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Abstract—There is a growing number of studies on general
purpose metaheuristics that are directly applicable to multiple
domains. Parameter setting is a particular issue considering that
many of such search methods come with a set of parameters to
be configured. Fuzzy logic has been used extensively in control
applications and is known for its ability to handle uncertainty.
In this study, we investigate the potential of using fuzzy systems
to control the parameter settings of a threshold accepting
(TA) metaheuristic for improving the overall effectiveness of a
cross-domain approach. We have evaluated the performance of
various general purpose local search metaheuristics which mix
multiple heuristics at random and apply the TA metaheuristic
with fixed threshold, crisp (non-fuzzy) rule-based control of the
threshold and various fuzzy systems controlling the threshold.
The empirical results show that the approach using the TA with
crisp rule-based control performs the best across six problem
domains from a benchmark.

I. INTRODUCTION

Heuristic search methods are commonly preferred in optimi-
sation to find good quality solutions of computationally hard
problems [1] in a reasonable amount of time. A goal within the
research field involves designing effective cross-domain search
methods. Traditionally, metaheuristics were employed for solv-
ing problem instances from a given problem domain however
this meant that when a new problem needed to be solved,
the given search method required modification to make it
work well on a different problem. Cross-domain search entails
solving problems from characteristically different problem
domains, thus an effective cross-domain search method must
be able to perform well across all problem domains without
modification. The development of such cross-domain search
methods was the focus of a recent competition, the Cross-
domain Heuristic Search Challenge (CHeSC) 2011, where
selection hyper-heuristics were used for solving optimisation
problems from six different domains [2]. Selection hyper-
heuristics are high-level search methodologies that mixes a
set of predefined low level heuristics and can be applied
to different problems without modification. Özcan et al. [3]
decomposed single-point based selection hyper-heuristics into
two key components; a heuristic selection method and a
move acceptance criterion. Emphasis within hyper-heuristic
research has been focused on devising more effective intelli-
gent heuristic selection methods through the use of machine

learning techniques. It is however common that the choice
of the move acceptance criterion is overlooked with “off the
shelf” metaheuristics being used as their move acceptance
component. One problem with metaheuristics and so hyper-
heuristics is that the best settings of their parameters at any
given time are uncertain and is essential for good performance
[4]. This issue becomes a greater challenge within cross-
domain search because good settings for their parameters can
change between different problems.

Fuzzy logic [5] has been used extensively in control ap-
plications and has also been employed for controlling the
parameters of a number of population-based metaheuristic
search methods, each for solving a specific optimisation prob-
lem including mathematical function optimisation [6], [7], [8],
travelling salesman problem [9], the assignment problem [10],
and the clustering problem [11], improving their performances
with respect to their non-fuzzy counterparts.

We recently employed fuzzy logic to control the list length
parameter of a late acceptance based hyper-heuristic for
solving maximum satisfiability problems in [12] however its
success was marginal compared to its counterpart with a
fixed list length. A drawback of the aforementioned study
is that the fuzzy system for controlling the late acceptance
move acceptance component was developed in the presence
of a heuristic selection method which could potentially work
against the move acceptance. For example, the fuzzy controller
may increase the list length parameter to promote diversifi-
cation but the heuristic selection method could choose local
search heuristics.

It has been shown in aforementioned studies that fuzzy
logic can be used within population-based search methods to
improve their performance for solving a single problem. The
aim of this study is to investigate the potential for fuzzy logic
to be used to improve the performance of cross-domain search
methods by controlling the parameters of a move acceptance
method which are uncertain not only during different stages
of the search, but also between different problem types. In
this study, we develop a Threshold Accepting local search
metaheuristic [13] for cross-domain search (XD-TA). XD-TA
uses uniform random heuristic selection to eliminate the effects
of learning mechanisms used in the heuristic selection criteria



Algorithm 1: Pseudo-code for the Threshold Accepting
metaheuristic for minimisation.

1 s← generateInitialSolution();
2 sbest ← s;
3 T ← initial threshold > 0;
4 while termination criteria not met do
5 s′ ← random ∈ N (s);
6 if f(s′) < f(s) + T then
7 s← s′;
8 end if
9 if f(s′) < f(sbest) then

10 sbest ← s′;
11 end if
12 if a long time has passed without

improvement or too many iterations
have passed then

13 T ← decrease(T );
14 end if
15 end while
16 return sbest

within hyper-heuristics. The threshold parameter of XD-TA is
then either fixed, controlled using a crisp (non-fuzzy) method,
or controlled using a fuzzy system. These three strategies are
then used to conclude whether controlling parameters of move
acceptance methods using fuzzy logic can improve cross-
domain performance. Moreover, the crisp strategy is used as
an experimental control to show whether parameter control is
a confounding factor of any cross-domain improvement using
fuzzy logic.

The rest of this paper is structured as follows. The Threshold
Accepting (TA) metaheuristic is defined in Section II along
with an addition to TA for cross-domain search (XD-TA). In
Section III we define the three variations of XD-TA used in
the experimentation and outline the experimental methods. The
results of the study are given in Section IV and the paper is
concluded in Section V.

II. THRESHOLD ACCEPTING

In this study, we use a modified Threshold Accepting (TA)
algorithm for cross-domain search. In this section, we begin
by introducing the original TA algorithm. We then propose a
modification to TA, as inspired by a modification made to a
very similar metaheuristic, to make it suitable for use within
cross-domain search which is then used in the empirical study.

A. The Threshold Accepting Metaheuristic

Threshold Accepting (TA) is a metaheuristic proposed by
Dueck and Scheuer in [14]. The pseudo-code for TA is pro-
vided in Algorithm 1 which is reformulated for minimisation.

At each iteration of the search, a solution is randomly
chosen from the neighbourhood (N (.)) of the current solution
(s) as the candidate solution (s′) where the neighbourhood
is defined by perturbations of the current solution. TA then
replaces the current solution with the candidate solution if and

only if the objective value of the candidate solution (f(s′)) is
better than an acceptance threshold (τ ) calculated as the sum
of the objective value of the current solution and threshold
parameter (f(s) + T ). Otherwise, TA rejects the candidate
solution and the current solution stays the same for the
next iteration where a different neighbouring solution can be
chosen. The definition of TA provided by Dueck also mentions
some mechanism for controlling the threshold parameter by
decreasing T whenever no improvement is made for some
amount of time or a number of iterations have elapsed. An
exact control mechanism however is not given.

B. Threshold Accepting for Cross-domain Search

One of the problems faced when developing cross-domain
search methods is caused by the differing ranges of objective
values between different problem domains. The threshold
parameter, T , within TA has to be set appropriately depending
on the current problem. A suitable range of values for T in one
domain may be too large in another domain, causing too much
diversification thus simulating a random walk of the search
space, and in another domain may be too small causing a lack
of diversification simulating hill-climbing local search.

A modification was made to the Record-to-Record Travel
(RRT) algorithm, introduced by Dueck in [15], by Mısır et
al. in [16] which they called Iteration Limited Threshold
Accepting (ILTA). The only difference between TA and RRT
is in the calculation of the acceptance threshold, τ , with all
other aspects of both methods being algorithmically identical.
In TA, the acceptance threshold is calculated as the sum of
the objective value of the current solution and a threshold
parameter. Within RRT, the objective value of the best solution
found so far is used rather than the current solution. In [16], the
threshold parameter is encoded as a factor of the best solution
found so far using the parameter, ε. The threshold parameter is
therefore dependent on the objective value of an existing solu-
tion for any given problem. The acceptance threshold in ILTA
is calculated as τ = ε×f(sbest)+f(sbest) = (1+ε)×f(sbest).
A similar approach was also used for cross-domain search
in [17] where they calculate τ as (1 + ε) × f(sstageBest)
in a stage-based hyper-heuristic. Since the only difference in
RRT compared to TA is the use of best solution found so far
rather than the current solution, a modification of TA making
it more suitable for cross-domain search is trivial, calculating
the acceptance threshold as τ = (1 + ε)× f(s).

Another issue with TA arises due to τ being updated at
each iteration. If τ is updated every iteration, it is likely that
a sequence of solutions are accepted which are progressively
worse than the previous causing a high degree of diversifica-
tion within the search leading to poor performance. A multi-
stage hyper-heuristic approach is used in [17] for cross-domain
search. In the multi-stage hyper-heuristic, the search is split
into a number of stages. In each “S1HH stage”, a record of the
best solution found in the current stage is used to calculate an
acceptance threshold synonymous to that used in ILTA except
f(sstageBest) is used instead of f(sbest). To counteract the
aforementioned issue, we introduced a second parameter to



Algorithm 2: Pseudo-code for the Cross-domain Thresh-
old Accepting metaheuristic (XD-TA).

Input: IPS, ε
1 s← generateInitialSolution();
2 sbest ← s;
3 while termination criteria not met do
4 s′ ← random ∈ N (s);
5 if iterations == IPS then
6 ε← update(ε);
7 τ = (1 + ε)× f(s);
8 iterations = 0;
9 end if

10 if f(s′) ≤ τ then
11 s← s′;
12 end if
13 if f(s′) ≤ f(sbest) then
14 sbest ← s′;
15 end if
16 iterations++;
17 end while
18 return sbest

XD-TA inspired by the multi-stage method called iterations
per stage (IPS). In XD-TA, we therefore split the search into
a number of stages whose length is defined by the number of
iterations, IPS. The acceptance threshold is then only updated
at the start of each stage using the same formula as before such
that an upper limit is maintained for the duration of each stage.
The pseudo-code for XD-TA is shown in Algorithm 2.

As with TA, at each iteration of the search, a solution
is randomly chosen from the neighbourhood (N (.)) of the
current solution (s) as the candidate solution (s′) where the
neighbourhood is defined by perturbations of the current
solution. XD-TA then checks to see if a new stage has begun
(Line 5 of Algorithm 2) in which case ε is updated by the con-
trol mechanism, if any, and τ is updated as τ = (1+ε)×f(s).
XD-TA then replaces the current solution with the candidate
solution if and only if the objective value of the candidate
solution (f(s′)) is better than the acceptance threshold (τ ) for
the respective stage. Otherwise, XD-TA rejects the candidate
solution and the current solution stays the same for the
next iteration where a different neighbouring solution can be
chosen.

III. EXPERIMENTATION

In this study, we aim to show whether fuzzy logic can be
used to improve the performance of a Threshold Accepting
cross-domain search method (XD-TA) by controlling its ε
parameter. Moreover, whilst it could be observed that fuzzy
does improve the cross-domain performance, we also want
to be able to show whether control of the ε parameter is a
confounding factor of any improvement of the fuzzy control.

The XD-TA metaheuristic search method was implemented
in Java using the HyFlex Framework [18] which is a soft-

ware framework designed to “enable the development, testing,
and comparison of iterative general-purpose heuristic search
algorithms”. The HyFlex Framework consists of a total of 6
problem domains, each of which has a set of 10-12 problem
instances, and provides a set of low-level heuristics, also
known as move operators, for each problem domain. These
heuristics belong to one of four types, local search, mutation,
ruin-recreate, and crossover.

All XD-TA algorithms used in this study use the same
underlying definition as explained in Section II-B with the
only differences being in the parameter setting for IPS, and
the implementation of the update(ε) method controlling the ε
threshold parameter. The neighbourhood of a given current
solution is defined by the underlying low-level heuristics
of the HyFlex Framework. For the purpose of this study,
crossover type heuristics were omitted due to the requirement
of managing a population of solutions suitable to use for
the crossover operation, and previous experience of using
such heuristics degrading the performance of cross-domain
search methods when random heuristic selection is used.Note
that for efficiency reasons, rather than generating the whole
neighbourhood of any given solution, the choice of a random
neighbouring solution is implemented by choosing a random
low-level heuristic and applying it to the current solution.

Three main variants of XD-TA had to be developed to meet
the aims of the study. Firstly, XD-TA was implemented using
a fixed setting of ε (XD-TA-1) to determine a baseline result
of the XD-TA search method. The second version of XD-
TA used a crisp (non-fuzzy) rule-based system for controlling
the setting of ε (XD-TA-2) which is used to show whether
control in general, or specifically fuzzy control, is required for
improving the cross-domain performance of XD-TA. Finally
a fuzzy system was designed for controlling the parameter
setting of ε (XD-TA-3). The implementations of update(ε),
as shown in Line 6 of Algorithm 2, for the three aforemen-
tioned versions of XD-TA are defined in Sections III-A, III-B,
and III-C respectively. ε was initially set to 0.00 in XD-TA-2
and XD-TA-3 however for XD-TA-1, the initial setting for ε
was set to its best setting.

The experimental design for tuning of the three versions
of XD-TA, and the final comparison of the cross-domain
performance of each is as follows. For the parameter tuning
experiments, a total of 8 problem instances were chosen
consisting of one small and one large problem instance from
each of the 4 “public domains”. These were One-dimensional
Bin Packing (BP) instances 1 and 11, Permutation Flow Shop
(FS) instances 1 and 11, Personnel Scheduling (PS) instances
5 and 9, and Maximum Satisfiability (SAT) instances 5 and
11, as detailed in the CHeSC instance summary1. For XD-
TA-1 and XD-TA-2, the parameters were tuned by evaluating
all combinations of considered parameter settings, as detailed
in their respective definitions, comparing all configurations
over 31 trials per configuration each with a time based

1http://www.asap.cs.nott.ac.uk/external/chesc2011/reports/CHeSCInstance-
Summary.pdf

http://www.asap.cs.nott.ac.uk/external/chesc2011/reports/CHeSCInstanceSummary.pdf
http://www.asap.cs.nott.ac.uk/external/chesc2011/reports/CHeSCInstanceSummary.pdf


termination criteria of 600 seconds as defined by the CHeSC
2011 competition using a Kruskal-Wallis One-way ANOVA
test, referred to herein as a KW-ANOVA test, with n0 that
the results obtained by all configurations come from the same
distribution. Note that the Kruskal-Wallis test was used since
the results obtained did not always come from a normal
distribution and hence required a non-parametric variant of the
standard ANOVA. The configuration which most frequently
appeared in the best performing group of configurations over
the 8 training instances was then chosen to be best. Initial
tuning of XD-TA-3 followed the same format as the tuning of
XD-TA-1 and XD-TA-2 using initial definitions of the fuzzy
sets, as detailed in the description for XD-TA-3, and a fuzzy
rule-base which emulates XD-TA-2. Since there was a much
larger number of design choices, resulting in an exponential
increase of possible configurations, from this point on in the
design of XD-TA-3, each aspect of the design was considered
in order where the best configuration of each was used in the
subsequent iteration of improvement.

To evaluate the cross-domain performance of the three
parameter control techniques; fixed ε, crisp controlled ε, and
fuzzy controlled ε, all three variants of XD-TA-1, XD-TA-2
and XD-TA-3 were evaluated using their best configurations
against a total of 30 problem instances, 5 problem instances
each from 6 problem domains, as used in the CHeSC 2011
competition, detailed in the CHeSC instance summary (see
previous footnote1), as these instances were chosen by the
organisers to best reflect the effectiveness of cross-domain
search methods. Each method was ran a total of 31 times
per instance for the same 600 CHeSC competition seconds
as in the tuning experiments and the results. To reduce the
chances of making a type-1 statistical error, all three methods
were compared using a Kruskal-Wallis ANOVA test, referred
to herein as KW-ANOVA, to show not only whether fuzzy
control of XD-TA can improve its cross-domain performance,
but also whether control in general is a confounding factor
of the improvement. That is, if fuzzy control can improve
over a fixed XD-TA, does a crisp control system also improve
its performance and if so, is the fuzzy approach statistically
significantly better than the crisp mechanism.

A. XD-TA with Fixed ε (XD-TA-1)

In this version of XD-TA, ε was fixed for the duration of the
search and thus update(ε) simply returned the current value of
ε. The parameters of ε and IPS used for the fixed XD-TA were
derived from a combinatorial parameter tuning experiment
where each considered parameter setting of ε was paired with
each setting considered for IPS. Within this study, there were
four possible choices of ε ∈ {0.01, 0.05, 0.10, 0.15}, as used in
the crisp and fuzzy XD-TA’s below, and two possible choices
of IPS ∈ {100, 1000} forming 8 possible configurations of
XD-TA. These 8 configurations were tested against a total
of 8 training problem instances which consisted of one large
and one small sized instance each selected from 4 different
problem domains. A Kruskall-Wallis one-way ANOVA test
between all 8 configurations over 8 training instances consist-

TABLE I
MEAN RANKS FOR A KRUSKAL-WALLIS ONE-WAY ANOVA TEST

BETWEEN EACH CONFIGURATION OF XD-TA-1 WITH THE BEST
PERFORMING AND NON-STATISTICALLY SIGNIFICANTLY DIFFERING

CONFIGURATIONS FOR EACH INSTANCE SHADED GREY.

Problem IPS = 100 IPS = 1000
ε 0.01 0.05 0.10 0.15 0.01 0.05 0.10 0.15

BP #1 18.29 81.32 175.32 191.61 44.71 111.77 184.35 188.61
BP #11 16.77 147.32 147.65 163.21 46.23 137.19 175.65 161.98
FS #1 32.69 128.95 161.13 182.10 38.23 120.63 159.73 173.55
FS #11 42.40 125.58 158.85 171.84 60.26 130.53 142.73 163.81
PS #5 139.47 143.95 122.39 125.29 123.31 113.61 114.81 113.18
PS #9 96.05 119.98 86.50 92.19 137.71 151.26 148.68 163.63
SAT #5 229.00 194.97 117.26 73.63 128.00 117.06 84.10 51.98
SAT #11 196.71 195.29 100.90 37.44 161.42 166.42 95.92 41.90

Algorithm 3: Pseudo-code for the update(ε) method used
in the crisp rule-based XD-TA. Note that if iterations is not
a multiple of IPS then the value of ε remains unchanged.

Input: ε, IPS, CNIM, MAX_CNIM
1 εs = 0.00, 0.01, 0.05, 0.10, 0.15;
2 if iterations mod IPS == 0 then
3 if CNIM ≥ MAX_CNIM then
4 ε← next highest value of ε ∈ εs;
5 else
6 ε← 0.00;
7 end if
8 return ε

ing of one small and one large problem instance, each from
4 problem domains showed that the best configuration was
with ε = 0.01 and IPS = 100 whose results are shown in
Table I. Note that with the objective of minimising, the better
configurations are those that have smaller mean ranks.

B. XD-TA with Crisp Rule-based Control of ε (XD-TA-2)

An adaptive mechanism using only crisp rules was created
for adaptively controlling the ε parameter of XD-TA. The crisp
rule-based system selected a value of ε from the set of ε values
tested for the fixed XD-TA method including 0.00 for when
the control method decides that a threshold value of 0.00
should be used. That is, ε ∈ {0.00, 0.01, 0.05, 0.10, 0.15}.
An additional parameter, the current number of consecutive
non-improving moves (CNIM), was introduced to the XD-TA
method which the control system uses to determine whether
the value of ε should be increased or reset to its initial setting.
The update(ε) method in the crisp adaptive XD-TA was then
defined as shown in Algorithm 3.

The parameters of the system were tuned using the same
systematic approach used for tuning the fixed XD-TA method.
Within the crisp adaptive XD-TA however we have introduced
two additional parameters, MAX_CNIM and INCR. Three
settings were considered for MAX_CNIM as 0.05 × IPS,
0.10× IPS, and 0.20× IPS. The two incremental strategies,
INCR, are used to determine when CNIM is increased. The
generation INCR strategy increments CNIM whenever a move
is rejected whereas the acceptance INCR strategy increments
CNIM whenever a move is accepted but the cost of the



accepted solution is not better than that of the current solution.
Unlike with XD-TA-1, there was no clear best performing con-
figuration of XD-TA-2. A Kruskall-Wallis one-way ANOVA
test between all 12 configurations, whose results are given in
Table II, showed that a number of configurations performed
well. In general, using the acceptance INCR strategy over the
generation strategy improved the cross-domain performance of
each configuration of IPS and CNIM. Within the results for
the acceptance strategy there did not appear to be a correlation
between the performance of the resulting search method and
the IPS or CNIM parameter settings. Two configurations
of the crisp controlled XD-TA algorithm were in the best
performing group of configurations for 7 out of the 8 training
instances with the rest only appearing in such a group between
4 and 6 times. The two best configurations were with the
acceptance incremental strategy and when {IPS = 100; CNIM
= 20% of IPS} and {IPS = 1000; CNIM = 5% of IPS}.
The best configuration for XD-TA-2 was chosen to be when
INCR = ACC, IPS = 1000, and CNIM = 0.05 × IPS = 50
since it performed the best, in terms of its mean ranks,
for 2 instances compared to only 1 instance for the other
configuration.

C. XD-TA with Fuzzy Control of ε (XD-TA-3)

Finally, a third variant of XD-TA was developed which uses
fuzzy logic to control the threshold parameter, ε. The fuzzy
systems developed in this study were implemented using the
Java version of fuzzylite [19]. Initially, a fuzzy system was
designed to emulate the crisp control system using the ε values
as constant outputs within a Sugeno (TSK) fuzzy inference
system using the MIN and MAX t-norm and t-conorm in the
antecedents, and algebraic product for the activation operator
in the consequents. The initial fuzzy system, referred to herein
as XD-TA-3-I, is a two input-one output system which uses
the current value of ε and the number of consecutive number
of non-improving moves (CNIM) as its inputs, and its output
is the new value of ε to be used. As stated before, the fuzzy
system uses TSK inference and therefore the output of the
fuzzy system is defined trivially using 5 constants, one for each
ε setting as used in XD-TA-2. The two input fuzzy sets were
designed using triangular membership functions (TriMF’s).
The first, current-ε, was designed using 5 TriMF’s, one
for each ε setting with U = [0, 0.15], where each membership
function (MF) had a membership of 1.0 at the point of its
respective ε value, and each MF crossed with adjacent MF’s
at membership 0.5 as shown in Figure 1. The CNIM fuzzy
set had U = [0,CNIM_MAX] and was designed in the same
way as current-ε but consisted of 2 MF’s to decrease the
size of the rule-base and hence decrease the complexity of
the fuzzy rules and cost penalty on the search method of
evaluating the fuzzy system. In the event that the current value
of CNIM exceeds CNIM_MAX, then CNIM takes the value
of CNIM_MAX. The fuzzy rules of XD-TA-3-I are shown in
Table III.

XD-TA-3-I was then tuned by evaluating all combinations of
IPS, INCR and CNIM as in XD-TA-2 where the upper bound

Fig. 1. Input fuzzy set current-ε as used in XD-TA-3.

TABLE III
FUZZY TSK RULES USED IN XD-TA-3-I IN THE FORMAT

IF CURRENT-ε IS AND CNIM IS THEN NEW-ε = .

CNIM
LOW HIGH

c
u
r
r
e
n
t
-
ε VERY SMALL 0.00 0.01

SMALL 0.00 0.05
MEDIUM 0.00 0.10
HIGH 0.00 0.15
VERY HIGH 0.00 0.15

of U of the CNIM fuzzy set is defined as CNIM_MAX← CNIM.
These results show that the best configuration of XD-TA-
3-I was INCR = ACC, IPS = 1000, and CNIM_MAX = 20
however XD-TA-3-I performed poorly compared to XD-TA-
2. We therefore rendered the control surface of XD-TA-3-I
which showed that the value of ε was reduced very slowly
as CNIM decreased potentially causing the poor performance
which we put down to the design of the CNIM fuzzy set.
The CNIM fuzzy set was then redesigned using Z- and S-
curve MF’s such that ε decreased at a faster rate, and the
parameters of the LOW and HIGH MF’s were modified to be
(CNIM_MAX / 2, CNIM_MAX), producing XD-TA-3-II. XD-
TA-3-II was compared to XD-TA-3-I using the best parameter
settings from the previous tuning experiment and showed that
XD-TA-3-II performed better over the 8 training instances
and the new definition of the CNIM fuzzy set was used in
subsequent designs of the fuzzy system for XD-TA-3 as shown
in Figure 2.

Fig. 2. Input fuzzy set CNIM as used in XD-TA-3.



TABLE II
COMPARISON OF ALL CONFIGURATIONS OF IPS,CNIM, AND INCR FOR XD-TA-2 USING A KRUSKAL-WALLIS ONE-WAY ANOVA WITH CI = 95%.

Generation Strategy Acceptance Strategy
χ2(11) p-valueIPS 100 1000 100 1000

CNIM 5 10 20 5 10 20 5 10 20 5 10 20
BP #1 332.10 220.32 100.84 350.13 266.68 166.52 285.61 123.19 63.87 21.10 197.90 109.74 336.55 1.70×10−65

BP #11 327.00 163.53 163.53 355.61 285.90 174.61 261.94 48.42 16.00 82.39 220.74 138.32 342.03 1.18×10−66

FS #1 261.53 223.73 178.47 267.39 232.63 154.34 191.39 135.02 154.35 125.29 193.71 120.16 77.07 5.42×10−12

FS #11 248.76 199.53 189.81 193.40 169.73 166.90 198.56 187.23 178.63 168.87 167.15 169.44 15.97 1.42×10−1

PS #5 210.10 198.82 181.11 153.39 150.94 172.98 222.00 234.47 219.10 134.02 168.23 193.16 29.88 1.70×10−3

PS #9 146.16 124.29 170.98 211.89 182.35 193.05 153.06 152.15 160.02 244.16 254.65 245.24 55.93 5.23×10−8

SAT #5 153.15 218.45 243.92 106.71 146.13 163.65 190.34 228.16 274.82 184.79 153.74 174.15 67.20 1.15×10−10

SAT #11 138.68 191.87 201.97 182.19 194.27 184.44 168.03 175.92 197.29 220.58 184.87 197.89 13.19 2.81×10−1

TABLE IV
FUZZY TSK RULES USED IN XD-TA-3(-V) IN THE FORMAT

IF CURRENT-ε IS AND CNIM IS THEN NEW-ε = .

CNIM
LOW HIGH

c
u
r
r
e
n
t
-
ε VERY SMALL 0.00 0.01

SMALL 0.00 0.05
MEDIUM 0.01 0.10
HIGH 0.05 0.15
VERY HIGH 0.10 0.15

The performance of the fuzzy system was also improved by
experimenting with different rule-bases. These were designed
by instead of setting the output to be 0.00 if CNIM is LOW,
then we decrease the output by choosing the next smallest ε
value, XD-TA-3-III, and next next smallest, XD-TA-3-IV. An
ANOVA test showed that despite considering the current value
of ε when CNIM was LOW, XD-TA-3-II, XD-TA-3-III and XD-
TA-3-IV did not perform statistically significantly different
for 6 out of 8 training instances with XD-TA-3-II performing
significantly better than both others for Bin Packing problems.
This could have been due to the gradual decrease of ε rather
than the instant decrease used in XD-TA-2. We then had the
idea that the performance of XD-TA-3-III could exceed that of
XD-TA-3-II if we control ε continually, that is IPS = 1, rather
than using the stage based approach used in XD-TA-2. Since
the value of ε is now updated at each iteration, the setting for
CNIM_MAX used in previous versions may be too low as it
is checked 1000 times more frequent. We therefore increased
CNIM_MAX to be 100, the addition of which and the use of
continual control constitutes a fifth version XD-TA-3-V.

The configuration, XD-TA-3-V, of the fuzzy system was
used as the final system, referred to herein as just XD-TA-3,
which, to recap, has the following parameter settings. IPS = 1,
INCR = GEN, MAX CNIM = 100, uses the input fuzzy sets
shown in Figures 1 and 2, with the output described at the
beginning of this section. The TSK rules of XD-TA-3-V are
stated in Table IV, and the overall control surface is illustrated
in Figure 3.

IV. RESULTS

In this study, we wanted to see whether fuzzy logic could
be used to improve the performance of a cross-domain search
method by controlling the parameters of its move acceptance.
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Fig. 3. Control surface of fuzzy system used to control ε in XD-TA-3.

Moreover, we wanted to test whether control of its parameters
is a confounding factor of improvement in the cross-domain
effectiveness of the resulting search method.

We therefore performed a Kruskal-Wallis One-way ANOVA
test on all three variants of XD-TA consisting of the best
configurations for no control of ε (XD-TA-1), control of ε
using a crisp rule-based system (XD-TA-2), and control of ε
using a fuzzy control system (XD-TA-3). This test would show
us which control mechanism, if any, performed better than the
remaining mechanisms for each problem instance. The null
hypothesis, h0, of the KW-ANOVA test states that the data
comes from the same distribution. In terms of our analysis
acceptance of h0 would show that XD-TA-1, XD-TA-2, and
XD-TA-3 do not perform statistically significantly different
from one another, thus the control mechanism has no effect
on performance. If h0 is however rejected in favour of ha, then
at least one of the control mechanisms performs statistically
significantly better than the remaining mechanisms. In this
case, a post-hoc test is used to compare the significance
between the differences of each mechanism. The results of
the KW-ANOVA test are shown in Table VI where the best
approach, or group of approaches, for each instance are shaded
in grey. The best approach for solving each instance in terms



of their mean rank test statistic is shaded in dark grey. Note
however that there is no statistical significance between those
shaded dark grey and those in light grey.

The KW-ANOVA test showed that the crisp controlled
version of XD-TA (XD-TA-2) was by far the best for cross-
domain search. The difference between the performance of all
three variants of XD-TA was not significant for 3 of the 30
instances with the test failing to reject h0 that the mean ranks
are from the same distribution. Moreover, these 3 instances
were from the same problem domain, TSP, for which XD-TA-1
consistently appeared in the best group of approaches, showing
that the control of ε is generally ineffective for this problem.
For the remaining 27 instances, the test statistic rejected
h0 showing that at least one method performed statistically
significantly better than the other(s). XD-TA-2 was present
in the best performing group of XD-TA variants 23 times
out of 30 compared to just 12 and 8 for XD-TA-3 and XD-
TA-1 respectively. Moreover, XD-TA-2 performed statistically
significantly better than both XD-TA-1 and XD-TA-3 for 13
of these instances. This shows that while the fuzzy control of
ε was able to improve the cross-domain performance of XD-
TA, control in general was a confounding factor of the im-
provement. In this case, a crisp rule-based control mechanism
was able to perform much better than the fuzzy controlled
algorithm. Additionally, XD-TA-3 showed promising results
for solving Bin Packing problems appearing one of the best
more frequently than other approaches, suggesting that fuzzy
control can improve the performance of a search method, albeit
not the cross-domain performance.

V. CONCLUSIONS AND FUTURE WORK

Three variants of a Threshold Accepting algorithm modified
for cross-domain search were developed and tuned. The three
variants, known as XD-TA-1, XD-TA-2, and XD-TA-3, used
different strategies for controlling a threshold parameter of
XD-TA. XD-TA-1 used a fixed setting for ε throughout the
search representing a baseline XD-TA with no control. Two
further algorithms, XD-TA-2 and XD-TA-3 were designed
using a crisp rule-based control mechanism and a fuzzy
control mechanism respectively. The different variants were
compared across a total of 30 problem instances taken from
6 different problem domains to represent the cross-domain
search problem. Analysis showed that while a fuzzy control
system can be used to improve the cross-domain performance
of XD-TA(-1), a much simpler crisp control system, requiring
much less time to develop and tune, was able to outperform
both XD-TA-1 and XD-TA-3.

Fuzzy logic has been used in the past for controlling the
parameters of population-based metaheuristics for solving a
variety of computationally hard problems, but were only used
for solving a particular type of problem. Our results also
indicate potential for fuzzy logic to be used to improve the
performance of single-point based local search metaheuristics
by controlling their parameters for solving a single type of
problem. Fuzzy logic in these experiments has not performed
as expected, failing to improve over the crisp control system at

TABLE VI
KRUSKAL-WALLIS ONE-WAY ANOVA COMPARING THE PERFORMANCE

OF XD-TA-1, XD-TA-2, AND XD-TA-3 WITH n0 THAT ALL RESULTS ARE
FROM THE SAME DISTRIBUTION AT CI = 95%.

Instance XD-TA-1 XD-TA-2 XD-TA-3 χ2(2) p

B
P

7 78.00 22.26 40.74 68.61 1.26×10−15

1 20.58 66.39 54.03 47.80 4.17×10−11

9 78.00 47.00 16.00 81.79 1.74×10−18

10 78.00 37.13 25.87 64.04 1.24×10−14

11 78.00 47.00 16.00 81.79 1.74×10−18

SA
T

3 77.08 20.29 43.63 70.01 6.29×10−16

5 76.10 23.44 41.47 61.20 5.14×10−14

4 74.45 20.39 46.16 62.51 2.66×10−14

10 78.00 25.00 38.00 70.65 4.56×10−16

11 73.52 33.58 33.90 47.07 6.01×10−11

PS

5 42.81 28.56 69.63 37.18 8.43×10−9

9 50.82 67.26 22.92 42.76 5.18×10−10

8 36.00 45.48 59.52 11.92 2.60×10−3

10 49.89 25.87 65.24 33.52 5.27×10−8

11 44.50 20.31 76.19 67.02 2.80×10−15

FS

1 45.29 22.53 73.18 54.83 1.24×10−12

8 69.52 29.92 41.56 35.27 2.20×10−8

3 53.29 26.08 61.63 30.99 1.86×10−7

10 61.11 32.61 47.27 17.30 1.75×10−4

11 56.11 30.98 53.90 16.49 2.63×10−4

T
SP

0 47.52 37.90 55.58 6.67 3.57×10−2

8 48.76 49.31 42.94 1.06 5.88×10−1

2 26.90 62.26 51.84 28.09 7.95×10−7

7 51.35 46.74 42.90 1.52 4.67×10−1

6 46.63 48.27 46.10 0.11 9.47×10−1

V
R

P

6 70.42 54.58 16.00 66.68 3.32×10−15

2 78.00 16.19 46.81 81.28 2.24×10−18

5 78.00 46.45 16.55 80.37 3.54×10−18

1 49.90 16.00 75.10 74.85 5.59×10−17

9 78.00 16.61 46.39 80.20 3.84×10−18

the cross-domain level. Our results indicate that fuzzy logic on
its own is no more suitable for cross-domain search than other
control methods. Within cross-domain search, local search
metaheuristics that perform well often employ strategies for
tuning and/or controlling their parameters based on the fea-
tures of the problem being solved. Fuzzy systems themselves
introduce a set of parameters. In retrospect, fine tuning of the
membership functions through learning mechanisms may have
produced different results and is an area for future research.

Whilst fuzzy logic was not able to improve the cross-domain
performance of XD-TA by controlling its parameters, this does
not rule out other research directions for using fuzzy logic in
other ways. Fuzzy logic has been previously applied to the
problem models themselves such as in the Vehicle Routing
problem where fuzzy sets were used to model imprecise vari-
ables such as travel time and transportation costs [20]. Cross-
domain search methods however operate at a higher level than
the heuristic level meaning fuzzy logic cannot be used in this
way. Guided Local Search (GLS) works by augmenting the
objective function using crisp penalty functions. The cross-
domain performance of GLS could potentially be improved
by replacing these with fuzzy penalty functions.
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