
An Investigation of Tuning a Memetic Algorithm
for Cross-domain Search

Düriye Betül Gümüş, Ender Özcan, Jason Atkin
The University of Nottingham,
School of Computer Science,
ASAP Research Group,UK

Email: {betul.gumus,ender.ozcan,jason.atkin}@nottingham.ac.uk

Abstract—Memetic algorithms, which hybridise evolutionary
algorithms with local search, are well-known metaheuristics for
solving combinatorial optimisation problems. A common issue
with the application of a memetic algorithm is determining the
best initial setting for the algorithmic parameters, but these can
greatly influence its overall performance. Unlike traditional stud-
ies where parameters are tuned for a particular problem domain,
in this study we do tuning that is applicable to cross-domain
search. We extend previous work by tuning the parameters of
a steady state memetic algorithm via a ‘design of experiments’
approach and provide surprising empirical results across nine
problem domains, using a cross-domain heuristic search tool,
namely HyFlex. The parameter tuning results show that tuning
has value for cross-domain search. As a side gain, the results
suggest that the crossover operators should not be used and,
more interestingly, that single point based search should be
preferred over a population based search, turning the overall
approach into an iterated local search algorithm. The use of
the improved parameter settings greatly enhanced the cross-
domain performance of the algorithm, converting it from a poor
performer in previous work to one of the stronger competitors.

I. INTRODUCTION

Memetic algorithms are well-known and highly effective
population-based metaheuristics. They have been applied to
a range of combinatorial optimisation problems, including
educational timetabling [2], [21], parallel code optimisation
[22], quadratic assignment [16], vehicle routing [18], the
travelling salesman problem [13], protein structure prediction
[12] and knapsack problems [10]. Parameter tuning, i.e. deter-
mining the best configuration for the algorithmic parameters,
is crucial for improved metaheuristic performance. There are
various parameter tuning methods available, including ‘design
of experiments’ as well as automated approaches, which have
already been applied to memetic algorithms [25], [8], [7].
Many studies which tuned the algorithm parameters focused
on one problem domain and tailored the algorithm for that
domain. This study considers the tuning of a memetic algo-
rithm not for a single specific domain but across multiple
domains using a ‘design of experiments’ approach, namely
the Taguchi method [24]. It is known that parameter tuning
has huge value within single domain. Our aim is to investigate
whether similar tuning also has value for cross-domain search.
To this end, parameter tuning experiments are performed using
two sample instances from four problem domains in a training
phase. The best setting obtained from the Taguchi method is

then generalised for cross-domain search and used to solve
the unseen instances from nine different domains. The best
parameter setting is analysed further in order to verify the
validity of the generality of the best setting which was detected
via tuning.

There is a growing number of studies on hyper-heuristics,
operating on a search space of heuristics (or heuristic com-
ponents) rather than directly on the search space of potential
solutions [5]. Selection hyper-heuristics perform improvement
oriented iterative single point based search by managing and
mixing a set of low level heuristics. One of the interfaces used
in this area is referred to as HyFlex (Hyper-heuristics Flexible
framework) [19], which provides a framework enabling the
rapid development of general purpose metaheuristics, particu-
larly selection hyper-heuristics for research. The initial version
of HyFlex was implemented in Java and used in the first Cross-
Domain Heuristic Search Challenge (CHeSC2011) to detect
the best selection hyper-heuristic across multiple domains [4].

In this study, we have used HyFlex, which provides all of
the genetic operators required by an evolutionary algorithm
[20], for the implementation and performance evaluation of
a memetic algorithm. The proposed memetic algorithm is a
population based stochastic local search algorithm which can
be considered as a hyper-heuristic, as it does not use any
domain specific information and mixes multiple operators.

Özcan et al. [23] implemented a trans-generational and
steady state memetic algorithm and investigated their perfor-
mances across six problem domains. They applied a basic
sequence of experiments for parameter tuning. The steady
state approach was reported to perform better, however single
point based search hyper-heuristics performed significantly
better than memetic algorithms. In this study, we extend the
previous work in [23] performing two sets of experiments.
We have partitioned forty five instances across nine problem
domains into training and test instances for each experiment.
The problem instances consist of thirty instances from the six
problem domains used at CHeSC2011 and fifteen instances
from the three extended HyFlex problem domains as provided
by Adriaensen et al. [1]. Firstly, Taguchi’s design of experi-
ments approach has been employed to tune the parameters of
the steady state memetic algorithm from [23] considering 25
different configurations for overall performance improvement.
Two training instances from each of the four HyFlex problem



domains, which were initially provided as public domains at
CHeSC2011, are used during the tuning process. Then, the
tuned steady state memetic algorithm with the best parameter
setting is applied to all other ‘unseen’ instances across nine
problem domains. The results show that the tuned steady state
memetic algorithm delivers a significantly better performance
for most of the instances. The parameter setting obtained
through the tuning process generalises well from the limited
number of training instances to unseen instances, even from
the unseen domains. Moreover, surprisingly, the tuning process
detects that crossover should not be used and single point
based search should be preferred rather than population based
search.

The subsequent sections of this paper are organised as
follows. Section II describes HyFlex, including the details
of the problem domains and CHeSC2011. Our methodology
is discussed in Section III. The experimental results and
analysis are presented in Section IV. Finally, we summarise
our findings and explain our future work in Section V.

II. HYPER-HEURISTICS FLEXIBLE FRAMEWORK
(HYFLEX)

Hyper-heuristics Flexible Framework (HyFlex) is an inter-
face proposed to enable the development, testing and com-
parison of both single point and population-based meta/hyper-
heuristics across different combinatorial optimisation problems
[19]. The objective of the initial Java version of the software is
to help algorithm designers to develop general purpose heuris-
tic optimisation algorithms without requiring problem domain
expertise. In HyFlex, the high-level method and problem do-
main layers are separated via a domain barrier [6]. Due to this
barrier, the hyper-heuristic does not have access to problem
specific information, such as the solution representation or
details of the changes that a low-level heuristic will actually
make/has made to the solution. However, problem independent
information, such as the fitness (cost) value, can be passed to
the algorithm [4].

HyFlex was used for the first Cross-domain Heuristic Search
Challenge (CHeSC2011). HyFlex supported six problem do-
mains for the CHeSC2011 competition, namely Maximum
Satisfiability (SAT), One Dimensional Bin Packing (BP),
Permutation Flow Shop (PFS), Personnel Scheduling (PS),
Traveling Salesman Problems (TSP) and Vehicle Routing
Problems(VRP). Each domain contains a number of instances
and problem specific components. Four of those domains
(SAT, BP, PFS and PS) were made available to the participants
when the competition started, while the other two domains
were hidden.

HyFlex has four types of low-level heuristics (operators)
to modify solutions, namely, mutational (MU), ruin and re-
create (RR), crossover (XO) and local search (LS) [19].
Apart from crossover, all of the other low level heuristics
are parameterised. For the mutation and ruin and re-create
operators, the intensity of mutation parameter determines the
extent of changes that the corresponding operator will make to
the input solution. The depth of search parameter controls the

TABLE I: The number of different types of low level heuristics
for 9 problem domains

Domain MU RR XO LS Total
SAT 6 1 2 2 11
BP 3 2 1 2 8
PS 1 3 3 5 12
PFS 5 2 4 4 15
TSP 5 1 4 3 13
VRP 3 2 2 3 10
0-1 KP 5 2 3 6 16
CUT 2 3 2 3 10
QAP 2 3 2 2 9

number of steps that the local search heuristic will complete.
Both of these parameters take values in the interval [0,1], thus
the mutation, ruin and re-create and local search heuristics
require parameter tuning.

Adriaensen et al. [1] extended the HyFlex benchmark set
with the addition of 3 problem domains after CHeSC2011: 0-1
Knapsack (0-1 KP), Max-Cut (CUT), and Quadratic Assign-
ment (QAP). All of the extended set of HyFlex domains have
been formulated as minimisation problems. In this study, we
have used all nine domain implementations in our experiments.
The number of low-level heuristics of each type in each
domain is provided in Table I.

Twenty selection hyper-heuristics competed at CHeSC2011.
The winning hyper-heuristic, with an overall score of 181, was
AdapHH [17], which applies an adaptive heuristic selection
combined with adaptive threshold move acceptance. A subset
of heuristics are used and this subset is determined adaptively.
Moreover, a low level heuristic from this set is chosen using an
online learning mechanism. Then, a move acceptance method
called “adaptive list-based threshold accepting mechanism” is
used to decide whether to accept or reject the new solution
at each step. This algorithm also determines the heuristic
parameter settings, adaptively. For more information about
CHeSC2011, including the tools used in the competition,
a tutorial on those tools, details of the competing hyper-
heuristics, and the results, readers can refer to the CHeSC2011
website1.

Adriaensen et al. [1] applied six selection hyper-heuristics
to all 9 of the extended HyFlex domains. Two of those hyper-
heuristics were taken from CHeSC2011, namely Adap-HH
and EPH (ranking the 5th), which are publicly available. The
remaining hyper-heuristics were proposed by the authors. FS-
ILS follows the iterated local search logic, applying firstly
a perturbative heuristic and then a local search heuristic in
a tabu-portfolio. The solution is then accepted or rejected
according to the acceptance criteria. Finally, the algorithm has
two choices: either performing a new iteration, or restarting
the search. The second algorithm is the same but without
restarting and is labelled as NR-FS-ILS. They also provided
2 simple single point based search selection hyper-heuristics:
AA-HH and ANW-HH. These randomly choose a heuristic
in the categories of mutation, ruin-recreate and local search

1http://www.asap.cs.nott.ac.uk/external/chesc2011/



Algorithm 1 : Pseudocode of Steady-state Memetic Algorithm
Create a population of popsize random individuals
Set the parameter values for Intensity of Mutation (IoM),
Depth of Search (DoS) and tournament size (toursize)
Apply a random local search method (hill climbing) to each individual
while (termination criterion is not satisfied)

Parent1 ← Select-Parent(population, toursize)
Parent2 ← Select-Parent(population, toursize)
Child ← ApplyCrossover (Rand(1, MAX CROSSOVER), Parent1,

Parent2)
Child ← ApplyMutation (Rand(1, MAX MUTATION), IoM, Child)
Child ← ApplyLocalSearch(Rand(1, MAX LOCALSEARCH), DoS,

Child)
WorstOf(population) ← Child

end while

and apply that heuristic to the solution. All of the new
solutions are accepted in AA-HH while only non-worsening
solutions are accepted in ANW-HH. In this paper we compare
the performance of our approach on the additional HyFlex
domains to that of these 6 hyper-heuristics.

III. METHODOLOGY

In this study, we used a steady state memetic algorithm to
solve a range of problems supported by HyFlex. The steady
state approach iteratively creates new individuals and considers
replacement of an individual from the population with the new
one [27].

The steady state memetic algorithm is implemented based
on HyFlex, utilising the mutation and crossover heuristics as
genetic operators and the local search heuristics that already
exist within the framework for each domain. Ruin and re-
create heuristics are considered as mutation heuristics in this
study, increasing the available number of mutation operators.
The pseudocode of our approach for solving instances from
each HyFlex domain is given in Algorithm 1 [23].

The Taguchi orthogonal arrays experimental design method
is employed for parameter tuning to decide the most appro-
priate combination of parameter values for the steady state
memetic algorithm. The following steps are executed [24]:

1) Planning of experiments
• Determine the control parameters (design factors)
• Determine the levels of each control parameter
• Select a suitable orthogonal array based on the

number of parameters and their levels, forming an
experimental design table

2) Conduct the experiments based on the design table
3) Analyse the results and determine the optimum levels

for the individual control parameters
4) Perform a confirmation run using a combination of the

optimum individual parameter levels
In this study, the parameter combinations consist of four

control parameters: population size, intensity of mutation (used
for the mutation and ruin and re-create heuristics), depth of
search (used for the local search heuristics) and tour size for
the tournament selection to choose parents for operators. These
are problem independent parameters and common across all
of the problem domains which respect the HyFlex API. The

TABLE II: Parameter setting options used during the param-
eter tuning of the steady state memetic algorithm

Parameters Value Options
Intensity of Mutation (IoM) {0.2, 0.4, 0.6, 0.8, 1.0}
Depth of Search (DoS) {0.2, 0.4, 0.6, 0.8, 1.0}
Population size (PopSize) {5, 10, 20, 40, 80}
Tournament size (TourSize) {2, 3, 4, 5}

potential values (levels) for each parameter are listed in Table
II. Testing all of the combinations for all settings would mean
testing 500 configurations, however, this has been reduced to
testing 25 settings using the L25 Taguchi orthogonal array.

In related work, Sun [26] used the same technique for
parameter tuning of a genetic algorithm to solve a job
shop scheduling problem. In that study, parameters, including
population size, crossover rate, mutation rate and stopping
condition, were considered as design factors. The differences
between our study and that of Sun [26] are not only that we use
different design factors, but, importantly, that we also tune the
parameters for cross-domain search rather than for a particular
domain.

IV. EXPERIMENTAL RESULTS

In this study, two sets of experiments are performed with the
goal of (i) obtaining the best parameter setting for the steady
state memetic algorithm, and (ii) assessing the generalisation
capability of the setting obtained from the training phase to see
whether parameter tuning has value for cross-domain search.
In the first set of experiments, parameter tuning of the steady
state memetic algorithm is performed. 25 different parameter
settings, indicated by the L25 Taguchi orthogonal array, were
tested to obtain the best configuration for the steady state
memetic algorithm, using two training instances from each
of the four HyFlex problem domains, which were accessible
prior to CHeSC2011. Then the best setting obtained through
the tuning process as well as the same 25 settings were tested
using the unseen instances from each of the 9 domains.

A. Experimental Settings

Five problem instances from each of the nine HyFlex do-
mains, including the original six and additional three problem
domains, are employed during the experiments. The same
competition instances as in CHeSC2011 are used for the
original six domains, while arbitrarily chosen instances with
IDs 1, 3, 5, 7 and 9 are used from the three extended HyFlex
problem domains.

All experiments were performed on an Intel Core 3.60 GHz
machine with 16 GB RAM. According to the benchmark-
ing tool which the organisers of CHeSC2011 provided, 415
seconds on that machine are equivalent to the 600 nominal
seconds used on the competition machines, so this time limit
was used as the termination criterion for the algorithm, to
ensure a fair comparison.

Each trial was repeated 31 times, the same as for the
CHeSC2011 competition rules. The competition used ‘For-
mula 1’ scoring, where the algorithms were assessed according



TABLE III: Formula 1 score for each steady state memetic
algorithm run, with a particular parameter configuration based
on the L25 Taguchi orthogonal array.

Experiment
number IoM DoS Pop

size
Tour
size Score

1 0.2 0.2 5 2 24.88
2 0.2 0.4 10 3 14
3 0.2 0.6 20 4 17.50
4 0.2 0.8 40 5 17.88
5 0.2 1.0 80 3 15.50
6 0.4 0.2 10 4 9.88
7 0.4 0.4 20 5 2.50
8 0.4 0.6 40 2 8.88
9 0.4 0.8 80 2 22.50

10 0.4 1.0 5 3 27.25
11 0.6 0.2 20 5 0
12 0.6 0.4 40 2 1
13 0.6 0.6 80 3 12
14 0.6 0.8 5 4 24.38
15 0.6 1.0 10 5 22.25
16 0.8 0.2 40 3 0
17 0.8 0.4 80 4 25.88
18 0.8 0.6 5 5 30.88
19 0.8 0.8 10 3 16.25
20 0.8 1.0 20 2 18.38
21 1.0 0.2 80 5 4
22 1.0 0.4 5 4 0
23 1.0 0.6 10 2 1.88
24 1.0 0.8 20 3 1.88
25 1.0 1.0 40 4 2.50

to the median objective values from 31 trials for each instance,
and points were awarded to only the top eight algorithms for
each of the instances. 10, 8, 6, 5, 4, 3, 2 and 1 point(s)
were allocated for first, second, third, fourth, etc, to eighth
place algorithm, respectively. The same scoring system was
utilised here as a performance indicator for the algorithms and
configurations tested. Ties were broken by taking the mean of
the scores that the tied algorithms would take for the tied
positions and assigning that value as the score for each of the
tied algorithms. e.g., algorithms tied for first and second place
would each get a score of 9 (i.e., the mean of 10 and 8). At the
end, the sum of the scores awarded to each algorithm across
all of the instances was totalled to obtain the final score.

B. Parameter Tuning

25 combinations of parameter settings for the ‘intensity of
mutation’, ‘depth of search’, ‘population size’ and ‘tournament
size’ of the steady state memetic algorithm were tested on 8
‘training’ instances, consisting of 2 arbitrarily chosen instances
from 4 HyFlex domains. The L25 orthogonal array was used
to determine the parameter values for each experiment. Since
the tour size has 4 levels (settings/values), one of the possible
settings was assigned randomly in place of the 5th level. The
parameter setting and total score of each setting calculated
using Formula 1 scoring system are given in Table III.

Using the results from this initial set of experiments, the
average effect of each parameter setting was computed. The
score of all steady state memetic algorithms with each pa-

Fig. 1: Main effects plot with mean Formula 1 scores based
on 2 training instances from 4 domains

rameter setting is averaged over the number of configurations
with the same particular parameter setting. For example, the
average effect of a population size of 20 (at Level 3) is
calculated as (17.5 + 2.5 + 0 + 18.38 + 1.88)/5 = 8.052,
since the number of configurations is 5 out of 25. The main
effects plot summarising the average effect of each parameter
is provided in Figure 1. Since a higher Formula 1 score would
be preferred, the parameter setting that has the highest value
would be predicted as the best setting for each parameter from
the main effects plot. Hence, the best configuration for the
steady state memetic algorithm parameters is found to be 0.2
for IoM, 1.0 for DoS and 5 for popsize. The values 2 and 5
have the same average effect for toursize parameter. However,
the toursize of 5 using the best setting for the remaining
parameters performs better than 2 resulting with a Formula 1
score of 75 as opposed to 69, so the toursize of 5 is included
as a part of the best configuration for the steady state memetic
algorithm.

Anova analysis was performed with the total normalised
mean objective values over 31 runs for each instance to
determine the significant factors and percentage contribution
of each factor. Table IV shows that the population size
and depth of search parameters significantly contribute to
the performance with a confidence level of 95%. Depth of
search has the highest percentage contribution of 50.68%,
followed by population size, intensity of mutation and tour

TABLE IV: Anova test results for identifying the contribution
of each parameter (DoF: degrees of freedom, SS: sum of
squares, MS: mean squares, F: variance ratio).

Parameters DoF SS MS F p-value Percent
cont.

IoM 4 3.25 0.81 3.04 0.0766 14.65
DoS 4 11.26 2.81 10.51 0.0019 50.68
PopSize 4 4.54 1.13 4.24 0.0336 20.42
TourSize 3 0.76 0.25 0.94 0.4601 3.40
Residual 9 2.41 0.27 10.85
Total 24 22.22 5.27 100%



Fig. 2: Performance comparison of each steady state memetic algorithm configuration run on two selected instances from each
of the four public HyFlex domains based on their Formula 1 scores.

size respectively.
A confirmation test, using the best parameter values, was

performed on the same training instances. The purpose of this
validation step is to verify that the optimum parameter values
obtained from the Taguchi method provide improvement over
the other tested settings. We put all of the 25 configura-
tions along with the best configuration obtained through the
Taguchi method into a competition and evaluated them using
the Formula 1 scoring system. The results are illustrated in
Figure 2. The tuned steady state memetic algorithm with the
best identified parameter setting outperforms all of the other
settings with a score of 45, followed by the setting S18 with
a score of 25.88.

C. Parameter Tuning Validation with Unseen Instances

The Taguchi method was applied using all fourty five in-
stances across nine problem domains considering 25 parameter
settings in order to assess the generality of the discovered
best setting, and to validate the outcome of the parameter
tuning experiments. Figure 3 shows the main effects plot of
the parameter levels based on the experimental results. As
illustrated, the best parameter combination obtained via tuning
on all instances across nine domains is consistent, being 0.2
for IoM, 1.0 for DoS, 5 for popsize and 5 for toursize. This
is exactly the parameter configuration which was identified
using the training instances. This gives evidence for parameter
tuning with the Taguchi method having value for cross-domain
search.

D. Performance Comparison of SSMA-Best to Previously Pro-
posed SSMA and TGMA

The results obtained from SSMA with the best parameter
setting denoted as SSMA–Best are here compared to the
memetic algorithms, denoted as SSMA and TGMA from
Özcan et al. [23]. The parameter settings for both SSMA and
TGMA in [23] were: (i) population size of 10, (ii) tour size
for tournament selection of 2, and (iii) intensity of mutation
as well as depth of search of 0.2. Table V shows the mean,
median and best fitness values for SSMA-Best, SSMA, TGMA
obtained for each CHeSC2011 instance. The same instances

Fig. 3: Main effects plot with mean Formula 1 scores based
on five instances from each of the nine HyFlex domains.

which were used in the competition and in [23] are used here,
for a fair comparison.

Table V provides a comparison of the performance of
SSMA-Best compared to SSMA and TGMA. The “vs.” col-
umn of this table shows the results of paired one-tail Wilcoxon
signed ranked test results. “<” or “>” indicate that the result
on the left is “worse” or “better”, respectively, than the result
to the right and that this performance difference is statistically
significant within a 95% confidence interval. “≤” or “≥”
indicate that the difference is slightly worse or better, respec-
tively, but that the difference is not statistically significant. For
example, SSMA-Best has a better performance than SSMA for
Instance 1 of SAT problem and this performance difference
is statistically significant; however, SSMA-Best has a slightly
better performance than TGMA for Instance 2 of VRP but this
performance difference is not statistically significant.

Considering the mean performance, SSMA-Best performs
better than SSMA in 27 out of the 30 CHeSC2011 instances
and 26 of those cases have a statistically significant perfor-
mance difference. There are only 3 cases where SSMA per-
forms better than SSMA-Best. Similarly, SSMA-Best performs
better than TGMA in 28 CHeSC2011 instances and in 25 of



TABLE V: Performance comparison of SSMA, SSMA-Best and TGMA based on mean, median and best fitness values obtained
from 31 trials for each instance of CHeSC2011. The algorithm achieving the best fitness is marked in bold style for each
instance.

SSMA SSMA-Best TGMA
PD ID mean median best vs. mean median best vs. mean median best

SAT

1 21.161 22 8 < 9.484 9 3 > 14.323 14 3
2 52.484 53 37 < 30.065 36 9 > 41.806 45 11
3 35 37 10 < 15.387 10 3 > 27.129 31 5
4 27.742 27 26 < 13.613 13 9 > 20.226 19 13
5 19.194 18 14 < 12.742 13 9 > 17.29 17 13

BP

1 0.083 0.082 0.074 < 0.063 0.063 0.058 > 0.075 0.074 0.066
2 0.015 0.013 0.011 < 0.011 0.012 0.008 ≤ 0.012 0.012 0.007
3 0.022 0.022 0.018 > 0.034 0.034 0.029 < 0.02 0.02 0.016
4 0.1115 0.1112 0.1105 < 0.1102 0.11 0.1098 > 0.1108 0.1106 0.1099
5 0.043 0.041 0.036 > 0.061 0.06 0.054 < 0.037 0.037 0.032

PS

1 51.129 50 37 < 21.548 21 16 > 66.419 66 50
2 72015.613 70477 52056 < 9705.129 9677 9477 > 70356.16 69061 59736
3 13203.71 11859 5581 < 3211.452 3219 3146 > 14028.71 12338 10027
4 2942.419 2655 1820 < 1596.871 1589 1344 > 2923.71 2550 2003
5 435.645 431 385 < 318.065 315 290 > 498.032 490 430

PFS

1 6257.806 6258 6231 < 6249.581 6251 6219 > 6301.968 6303 6273
2 26884 26884 26813 < 26812.452 26811 26754 > 26944.55 26945 26889
3 6351.871 6363 6318 < 6336.387 6333 6303 > 6366.677 6369 6342
4 11441.806 11441 11410 < 11376.613 11375 11333 > 11499.65 11502 11458
5 26699.226 26703 26626 < 26632.548 26640 26515 > 26724 26725 26668

TSP

1 48227.747 48194.92 48194.92 ≤ 48221.583 48194.92 48194.92 > 48337.6 48286.76 48194.92
2 21155458.17 21160875.64 20969185.56 < 20912006.397 20885233.01 20789116.98 > 21304532.63 21313786.27 21146401.19
3 6825.552 6825.663 6800.708 < 6811.145 6811.518 6799.111 > 6893.822 6893.809 6858.803
4 68123.369 68059.971 67423.655 < 67029.810 67043.255 66518.735 > 69778.14 69811.893 68922.954
5 53810.138 53748.537 52685.992 < 53503.576 53457.422 52247.568 > 55463.6 55463.992 54052.398

VRP

1 71768.053 71480.081 67820.589 ≤ 71946.305 70776.497 65967.938 > 76331.07 76181.913 71560.119
2 14324.522 14411.658 13358.611 < 13826.295 13384.024 13328.791 ≥ 13869.19 13411.284 13333.091
3 176206.081 177131.584 167704.512 < 147512.686 148001.434 143921.208 > 200838.2 201457.298 193416.831
4 21647.018 21675.195 20678.096 < 21275.493 21648.051 20654.219 ≥ 21412.57 21659.585 20659.896
5 152642.04 152829.839 149032.551 < 147372.783 147228.056 145266.409 > 157001.3 157136.619 153557.35

those cases this performance difference is significant. There
are 2 instances for which TGMA performs better than SSMA-
S18.

SSMA-Best achieves the best fitness values for 27 out of
30 instances (being joint best in one case). SSMA performs
the best for Instance 1 of TSP (joint best) and TGMA finds
the best fitness values for Instances 2, 3, 5 of BP and Instance
1 of SAT and TSP (joint best).

Overall, SSMA-Best was the best performing configura-
tion for cross-domain combinatorial optimisation (Table V).
SSMA-Best was the most successful approach, particularly for
SAT, PS and PFS, significantly outperforming the others on
all instances. However, it did not perform well on BP.

E. Performance Comparison of Memetic Algorithms to the
CHeSC2011 Competitors

The performances of SSMA, TGMA and SSMA-Best are
here compared to the selection hyper-heuristics which com-
peted in CHeSC2011, based on the Formula 1 scoring which
was used there. According to the study in [23], SSMA and
TGMA were among the lowest ranking algorithms, with scores
of 7.5 and 0, respectively.

Figure 4 provides the relative ranking of these 3 algorithms
with respect to the previously described selection hyper-
heuristics from the competition.

SSMA-Best ranked 4th overall among the 23 algorithms
while SSMA and TGMA ranked 19th and 23nd, respectively.
Even though SSMA-Best and SSMA have the same pseu-
docode, the performance improvement that was obtained from
parameter tuning is remarkable. Indeed, when the total score
was considered for each of the domains independently, SSMA-
Best was the 2nd for TSP and PS. SSMA-Best performed
particularly poorly in the SAT and BP domains, compared to
the competing hyper-heuristics, receiving no points for those
domains. The overall score for SSMA-Best was 103.

F. Performance Comparison of SSMA-Best to Previously Pro-
posed Hyper-heuristics on Additional HyFlex Domains

In order to further assess the performance and the level of
generality of SSMA-Best, it was tested on the 3 additional
HyFlex problem domains2 provided by Adriaensen et al. [1].
The authors compared the performance of six selection hyper-
heuristics in their study. Two of these hyper-heuristics were
taken from the competition, namely Adap-HH and EPH. The
rest of the hyper-heuristics were proposed by the authors.

Table VI summarises the results and gives a performance
comparison of SSMA-Best to the hyper-heuristics in [1], based
on the median fitness values for each instance. For the 0-1
KP domain, AdapHH, which was the winning algorithm at

2http://https://github.com/Steven-Adriaensen/hyflext



Fig. 4: Performance comparison of SSMA-Best, SSMA, TGMA and selection hyper-heuristics competed at CHeSC2011 across
six HyFlex problem domains based on their Formula 1 scores.

Fig. 5: Performance comparison of SSMA-Best and each of
the previously proposed selection hyper-heuristics covered in
[1] across the three extended HyFlex domains based on their
Formula 1 scores.

CHeSC2011, performs the best overall, by producing the best
median fitnesses on 3 instances (joint best in one case). For the
QAP domain, NR-FS-ILS outperforms the other algorithms for
3 out of 5 instances. SSMA-Best is the best algorithm on the
CUT domain. SSMA-Best manages to outperform the other
algorithms in terms of median fitness on 3 CUT instances.

Figure 5 illustrates the ranking of all selection hyper-
heuristics and SSMA-Best across the 3 additional HyFlex do-
mains. SSMA-Best ranks second, just after AdapHH. AdapHH
combines many sophisticated ideas in its design and makes
use of online learning and adaptation mechanisms, thus, being
the second algorithm after AdapHH is a success for SSMA-
Best, since it is a generic, although tuned, metaheuristic. We
emphasize at this point, that it was not tuned by considering
the instances upon which it was evaluated, which would
obviously be an unfair comparison.

G. Further consideration of SSMA-Best

The SSMA-Best setting considers a population size of 5
and tournament size of 5 for parent selection. The success
of this configuration is surprising, since these settings mean
that SSMA-Best always selects the best individual (best fitness

value) in the entire population as both Parent 1 and 2.
Since both parents are exactly the same individuals, after
the application of a chosen crossover, the new offspring will
be identical to the parents, thus the crossover does nothing.
Hence, SSMA under the best setting actually performs a single
point based search rather than multipoint. This implies that,
for the HyFlex domains and instances, the crossover operators
do not seem to have much of a positive influence on the overall
performance of SSMA. Under the best settings, none of the
individuals other than the best solution are used during the
search process, turning the overall algorithm into an Iterated
Local Search [15], where mutation is followed by local search
at each step.

V. CONCLUSION AND FUTURE WORK

In this study, the steady state memetic algorithm presented
in [23] is applied to 3 additional domains and is exposed
to parameter tuning experiments. The Taguchi orthogonal
arrays method is utilised for configuring the parameters of
the memetic algorithm for cross-domain search and the per-
formance of the tuned steady state memetic algorithm is
evaluated across nine problem domains. The empirical results
show that the best setting obtained from the parameter tuning
experiments on two instances from four problem domains
also performed the best on all instances across nine domains,
validating the generality of the tuned parameters. These results
support our hypothesis that parameter tuning has actual value
in cross-domain search.

The tuning experiments indicate the success of the steady
state memetic algorithm with a specific configuration denoted
as SSMA-Best, which, significantly, outperforms the two
memetic algorithm variants in [23] and even some of the
competing hyper-heuristics in CHeSC2011. That metaheuristic
approaches are sensitive to parameter settings is a well known
fact, which is reinforced by these experiments, which also
show that tuning has benefits even across domains.

The cross-domain performance improvement achieved via
design of experiments is substantial. Moreover, the key obser-
vations from the empirical results are that crossover should not



TABLE VI: Median fitness values over 31 trials achieved by SSMA-Best and previously proposed selection hyper-heuristics
for each instance of the additional HyFlex domains. The best values are marked in bold style.

PD ID AdapHH FS-ILS NR-FS-ILS EPH AA-HH ANW-HH SSMA-Best

0-1 KP

1 -1258634 -1220103 -1231767 -1253074 -1209914 -1208666 -1218057
3 -431351 -431297 -431312 -431333 -431311 -431304 -431357
5 -4328770 -3756992 -3697266 -4283926 -4248962 -4252143 -4259569
7 -1577175 -1572999 -1572999 -1577175 -1577175 -1572999 -1572999
9 -1467353 -1463681 -1462759 -1467357 -1467353 -1466892 -1467362

QAP

1 154164 154088 154166 1543390 154290 156642 154472
3 149850 149858 149828 150144 149992 152090 150330
5 1187876000 1187491000 1187383000 1189221000 1189321000 1237911000 1189780533
7 44858390 44874030 44873020 44860940 44866880 44929370 44853276
9 273414 273362 273336 273630 273512 275644 273726

CUT

1 -269692927 -255265025 -257764081 -260608752 -263151470 -258016734 -274024670
3 -3025 -3020 -3025 -3004 -3033 -2976 -3018
5 -13126 -13083 -13091 -13065 -13177 -12964 -13128
7 -9823 -9632 -9668 -9794 -9878 -9657 -9965
9 -2786 -2676 -2680 -2648 -2814 -2578 -2822

be used in this case and that single point based search should
be preferred. The steady state memetic algorithm without the
crossover operator becomes an Iterated Local Search (ILS)
[15] approach, in which the solution is perturbed using a
mutation operator and then local search is employed at each
step. Interestingly, there are a number of previously proposed
‘successful’ selection hyper-heuristics that also do not benefit
from the usage of crossover operators, such as [3], [9],
[11], [14]. In future work, we plan to further investigate this
situation, with the further use of automated parameter tuning
methods.

REFERENCES

[1] Steven Adriaensen, Gabriela Ochoa, and Ann Nowé. A benchmark set
extension and comparative study for the hyflex framework. In IEEE
Congress on Evolutionary Computation, CEC 2015, Sendai, Japan, May
25-28, 2015, pages 784–791. IEEE, 2015.

[2] Alpay Alkan and Ender Özcan. Memetic algorithms for timetabling.
In Evolutionary Computation, 2003. CEC’03. The 2003 Congress on,
volume 3, pages 1796–1802. IEEE, 2003.

[3] Shahriar Asta and Ender Özcan. A tensor-based selection hyper-heuristic
for cross-domain heuristic search. Information Sciences, 299:412–432,
2015.

[4] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall,
Barry McCollum, Gabriela Ochoa, Andrew J Parkes, and Sanja Petrovic.
The cross-domain heuristic search challenge–an international research
competition. In Learning and Intelligent Optimization, pages 631–634.
Springer, 2011.

[5] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall,
Gabriela Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A survey
of the state of the art. Journal of the Operational Research Society,
64(12):1695–1724, 2013.

[6] Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic
approach to scheduling a sales summit. In Practice and Theory of
Automated Timetabling III, pages 176–190. Springer, 2001.

[7] A.E. Eiben and S.K. Smit. Evolutionary algorithm parameters and
methods to tune them. In Youssef Hamadi, Eric Monfroy, and Frederic
Saubion, editors, Autonomous Search, pages 15–36. Springer Berlin
Heidelberg, 2012.

[8] Agoston E Eiben and Selmar K Smit. Parameter tuning for configur-
ing and analyzing evolutionary algorithms. Swarm and Evolutionary
Computation, 1(1):19–31, 2011.

[9] Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu. A variable
neighborhood search-based hyperheuristic for cross-domain optimization
problems in chesc 2011 competition.

[10] Hisao Ishibuchi and Shiori Kaige. Implementation of simple multiob-
jective memetic algorithms and its applications to knapsack problems.
Int. J. Hybrid Intell. Syst., 1(1):22–35, 2004.

[11] Ahmed Kheiri and Ender Özcan. An iterated multi-stage selection hyper-
heuristic. European Journal of Operational Research, 2015.

[12] Natalio Krasnogor, BP Blackburne, Edmund K Burke, and Jonathan D
Hirst. Multimeme algorithms for protein structure prediction. In Parallel
Problem Solving from NaturePPSN VII, pages 769–778. Springer, 2002.

[13] Natalio Krasnogor, Jim Smith, et al. A memetic algorithm with self-
adaptive local search: Tsp as a case study. In GECCO, pages 987–994,
2000.

[14] Mathieu Larose. A hyper-heuristic for the chesc 2011, 2011.
[15] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local

search: Framework and applications. In Handbook of Metaheuristics,
pages 363–397. Springer, 2010.

[16] P. Merz and B. Freisleben. A comparison of memetic algorithms,
tabu search, and ant colonies for the quadratic assignment problem.
In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 3, pages 2063–2070, 1999.

[17] Mustafa Mısır, Katja Verbeeck, Patrick De Causmaecker, and Greet Van-
den Berghe. An intelligent hyper-heuristic framework for chesc 2011. In
Learning and Intelligent OptimizatioN, pages 461–466. Springer, 2012.

[18] Sandra Ulrich Ngueveu, Christian Prins, and Roberto Wolfler Calvo.
An effective memetic algorithm for the cumulative capacitated vehicle
routing problem. Computers & Operations Research, 37(11):1877–1885,
2010.

[19] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A Vazquez-
Rodriguez, James Walker, Michel Gendreau, Graham Kendall, Barry
McCollum, Andrew J Parkes, Sanja Petrovic, et al. Hyflex: A benchmark
framework for cross-domain heuristic search. In Evolutionary Compu-
tation in Combinatorial Optimization, pages 136–147. Springer, 2012.

[20] Gabriela Ochoa, James Walker, Matthew Hyde, and Tim Curtois. Adap-
tive evolutionary algorithms and extensions to the hyflex hyper-heuristic
framework. In Parallel Problem Solving from Nature-PPSN XII, pages
418–427. Springer, 2012.

[21] E. Özcan and E. Ersoy. Final exam scheduler - fes. In The 2005 IEEE
Congress on Evolutionary Computation, volume 2, pages 1356–1363,
2005.

[22] E. Özcan and E. Onbasioglu. Memetic algorithms for parallel code
optimization. International Journal of Parallel Programming, 35(1):33–
61, 2007.

[23] Ender Özcan, Shahriar Asta, and Cevriye Altintas. Memetic algo-
rithms for cross-domain heuristic search. In Computational Intelligence
(UKCI), 2013 13th UK Workshop on, pages 175–182. IEEE, 2013.

[24] R.K. Roy. A primer on the Taguchi method. Competitive manufacturing
series. Van Nostrand Reinhold, 1990.

[25] Selmar K Smit and Agoston E Eiben. Comparing parameter tuning
methods for evolutionary algorithms. In Evolutionary Computation,
2009. CEC’09. IEEE Congress on, pages 399–406. IEEE, 2009.

[26] Ji Ung Sun. A taguchi approach to parameter setting in a genetic
algorithm for general job shop scheduling problem. IEMS, 6(2):119–
124, 2007.

[27] Gilbert Syswerda. A study of reproduction in generational and steady
state genetic algorithms. Foundations of genetic algorithms, 2:94–101,
1991.


