
A Comparison of Acceptance Criteria for the
Daily Car-Pooling Problem

Jerry Swan1, John Drake1, Ender Özcan1, James Goulding2, John Woodward1

1Automated Scheduling, Optimisation and Planning (ASAP) Research Group,
2Horizon Digital Economy Research Institute,

School of Computer Science, University of Nottingham,
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK.

{jps,jqd,exo,jog,jrw}@cs.nott.ac.uk

Abstract. Previous work on the Daily Car-Pooling problem includes an
algorithm that consists of greedy assignment alternating with random
perturbation. In this study, we examine the effect of varying the move
acceptance policy, specifically Late-acceptance criteria with and without
reheating. Late acceptance-based move acceptance criteria were chosen
because there is strong empirical evidence in the literature indicating
their superiority. Late-acceptance compares the objective values of the
current solution with one which was obtained at a fixed number of steps
prior to the current step during the search process in order to make an
acceptance decision. We observe that the Late-acceptance criteria also
achieve superior results in over 75% of cases for the Daily Car-Pooling
problem, the majority of these results being statistically significant.

1 Introduction

There is increasing economic and environmental interest in minimizing the con-
sumption and emission of petrochemicals arising from the use of personal vehic-
ular transport. The task of assigning passengers to drivers in order to increase
vehicle occupancy while minimizing the additional journey length incurred is
known as the Daily Car-Pooling problem (DCPP). The DCPP can be consid-
ered to be a generalization of the Dial-A-Ride Problem (DARP) in which the
vehicles are heterogeneous [3]. As is the case with all variants of the Vehicle
Routing Problem (VRP), it is known to be NP-hard [13]. We can consider the
DCPP to be a VRP with the additional constraints of Pickup and Delivery
(VRPPD) and Time Windows (VRPTW), the latter being an example of qual-
ity of service criteria in which we seek to minimize the inconvenience suffered
by all participants.

The specific problem addressed in this paper is the ‘To Work’ DCPP, in
which a pool of users (employees) participate in vehicle sharing for travel to a
central destination (the workplace). Some members of the pool are designated
to be drivers (servers), the remainder are passengers (clients). All employees
have a time window in which their journey must take place. Servers stipulate

2 A Comparison of Acceptance Criteria for the Daily Car-Pooling Problem

a maximum journey time and their vehicle has an associated capacity. Clients
not assigned to any server have an associated penalty. The objective is to assign
clients to servers so as to minimize the sum of the total distance travelled and
the penalties incurred for unserviced clients. In the instances considered here, all
quantities are integers. In [6], Cordeau and Laporte give an extensive overview
of the DARP and observe that two decades of research has made it routinely
possible to schedule hundreds of employees. Cordeau and Laporte also observe
that approaches can be differentiated according as they perform clustering and
routing as distinct, sequential phases or whether they interleave these activities.
In Baldacci et al. [1], the DARP is solved by Lagrangean relaxation. If the
location of all participants are known a priori, the DCCP is said to be static.
We restrict ourselves to the static case. In [3], Calvo et al. give an algorithm
for the DCPP (an adaptation of the capacitated p-median algorithm in [9]) that
consists of greedy assignment alternating with random perturbation. The greedy
assignment phase proceeds by seeking to minimize a marginal quantity termed
regret — an estimate of the total extra mileage that would be incurred over all
journeys for a passenger.

Maniezzo et al. [8] describe a solution to the Long-Term Car Pooling Problem
(a variant in which the role of driver alternates between pool members) that
employs Ant-Colony Optimization (ACO). ACO is an example of ametaheuristic
technique that seeks to perturb candidate solutions beyond local optima. It is
clearly also possible to apply other metaheuristic techniques such as Simulated
Annealing, Evolutionary Strategies, Genetic Algorithms and Tabu Search.

Recent research [10] indicates that the choice of acceptance criterion is one of
the more significant metaheuristic mechanisms. In this article, we examine the
effect of varying the acceptance criterion. In particular, we investigate the use
of Late-acceptance Hillclimbing. The Late-acceptance Hillclimbing (LA) meta-
heuristic [2] is a simple yet suprisingly effective strategy — a new solution is
accepted if it is no worse than the k-th most recent incumbent solution. The
stated advantages of the LA are that it is reliant on only the single parame-
ter k; it is not sensitive to initialisation and has been shown to be superior to
(or at least competitive with) best-known results in a number of domains (e.g.
[2],[14],[11]).

2 Experimental Framework

For our experiments, we made use of the Hyperion framework [12], imple-
mented in the Java programming language. Hyperion provides a combinatorial
optimization framework parameterized by concepts of state, locality (i.e.
neighbourhood) and objective function. We used datasets A and B as de-
scribed in [1]. Class A is an adaptation of the datasets of [4] [5] and [7] and
consists of 12 problems with the number of employees ranging from 50 to 225.
Class B is adapted from real-world data and consists of 23 problems with the
number of employees ranging from 100 to 250. The authors state that both
classes of problems are intended to simulate real-world applications.

A Comparison of Acceptance Criteria for the DCPP 3

JourneyMatches hdcpp(List<Server> servers, List<Client> clients)

{
// phase 1
JourneyMatches matches = hdcppPhase1 (servers, clients) ;
// phase 2
double bestValue = objectiveFn (matches) ;
JourneyMatches bestMatching = matches ;

initializeAcceptanceCriterion(bestValue) ;

long numUnimprovingIter = 0 ;
for (long iter = 0 ; ; ++iter)

{
 JourneyMatches newMatches = hdcppPhase2InnerLoop(matches) ;
 double currentValue = objectiveFn. valueOf(matches) ;
 double newValue = objectiveFn. valueOf(newMatches) ;
 boolean accept = acceptanceCriterion(currentValue, newValue, iter) ;
 if (accept)

 {
 matches = newMatches ;
 if (currentValue < bestValue)

 {
 bestValue = currentValue ;
 bestMatching = matches ;

 }
}
if (currentValue >= bestValue)

 ++numUnimprovingIter ;
if (terminationCondition(matches, currentValue, newMatches,

 newValue, iter, numUnimprovingIter))
 break ;

// update state of acceptanceCriterion
// e.g. reheat etc. as appropriate
acceptanceCriterion.update() ;

}
}

Fig. 1. Algorithm DCPP

We configured Hyperion with a State given by the pair (J, U) where J is
the set of Journies (i.e. the set of assignments of clients to servers) and U is the
set of unmatched clients. The Locality is identical to that employed by Calvo
et al., viz. the set of all states reachable from the present one via the unmatching
of a single passenger. The objective function to minimize is then given by the
total path cost plus the sum of the penalties incurred by unmatched passen-
gers. We configured the framework with acceptance policies Improving or Equal
(IE), Late-acceptance (LA) and Late-acceptance with reheating (LR). Figure 1
describes the top-level of the experimental framework: the essential difference
from the pseudocode given in [3] is the addition of extension points to provide
for the initialization, evaluation and internal-state update of the variant accep-
tance criteria. These extension points operate as follows: the IE policy requires
no additional initialization or state-update, and accepts new values that are
greater than or equal to the current value. The operation of the late-acceptance

4 A Comparison of Acceptance Criteria for the Daily Car-Pooling Problem

policies is derived from [2]: initialization of the late-acceptance policies involves
the creation of a history list of fixed length, the values of which are given by o1,
the objective value obtained from phase 1 of the matching. Both late-acceptance
policies accept a new value if it is better than or equal to either the current value
or the k-th most recent value, where k is given by the iteration count modulo
the length of the history list. An accepted solution replaces the solution to which
it is being compared in the history list. Whenever the number of non-accepting
iterations exceeds the threshold parameter MAX IDLE ITER, the internal-
state update for LARH achieves reheating by adding an offset to all entries in
the history list, which in our experiments was fixed at 0.1 * o1.

3 Results

Table 1 gives (x̄, σ2) of the objective function value obtained with the IE, LA and
LR acceptance criteria for 30 runs of the A and B datasets. The ‘label’ and ‘size’
columns give the instance name and number of employees, respectively. The ter-
mination criterion was 10,000 un-improving moves (decided experimentally). LA
and LR have a history list length of 100, MAX IDLE ITER for LR was set to
200. Table 1 also compares the late-acceptance criteria for statistical significance
(t-test with p = 0.05) against the IE criterion. For acceptance criteria A1 and
A2, A1 ≥ A2 indicates A1 outperforms A2 on average whilst ≫ indicates that
this difference is statistically significant (conversely ≤ and ≪). It can be seen
from these tables that there is relatively low variance in solution quality: this
may be due to the constructive phase resulting in a basin of attraction in the
solution-space.

LA outperforms IE in 77.1% of instances, specifically 7 out of 12 A instances
and 20 out of 23 B instances. 63% of this performance difference is statistically
significant (3 out of 7 A instances and 14 out of 20 B instances). LR outperforms
IE in 88.6% of instances, specifically 9 out of 12 A instances and 22 out of 23
B instances. 54.8% of this performance difference is statistically significant (5
out of 9 A instances and 12 out of 22 B instances). LR is therefore performs
particularly well on dataset B. It is interesting that for instances A05 and A10
the IE strategy outperforms both late-acceptance criteria. Instance B03 is also
interesting as LA performs worse than IE, but LR performs significantly better
than it.

4 Conclusion

We have applied two variants of late-acceptance hillclimbing to a greedy algo-
rithm for the Daily-Car Pooling Problem and compared them with näıve hill-
climbing. Both late-acceptance strategies are superior to the näıve approach in
most cases and this is often statistically significant for larger instances.

The superior performance of the reheating variant of late-acceptance can
be explained in part by the ‘fitness-cycling’ effect of reheating, which gener-
ally means that there are a larger number of iterations before the ‘number-of-

A Comparison of Acceptance Criteria for the DCPP 5

Table 1. (Mean, standard deviation) and t-test comparison against IE criterion (vs)
of objective function values of 30 runs of the datasets A and B by acceptance criterion

label size LA vs LR vs IE

A01 50 (1202,77) ≥ (1190,54) ≫ (1224,79)
A02 75 (1638,87) ≤ (1619,62) ≥ (1619,90)
A03 100 (1459,79) ≥ (1461,104) ≥ (1502,85)
A04 120 (2381,22) ≫ (2387,34) ≫ (2438,38)
A05 120 (2318,145) ≪ (2253,123) ≪ (2120,85)
A06 134 (2472,101) ≤ (2453,123) ≥ (2456,84)
A07 150 (2372,142) ≥ (2353,144) ≫ (2446,209)
A08 170 (2976,76) ≤ (2972,61) ≤ (2955,45)
A09 170 (2777,48) ≥ (2770,57) ≥ (2857,74)
A10 195 (3397,101) ≪ (3357,95) ≪ (3288,36)
A11 199 (2060,61) ≫ (2040,63) ≫ (2117,96)
A12 225 (2345,52) ≫ (2335,43) ≫ (2435,102)

B01 100 (1704,76) ≫ (1718,80) ≥ (1743,82)
B02 100 (1531,23) ≥ (1531,27) ≥ (1542,33)
B03 100 (1697,129) ≤ (1615,109) ≫ (1688,124)
B04 100 (2255,23) ≤ (2255,32) ≤ (2255,30)
B05 100 (1910,105) ≫ (1932,107) ≫ (2021,118)
B06 100 (1477,61) ≥ (1464,84) ≥ (1491,78)
B07 100 (1343,36) ≫ (1360,33) ≫ (1386,58)
B08 150 (2047,47) ≫ (2036,39) ≫ (2081,69)
B09 150 (1980,36) ≫ (1987,37) ≫ (2018,47)
B10 150 (2768,88) ≥ (2787,93) ≥ (2808,110)
B11 150 (2217,112) ≫ (2254,112) ≥ (2283,144)
B12 150 (1866,82) ≥ (1855,90) ≥ (1883,96)
B13 200 (2706,59) ≫ (2691,99) ≫ (2793,107)
B14 200 (2689,104) ≥ (2703,94) ≥ (2722,131)
B15 200 (3467,66) ≫ (3463,69) ≫ (3524,81)
B16 200 (3690,100) ≤ (3686,111) ≥ (3686,112)
B17 200 (4111,126) ≫ (4135,128) ≫ (4249,115)
B18 200 (2716,111) ≫ (2750,77) ≥ (2786,91)
B19 250 (3542,82) ≫ (3566,79) ≥ (3592,105)
B20 250 (3680,108) ≥ (3633,103) ≫ (3696,126)
B21 250 (3869,47) ≫ (3872,58) ≫ (4024,112)
B22 250 (3732,95) ≫ (3707,91) ≫ (3805,113)
B23 250 (3436,121) ≫ (3404,119) ≫ (3552,117)

unimproving-moves’ termination criterion is met. Future work will attempt to
gain further insight into the outlying instances (A05,A10,B03) and attempt to
further distinguish between the two late-acceptance strategies: in particular, we
anticipate that LR would perform significantly better than LA in almost all cases
if the number of experiments were increased.

6 A Comparison of Acceptance Criteria for the Daily Car-Pooling Problem

References

1. Roberto Baldacci, Vittorio Maniezzo, and Aristide Mingozzi. An exact method
for the car pooling problem based on Lagrangean column generation. Operations
Research, 52(3):422–439, 2004.

2. Edmund K. Burke and Yuri Bykov. A Late Acceptance Strategy in Hill-Climbing
for Exam Timetabling Problems. In PATAT ’08, 2008.

3. Roberto Wolfler Calvo, Fabio de Luigi, Palle Haastrup, and Vittorio Maniezzo.
A distributed geographic information system for the daily car pooling problem.
Comput. Oper. Res., 31(13):2263–2278, 2004.

4. N Christofides and S Eilon. An algorithm for the vehicle dispatching problem.
Operational Research Quarterly, 309(20), 1969.

5. N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In Com-
binatorial Optimization. Wiley, 1979.

6. Jean-Franois Cordeau and Gilbert Laporte. The Dial-a-Ride Problem (darp): Vari-
ants, modeling issues and algorithms. 4OR, 1:89–101, 2003.

7. M. L. Fisher. Optimal solution of vehicle routing problems using minimum K-trees.
Operations Research, 42(4):626–642, 1994.

8. V. Maniezzo, A. Carbonaro, and H. Hildmann. New Optimization Techniques in
Engineering, chapter An ANTS heuristic for the Long-Term Car-Pooling Problem.
Springer, 2002.

9. John M. Mulvey and Michael P. Beck. Solving capacitated clustering problems.
European Journal of Operational Research, 18(3):339 – 348, 1984.

10. Ender Özcan, Burak Bilgin, and Emin Erkan Korkmaz. A comprehensive analysis
of hyper-heuristics. Intell. Data Anal., 12(1):3–23, 2008.

11. Ender Özcan, Yuri Bykov, Murat Birben, and Edmund K. Burke. Examination
timetabling using late acceptance hyper-heuristics. In Proceedings of the Eleventh
conference on Congress on Evolutionary Computation, CEC’09, pages 997–1004,
Piscataway, NJ, USA, 2009. IEEE Press.

12. Jerry Swan, Ender Özcan, and Graham Kendall. Hyperion - a recursive hyper-
heuristic framework. In Carlos A. Coello Coello, editor, Learning and Intelligent
OptimizatioN, 5th International Conference, LION 5, LNCS, 2011.

13. P. Toth and D. Vigo. An overview of vehicle routing problems. In The vehi-
cle routing problem, pages 1–26. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2001.

14. Jannes Verstichel and Greet Vanden Berghe. A late acceptance algorithm for the
lock scheduling problem. In Stefan Voss, Julia Pahl, and Silvia Schwarze, editors,
Logistik Management, pages 457–478. Physica-Verlag HD, 2009.

