}@cs.nott.ac.uk,

http://www.cs.nott.ac.uk/∼{sba,exo,ajp}/

Abstract. A common form of a hyper-heuristic is a method that con-
trols a search process which uses neighbourhood operators. There have
many studies showing that hyper-heuristics are reusable for solving un-
seen problem instances not only from a particular domain but also dif-
ferent problem domains without requiring any change. However, gener-
ally hyper-heuristics have been considered as part of time-contract algo-
rithms, i.e. they are given a fixed execution time, and also used to solve
each each instance separately. This paper considers the potential gains
and challenges of a hyper-heuristic being able to treat a set of instances
as a batch, to be completed within an overall joint execution time, but
with the hyper-heuristic free to make its own decision as to how to di-
vide the computational effort between the individual instances. Using the
standard CHeSC benchmarks, we show the wide variation in runtimes
that occur, and give evidence that this results in a batched mode having
the potential for significant gains.

Keywords: combinatorial optimisation, metaheuristics, hyper-heuristics

1 Introduction

A goal of hyper-heuristic [1] research is to raise the level of generality of search
methods by providing high level strategies, and associated directly-usable soft-
ware components, that are useful across different problem domains rather than
for a single one. (Note that this general goal is not unique to hyper-heuristics
but also occurs in other forms, e.g. in memetic computation [2].) There are two
main types of hyper-heuristics depending on whether they do generation or se-
lection of heuristics [3]. In this paper, we focus on selection hyper-heuristics, and
in particular, those that combine heuristic selection and move acceptance pro-
cesses under a single point search (i.e. not population-based) framework [4]. A
candidate solution is improved iteratively by selecting and applying a heuristic
(neighbourhood operator) from a set of low level heuristics and then using some
acceptance criteria to decide if it should replace the incumbent. We also use the
Hyflex (Hyper-heuristics Flexible framework) [5] software tool associated with
the CHeSC2011 hyper-heuristic competition1.

1 http://www.asap.cs.nott.ac.uk/chesc2011/
∗ Corresponding author.

2

Usually hyper-heuristics are used to individually and independently solve
single instances. However, in some cases, it might well be that a batch of in-
stances need to be solved; where the ”batching” simply means that a whole set
of instances are to be solved within an overall time limit, but there is no a priori
restriction on how much time should be spent on each instance, or even that
they need to be treated entirely separately (unlike within the CHeSC2011 com-
petition). A real-world application of this is when many different instances, or
maybe many variants of a few instances but with different choices for available
resources, need to be solved “as well as possible overnight” so that a decision
can be made next day as to which one(s) to use. In this case, it is reasonable
to consider that hyper-heuristics should be extended so as to treat the instances
collectively as a batch. This batching has two immediate potential advantages:

– “Effort balancing”. Better balancing of computational effort across the in-
stances. If some are much easier than others then it seems reasonable that
they should be allocated less computational time, and more time allocated
to those that will benefit most.

– “Inter-instance learning”. If some of the instances are from the same domain
(as would be the case in most practical applications) then it makes sense
that the hyper-heuristic should be able to learn from the earlier instances in
order to perform better on the later instances. This gives an intermediate
between online and offline learning.

In this brief paper, we do not consider the interesting challenge of the inter-
instance learning. Instead, we provide evidence that there is a significant poten-
tial benefits of the better balancing of computational effort between instances.
Note that, although we do not here provide a mechanism that would be able to
directly exploit the potential, the aim is to show that it would be worthwhile for
hyper-heuristics research to develop such effort balancing schemes.

After a brief discussion of Hyflex and the CHeSC competition, we study some
statistics of the performance of a particular hyper-heuristic on the competition
instances; showing that there is a wide variation in their properties, and that
this can lead to about half the computational effort effectively being wasted.

2 Background

Hyflex is an interface supporting development and research of hyper-heuristics
and other metaheuristics in which the domain level is separated from the hyper-
heuristic level. In order to discriminate between the interface from its implemen-
tation, we will refer to its first version as Hyflex v1.0 which was developed at the
University of Nottingham by a team of researchers of the ASAP research group
during 2009-2011. Hyflex v1.0 was used for the “Cross-domain Heuristic Search
Challenge” (CHeSC) in 2011. CHeSC2011 used the following problem domains:
Boolean Satisfiability (SAT), One Dimensional Bin Packing (BP), Permutation
Flow Shop (FS), Personnel Scheduling (PS), Vehicle Routing Problem (VRP)

3

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

ob
je

ct
iv

e

time

SAT inst 0
SAT inst 2
SAT inst 4
SAT inst 6
SAT inst 8

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600

ob
je

ct
iv

e

time

SAT inst 0, run 1
SAT inst 0, run 2
SAT inst 0, run 3
SAT inst 0, run 4
SAT inst 0, run 5

Fig. 1. Performance Profiles for runs on instances from the SAT domain. The Best-So-
Far (BSF) quality is plotted against running time; and the lines stop when no further
improvements are made within the 600 nsec limit. (a) A single run on each of 5 separate
instances. (b) 5 separate runs on a single instance

and the Traveling Salesman Problem (TSP). For each domain ten different in-
stances were provided. A hyper-heuristic was given 10 minutes of execution time
per each instance on a specified machine. The winner of CHeSC, AdapHH [6]
was a learning hyper-heuristic which uses a learning adaptive heuristic selection
method in combination with an adaptive iteration limited list-based threshold
move accepting method. All the problem domain implementations compatible
with Hyflex v1.0 have been serving as benchmarks to test the generality of hyper-
heuristics.

3 Performance Properties of the Instances

A standard property of a search is the Performance Profile “PP” or the curve
of quality versus time. This is used heavily within the area of anytime reasoning
[7] but is also relevant to the case of balancing of computational effort between
optimisation tasks. To study the PP on the CHeSC2011 instances we used the
winning, and publically-available, hyper-heuristic [6]. Some examples of the PP
on the SAT domain are given in Figure 1 and from these we immediately see that
those are cases for which improvements in quality cease well before the standard
time deadline of 10 (nominal) minutes2.

This suggests that it could be worth transferring time from such instances
to others in which the search does not stagnate. In order to quantify this we
performed experiments with the overall deadline extended to 30 (nominal) min-
utes per instance. For each run, we determined “t(LastImp)” the time at which
the last improvement occurred in each run. The results of these are analysed
in two ways. Firstly, in Table 3 we compare the fraction of time that is spent

2 In experiments, the “10 minute” is a “nominal” (or normalised) standardised time as
determined by a benchmarking program available via the CHeSC website. On faster
machines the real seconds will be smaller; it happens to be 415 secs on the machine
we used, however, to aid future comparisons, we always report results using nominal
seconds (nsecs) or nominal minutes (nmins)

4

Table 1. For each domain, and then the aggregate of all domains, we give the average
“non-stagnant fraction of the runtime” that was taken to reach the last improvement.
(Based on runs of 1800 seconds per instance).

Domain non-stagnant fraction of runtime

SAT 0.24
BP 0.78
PS 0.62
FS 0.57

VRP 0.52
TSP 0.81

ALL 0.59

before the last improvement against the overall time. We see that, on average,
around half the run time is actually ”wasted” in the sense that it is after the
last improvement.

In Figure 2(a) we give the results of ranking the instances in a domain by
their value of t(LastImp) and then plotting t(LastImp) against this rank. In the
SAT domain we see that most instances stagnate fairly early. In other domains
there are a wide range of these stagnation times.

In Figure 2(b) we use the same data, but give the ranking over the domains
aggregated together. We see that the instances show widely different behaviours.
In particular, around 10 instances stagnate well before the usual 600 nsecs dead-
line; in contrast, many other instances would potentially benefit from a longer
runtime.

The dispersion of stagnation times suggests that each instance should be
given a new time limit. There are many potential ways to do this, however, we
here we just use a simple scheme. Some instances are selected to be ’down’ in that
their time limit is reduced to 500 nsecs (from the usual 600 nsecs), and others
are up with their time limit extended to 700 nsecs. (The choice of 500 nsecs is
fairly arbitrary, and is just to provide an example). Equal numbers of up and
down are taken so that the average is still 600 nsecs per instance. We selected the
up and down instances based on the inspection of trial runs. We then tested the
effects of the new time limits using a different set test runs. Specifically, using 3
trial runs, 9 instances were selected to be down and 9 up. The test runs needed
to compare the qualities achieved at 500 vs. 600 seconds for the down instances,
and 600 vs. 700 for the up instances. For efficiency, we use the “Retrospective
Parameter Variation” technique in the style of [8] (originally used for the loosely-
related topic of restarts) so as to re-use data from long runs to quickly simulate
shorter runs of different lengths A run on a down instance is called a loser if it
improved between 500 and 600, as the reduced time would have cause a loss of
quality. A run on a up instance is called a winner if it improved between 600 and
700, as the increased time would have cause an improvement in quality. With 2
runs per instance, then only 1 of the 18 down runs were losers, whereas 15 of the
18 runs on up instances were winners. This roughly corresponds to a net gain of

5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10

t(
la

st
 im

pr
ov

.)
 in

 n
se

cs

rank within domain

SAT
BP
PS
FS

VRP
TSP

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

t(
la

st
 im

pr
ov

.)
 in

 n
se

cs

rank within all domains

(b)

Fig. 2. Times till last improvement on the instances after ranking. (a) For each domain
separately, (b) for all the domains together.

improvement on 7 instances, and shows that even simple transfers of runtimes
between instances have a potential for significant improvements.

4 Summary and Conclusion.

We proposed a batch mode in which the hyper-heuristic is given many instances
and an overall time limit, but is not unrestricted to treating them independently
and with the same run-time. We saw the large variation in run times for the
CHeSC2011 benchmark instances, and provided a simple change to time limits
that lead to significant improvments. Of course, a key question for future work
is whether such decisions as to better timing can be made dynamically and
in advance, by using the properties of the performance profiles. However, this
paper should be taken as indication that if such predictions can be made, then
potentially significant runtime can be saved.

6

We also remark, that it seems that the 6 different CHeSC2011 domains have
rather different properties with respect to the standard time limit of 600 nsecs.
This wide distribution was presumably good for the competition as it made it
more likely that there would be a good differentiation between hyper-heuristics,
though it does suggest some caution needs to be taken when interpreting results.
It might well be that differences between domains occur because the standard
600 nsec limit occurs at a different phase within the search process; either in the
initial “easy” improvements or during the later “harder” stages where improve-
ments are harder to find. Future analyses might benefit from longer run-times
to classify the time limit with respect to the expected “stagnation times”.

For future work, we intend to extend the Hyflex interface and software to
support batched operation, in which the hyper-heuristic is given an overall time
limit for the entire set of instances, but is free to make its own decision as to
how to partition the computation time between them, and is also able to take
what it has learned on one instance and use it for others. This will open up more
research opportunities and enable development of automated methods to exploit
the power of predicting future performance of a run so as to do better sharing of
the computational effort. We would also expect that “online but intra-instance”
learning should also lead to many interesting challenges.

References

1. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Selected papers from the Third International Conference on Prac-
tice and Theory of Automated Timetabling, London, UK, Springer-Verlag (2001)
176–190

2. Chen, X., Ong, Y.S.: A conceptual modeling of meme complexes in stochastic
search. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on 42(5) (Sept. 2012) 612 –625

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.:
Hyper-heuristics: A survey of the state of the art. JORS (to appear)

4. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intelligent Data Analysis 12(1) (2008) 3–23

5. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau,
M., Kendall, G., Parkes, A.J., Petrovic, S., Burke, E.K.: Hyflex: a benchmark frame-
work for cross-domain heuristic search. In: Proceedings of the 12th European con-
ference on Evolutionary Computation in Combinatorial Optimization. EvoCOP’12,
Berlin, Heidelberg, Springer-Verlag (2012) 136–147

6. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-
heuristic implementation in HyFlex: a study on generality. In Fowler, J., Kendall, G.,
McCollum, B., eds.: Proceedings of the 5th Multidisciplinary International Schedul-
ing Conference: Theory & Application,. (August 2011) 374–393

7. Zilberstein, S., Russell, S.J.: Approximate reasoning using anytime algorithms. In
Natarajan, S., ed.: Imprecise and Approximate Computation. Kluwer Academic
Publishers (1995)

8. Parkes, A.J., Walser, J.P.: Tuning local search for satisfiability testing. In: Proceed-
ings of AAAI 1996. (1996) 356–362

