
Particle Swarms for Multimodal Optimization

Ender Özcan, Murat Yılmaz

Yeditepe University, Department of Computer Engineering,
34755 Kadıköy/İstanbul, Turkey

eozcan/myilmaz@cse.yeditepe.edu.tr

Abstract. In this paper, five previous Particle Swarm Optimization (PSO) algo-
rithms for multimodal function optimization are reviewed. A new and a suc-
cessful PSO based algorithm, named as CPSO is proposed. CPSO enhances the
exploration and exploitation capabilities of PSO by performing search using a
random walk and a hill climbing components. Furthermore, one of the previous
PSO approaches is improved incredibly by means of a minor adjustment. All
algorithms are compared over a set of well-known benchmark functions.

1 Introduction

Inspiring from the swarms in nature, such as; birds, fish, etc., Kennedy and Eberhart
[7] proposed a population based algorithm called Particle Swarm Optimization
(PSO). PSO combines cognition only model that values solely the self-experience and
social only model that values solely the experience of neighbors. A particle encodes a
candidate solution to a problem at hand. The algorithm uses a set of particles flying
over a search space and moving towards a promising area to locate a global optimum.
However, there are a set of problems requiring discovery of equal quality candidate
solutions, so that, a user could make a choice in between them. In some problems,
local optima, or a set of solutions with a predetermined quality levels can also be
requested. Multimodal optimization problems represent such class of problems in
which the researchers are interested. Different PSO algorithms have been already
proposed for solving multimodal problems. These algorithms are mostly based on
existing approaches used in the evolutionary algorithms for multimodal optimization.

Most of the real world problems carry multimodal characteristics; hence develop-
ing efficient algorithms for multimodal optimization problems is still a research area.
Previous approaches can be categorized as iterative and subpopulation methods [8].
In the iterative methods, the algorithm is applied several times consecutively to locate
each optimum. In the subpopulation methods, the population is divided into parts to
search optima simultaneously. In this paper, the previous PSO algorithms for multi-
modal optimization based on subpopulation model are compared to a proposed Parti-
cle Swarm Optimizer with craziness and hill climbing, named as CPSO. Additionally,
a previous niching PSO approach is modified, yielding an improved performance. All
algorithms are described in Section 2 and 3. The experimental results are presented in
Section 4. Finally, the conclusions are provided in Section 5.

2 PSO Systems for Multimodal Function Optimization

In a PSO system based on inertia weight [6], particles representing candidate solu-
tions start their flight from random locations in a search landscape. At each step, a
particle updates its velocity to move to another location based on Eq.(1) and (2). The
flight is influenced by a fitness function that evaluates the quality of each solution.

vid(t+1)=w vid(t)+c1 r1(t) (yid(t)–xid(t))+c2 r2(t) (ygd(t)–xid(t)) , (1)

xid(t+1)= xid(t)+ vid(t+1) . (2)

where xid(t) is the position of the ith particle at time t on dimension d, v is the velocity,
w is the inertia weight, c1 and c2 are constant values, r1 and r2 are uniform random
numbers in [0,1], yi is the ith particle’s best position (generating the best fitness) that
has been found so far, and yg is the best position visited by the neighbors. Generally,
the neighborhood is chosen as the whole population for global optimization. If c1 is
set to 0 (and c2≠0), the PSO system turns into the social only model and if c2 is set to
0 (and c1≠0), then the system becomes the cognition only model. In this paper, five
multimodal PSO algorithms are discussed that are extended from the generic ap-
proach: Species-based PSO (SPSO), Niching PSO (NichePSO), nbest PSO (nbest-
PSO), Unified PSO (UPSO) and Parallel Vector-Based PSO (PVPSO).

Li’s [8] Species-based PSO gathers the similar particles into the sub-swarms called
species. As a similarity measure Euclidean distance is used. SPSO requires an addi-
tional parameter called species radius; rs. The best fit particle in a species is called the
species seed, and the boundary of a species is the circle having the radius of rs around
this seed. The particles in the entire swarm move within their own species at each
iteration. Then, they are evaluated and the species are redefined. The multiple optima
are maintained in a parallel manner. The convergence rate of the algorithm is en-
hanced by the communication of particles in the swarm through the PSO algorithm
and the reconstruction of the species.

Brits, Engelbrecht and van den Bergh [4] proposed the nbestPSO. This method re-
defines the neighborhood best position to increase the diversity during the informa-
tion sharing between particles. For each particle i, k nearby particles are determined,
and the neighborhood best position ygi is calculated as the center of mass of the best
positions visited by these k particles. In Eq.(1), ygi replaces yg. Then the same velocity
update equation in Eq.(2) is used. Increasing, decreasing and constant k values are
analyzed by the researchers. The results show that linearly decreasing k value yields
the best performance.

The Unified PSO, introduced by Parsopoulos and Vrahatis [13], aims to bring a
balance to the global and local variants of PSO. The algorithm requires local and
global neighborhoods to be defined. In this algorithm, the velocity update equation
(Ui

(k+1)) is changed and divided into local (Li
(k+1)) and global (Gi

(k+1)) parts. A particle
samples two different velocities using two different velocity update PSO equations
based on the constriction PSO model, where the constriction factor X controls the

velocity’s magnitude [6]. The newly introduced unification factor; u∈[0,1] deter-
mines the effect of the global and local information:

Ui
(k+1) = u Gi

(k+1) + (1–u) Li
(k+1) , where Ui

(k+1) is the new location of the ith particle
after the kth iteration. Additionally, a normally distributed random parameter is also
introduced to be multiplied with either Gi

(k+1) or Li
(k+1), yielding two different models

that supports mutation.
The Parallel Vector-Based PSO (PVPSO), introduced by Schoeman and Engel-

brecht [14], uses a set of vector operations to form niches in the search space. PVPSO
performs better than their previous approach the Vector-Based PSO (VBPSO). In
PVPSO, the initial niches are identified as in VBPSO, but all particles are evaluated
simultaneously. The velocity update is done using the personal best and the best
neighborhood positions. A sub-swarm may absorb the other particles that come close
by and/or merge with another one.

2.1 The Niching Particle Swarm Optimizer (NichePSO)

Brits, Engelbrecht and van den Bergh proposed an algorithm as presented in Fig.1 to
locate the multiple optima using a particle swarm based algorithm, referred as
NichePSO [5]. The initial swarm, called as the main swarm is generated by uniformly
distributing particles over the search space. The quality of the particles is monitored
during the iterations. If a particle’s fitness does not change for some epochs, its posi-
tion is set to be a candidate solution. Then, this particle is removed from the main
swarm and a new sub-swarm is generated. As the algorithm proceeds, the main
swarm loses its members as the new sub-swarms are created. Dynamically generated
sub-swarms are expected to locate all global and local optima in parallel.

Fig. 1. Pseudocode for the NichePSO algorithm

The algorithm of Løvbjerg et al. [10] is adapted for improving swarm diversity. If
the swarm size is small, then PSO algorithm has a disadvantage of getting stuck at a

NichePSO
Initialize particles in the main swarm
Repeat
1. Train particles in the main swarm using a single iteration of the cognition only

model
2. Update fitness of each particle in the main swarm
3. For each subswarm:

a. Train subswarm particles using a single iteration of the GCPSO algorithm
b. Update fitness of each particle
c. Update subswarm radius

4. If possible, merge subswarms
5. Allow subswarms to absorb any particles from the main swarm that moved into it
6. Search main swarm for any particle that meets the partitioning criteria – If found,

create a new subswarm with this particle and its closest neighbor
Until stopping criteria are met

position when xi≅yi≅yg, where velocity might approach to zero. Therefore, NichePSO
uses Van den Bergh’s GCPSO algorithm [1] to prevent sub-swarms from halting. The
initial swarm is vital for the success of the NichePSO, hence Faure-sequences are
used to distribute the initial particles uniformly over the search space. If a particle
does not belong to a niche, and the variance of its fitness is below a threshold for
some epochs, then a niche is created around it. These niches may merge, if the dis-
tance between the best particles in them is less than some value μ or absorb the other
particles which do not belong to a niche. NichePSO is implemented as described in
[5]. It is observed that the niche radius may increase, spanning the whole search space
and causing most of the particles to converge to a single optimum. In this paper, a
modified version, referred as mNichePSO is proposed to prevent this type of behav-
ior. Simply, the niche radius size is not allowed to exceed a maximum value.

3 PSO with Craziness and Hill Climbing (CPSO)

In most of the algorithms used for optimization, the balance between exploration and
exploitation is vital for success. The proposed CPSO algorithm (Fig. 2) for multimo-
dal function optimization uses a random walk component and a hill climber to en-
hance the exploration and exploitation capabilities of PSO, respectively.

Fig. 2. Pseudocode for the CPSO algorithm

In this algorithm, the main swarm is divided into sub-swarms of size n according to
their geographical positions. Starting from the first particle, for each particle which

CPSO
Initialize particles
Repeat
1. On the first and every m epochs, construct sub-swarms according to their

geographical positions, with a neighborhood size n.
2. For each particle compute 2 candidate positions:

a. Use the original PSO, where yg is the sub-swarm’s best.
b. if (the fitness variance of a particle or particles in a subswarm for k epochs is

smaller than a variance threshold)
then
 use the original PSO, where yg is the sub-swarm’s best
else

 generate a random position using Eq.(5)
3. Compute the fitness values of these candidate positions. Choose the position with the

better fitness as particles’ current positions. If the random position produces a better
fitness, set the particles’ velocities using Eq.(6).

4. If (the fitness variance of a particle for p epochs is smaller than a variance threshold)
then

 reset the velocity of the particle using Eq.(6).
Until stopping criteria met

does not belong to a sub-swarm, the nearest (n−1) particles, which also do not belong
to a sub-swarm, are detected. At every m epochs, the sub-swarms are rearranged
according to their current geographical positions. This action provides a type of
communication and information diffusion between particles, since a local best value
might change within a neighborhood. Each particle generates two candidate positions,
denoted by x1 and x2, at each epoch. Let v1 and v2 denote velocities for the related
candidate positions. In Eq.(3), ygi is the best position visited so far within the
neighborhood of the ith particle. The parameters maxxd and minxd, in Eq.(5), are the
limits of the search space at dimension d. The first candidate position is computed
using Eq.(3) and (4), and the second one is computed using Eq.(5) during the initial
moves. For the candidate positions x1 and x2, each particle makes a decision based on
the fitness values. A particle moves to the position that generates a better fitness.

v1
id(t+1)=w v1

id(t)+c1 r1(t) (γid(t)–xid(t))+c2 r2(t) (ygid(t)–xid(t)) , (3)

x1
id(t+1)=x1

id(t)+v1
id(t+1) , (4)

x2
id(t+1)= minxd + r3 (maxxd-minxd) , (5)

Moving to a better candidate position can be considered as a hill climbing step. A
single meme consisting of two phases is used: sampling and acceptance. As a sam-
pling technique either a random walk (craziness) or the PSO algorithm itself is in-
voked, depending on the mode of operation as described in Fig. 2. As an acceptance
strategy, only improving moves are admitted. If the position x2 is chosen, then the
previous velocity becomes useless. Hence, a new velocity has to be assigned to the
particle. Eq.(6) is used for that purpose.

vid(t+1)= α maxv r5(t+1) , (6)

where α is a constant number, maxv is the limit for the velocity of the particles, and
r5(t) is a uniform random number in [-1,1] at time t. If the variance of the fitness for
the last p epochs is smaller than a threshold value, all particles in a sub-swarm stop
making random moves. The mode of operation switches to a refined search. Particles
generate two velocities invoking the Eq.(3) twice, yielding two candidate positions
and the search continues as described in Fig. 2. CPSO algorithm introduces the fol-
lowing parameters: n, k, p, m, variance (threshold) and α.

4 Experiments

The runs are performed on a 2 GHz, Windows 2003 operating system with 512 MB
of memory. A Matlab application is implemented for the experiments, available at
http://cse.yeditepe.edu.tr/ARTI/projects/cpso. Each experiment is repeated 50 times.
A run is terminated either the maximum number of evaluations is exceeded or all
required global optima are found within a fitness range of 0.00005.

4.1 Experimental Setup and Comparison Criteria

Well-known benchmark functions are used during the experiments as presented in
Table 1. The initial experiments are performed for obtaining the best set of parame-
ters for CPSO. Then, seven different multimodal PSO algorithms (SPSO, NichePSO,
nbestPSO, CPSO, UPSO, mNichePSO, PVPSO) are tested on 10 different benchmark
functions (F1-F10). The swarm size is chosen as 30 and 50, for functions F1-F4 and
F5-F10, respectively. The problem dimension is one for the functions F1-F4, two for
the functions F5-F10. For a fair comparison, the maximum number of evaluations is
limited to 15,000 for F1-F4, and 25,000 for F5-F10. In UPSO, X is used as 0.729, and
c1 and c2 are set to 2.05. For the rest of the algorithms, the inertia weight is linearly
decreased from 0.8 to 0.6, and c1 and c2 are set to 1.5 for a stable PSO. More discus-
sions on the choice of parameters can be found in [6], [8], [11] and [12].

Table 1. Benchmark functions used during the experiments; minx and maxx indicate the lower
and upper bound for each dimension, #gl. and #lo. indicate the total number of global and local
optima, respectively, for the corresponding function

lb. Function minx, maxx #gl. #lo. Source(s)
F1 y=1–sin(5πx)6 0.0, 1.0 5 0 [8,5,1]
F2 y=1–exp(–2log(2)((x–0.1)/0.8)2)sin(5πx)6 0.0, 1.0 1 4 [8,5]
F3 y=1–sin(5π(x(3/4)–0.05))6 0.0, 1.0 5 0 [8,5,1]

F4 y=1–(exp(–2log(2)*((x–0.08)/0.854)2)
 sin(5π (x(3/4)–0.05))6)

0.0, 1.0

1

4

[8,5,1]

F5 z=(x2+y–11)2–(x+y2–7)2 –10.0, 10.0 4 0 [8,5]
F6

z=sin(2.2 π x+π/2)((2–|y|)/2)((3–|x|)/2)
 +sin(0.5πy2+π/2)((2–|y|)/2)((2–|x|)/2)

–2.0, 2.0

4

8

[16,17]

F7 z=cos(x)2+sin(y)2 –4.0, 4.0 6 0 [12]

F8

z= (cos(2x+1)+2cos(3x+2)+3cos(4x+3)+
 4cos(5x+4)+5cos(6x+5))

(cos(2y+1)+2cos(3y+2)+3cos(4y+3)+
 4cos(5y+4)+5cos(6y+5))

–2.0, 2.5

2

38

[8,15]

F9

z=(y2–4.5y2)xy–4.7cos(3x–y2(2+x))
 sin(2.5πx)+(0.3x)2

–1.2, 1.2

1

9

[13]

F10 z=4x2–2.1x4+(1/3)x6+xy–4y2+4y4 –1.9, 1.9 2 4 [13]

In SPSO, the species radius is chosen as (maxx–minx)/20. In NichePSO, the pa-

rameters μ and the variance are set to 0.001 and 0.0001, respectively [5]. Addition-
ally, in mNichePSO, the maximum niche radius is set to (maxx–minx)/10. In nbest-
PSO, the neighborhood size is linearly decreased from 6 to 2. To evaluate the effect
of the maximum velocity, each algorithm is investigated with two different values:
(maxx–minx)/20 and (maxx–minx)/2, where each algorithm is labeled as algo-
rithm_abbriviation-20 and algorithm_abbriviation-2, respectively.

In the multimodal optimization problems, not only multiple global optima having
equal quality are to be searched, but also a predetermined set of local optima might be
required. Therefore, it is difficult to evaluate and compare different algorithms.

Global peak ratio (gpr) is defined as the ratio of the average number of global optima
found to the total number of global optima. Local peak ratio (lpr) is defined similarly
using the local optima. Global success consistency ratio (gscr) denotes the proportion
of the runs in which all global optima are discovered to the total number of runs, and
local success consistency ratio (lscr) denotes the proportion of the runs in which all
local are discovered to the total number of runs. The overall success rate (osr) is used
as a single comparison criterion to evaluate all these aspects at once as shown in Eq.
(7). If there are no local optima, lpr and lscr are set to 0, and the divisor to 2. Conse-
quently, osr values are in the range [0,1] and a higher ratio indicates a better perform-
ance.

4.2 Parameter Tuning for CPSO

324 different parameter sets are tested based on the combination of the following
values for each CPSO parameter with maxv=(maxx–minx)/20:
− The sub-swarm size; n∈{2, 3, 4}
− The number of epochs k∈{3, 5, 7} (step 2 (b) in Fig. 2)
− The number of epochs p∈{3, 5, 7} (step 4 in Fig. 2)
− The variance (threshold)∈{0.0001, 0.01} (step 2 (b) and 4 in Fig. 2)
− The number of epochs m∈{5,7,10} for the sub-swarm reconstruction
− The velocity reset constant α∈{0.001, 0.01 } (step 3 and 4 in Fig. 2, Eq. (6))
The performance of CPSO with each parameter set is compared with respect to the
average osr over all benchmark functions. The results are summarized in Table 2. The
best parameter set contains: n=2, k=3, p=3, variance=0.01, m=5 and α=0.01. It seems
that relatively low values for n, k, p, and m and relatively high values for variance
and α are good initial choices in a CPSO.

Table 2. The parameter sets that rank top ten based on their performances

rank variance n k p m α
1 0.01 2 3 3 5 0.01
2 0.01 2 3 5 7 0.01
3 0.01 2 3 3 7 0.01
4 0.01 2 3 7 5 0.01
5 0.01 2 3 5 5 0.01
6 0.01 2 3 5 5 0.001
7 0.01 2 3 7 10 0.01
8 0.01 2 3 3 10 0.01
9 0.01 2 3 7 7 0.01
10 0.01 2 3 3 5 0.001

4
)(lscrlprgscrgprosr +++

= (7)

4.3 Experimental Results

During the experiments, none of the algorithms is capable of finding all optima on all
functions as summarized in Table 3. The maximum velocity choice can affect the
performance of an algorithm considerably. NichePSO, mNichePSO, CPSO and
PVPSO are more sensitive to the maximum velocity as compared to the others. On
average, NichePSO, mNichePSO, CPSO algorithms perform better with a relatively
low maximum velocity. PVPSO is the only algorithm that performs better with a
relatively high maximum velocity. This choice does not generate a significant per-
formance variance for SPSO, nbestPSO and UPSO.

Table 3. Average osr of each algorithm over all runs for each benchmark function. The best
values (algorithms) for the benchmark functions are marked with the bold entries.

Algorithm F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 avr.osr. stdev.

SPSO-2 0.98 0.82 0.96 0.84 1.00 0.64 0.97 0.58 0.65 0.59 0.80 0.17
SPSO-20 0.99 0.99 1.00 0.94 0.95 0.48 0.72 0.27 0.64 0.82 0.78 0.25
NichePSO-2 0.45 0.69 0.40 0.64 0.13 0.10 0.15 0.13 0.59 0.14 0.34 0.24
NichePSO-20 0.97 1.00 0.94 0.96 0.19 0.21 0.45 0.13 0.66 0.45 0.60 0.35
nbest-2 0.71 0.85 0.77 0.80 0.89 0.47 0.72 0.41 0.52 0.60 0.67 0.17
nbest-20 0.81 0.93 0.74 0.84 0.90 0.43 0.74 0.31 0.46 0.58 0.67 0.22
CPSO-2 0.96 0.78 0.83 0.78 0.28 0.56 0.98 0.17 0.56 0.53 0.64 0.27
CPSO-20 0.96 0.87 0.90 0.90 1.00 0.66 1.00 0.52 0.63 0.62 0.81 0.18
UPSO-2 0.72 0.70 0.66 0.70 0.81 0.47 0.64 0.51 0.56 0.50 0.63 0.11
UPSO-20 0.72 0.81 0.68 0.74 0.88 0.54 0.55 0.48 0.45 0.54 0.64 0.15
mNiche-2 0.70 0.69 0.61 0.67 1.00 0.54 0.91 0.62 0.75 0.64 0.71 0.14
mNiche-20 1.00 1.00 1.00 1.00 1.00 0.66 0.99 0.14 0.47 0.91 0.82 0.30
PVPSO-2 0.99 0.93 0.98 0.97 0.45 0.57 0.79 0.39 0.55 0.62 0.72 0.23
PVPSO-20 1.00 1.00 1.00 1.00 0.21 0.38 0.46 0.20 0.35 0.71 0.63 0.35

The proposed modification to NichePSO, mNichePSO as described in Section 2.1,

delivers a significantly better performance compared to the original one considering
the average osr. Furthermore, mNiche-20, CPSO-20 and SPSO-2 are the top three
algorithms in that order with respect to the average osr. PVPSO-20 is as successful as
mNichePSO-20 for locating the multiple optima in the 2D search landscapes, while
its performance deteriorates extremely for the 3D search landscapes.

The particle positions at the end of a sample run of a PSO algorithm for F6 are il-
lustrated in Fig. 3. SPSO is good at locating the required optima. Mostly, at end of the
runs, the species were evenly distributed around these optima. NichePSO provides
good separation of niches, but, sometimes, all niches might merge into a single one.
Preventing the niche radius to grow, as in mNichePSO, yields a better diversity. The
nbestPSO produces a poor convergence rate. The proposed CPSO algorithm is very
successful in locating the global optima as compared to the local optima (Fig. 3-4).
Although, UPSO performs poorly, the parameters provide an effective way to derive

the algorithm to locate any optima.

Fig. 3. Particle positions after a sample run of each algorithm on F6

Fig. 4. A sample run of CPSO-20 on F5

5 Conclusions

There are five essential PSO algorithms that have been proposed for multimodal
function optimization: SPSO, NichePSO, nbestPSO, UPSO and PVPSO. During the
preliminary experiments, it is observed that the performance of NichePSO can be
improved significantly restricting the growth of the niche radius beyond a predefined
value. mNichePSO performs much better than NichePSO on the benchmark func-
tions, considering the evaluation criteria. In this paper, a new multimodal particle
swarm optimization algorithm called CPSO is introduced. CPSO is compared against
these approaches. All algorithms introduce additional parameters, requiring fine tun-
ing. Except UPSO, all algorithms are computationally expensive due to the need of

SPSO-2 NichePSO-20 nbestPSO-20

CPSO-20 mNichePSO-20 PVPSO-2

 iteration #1 iteration #5 iteration #37

the distance calculations. If the dimensionality increases, the scalability issue might
arise, causing this cost to become remarkable. In CPSO, the cost is somewhat reduced
by making the computations at a predefined frequency. With its enhanced exploration
and exploitation capabilities based on craziness and hill climbing, CPSO has a good
performance especially in locating multiple global optima, matching the overall per-
formance of mNichePSO and SPSO on the benchmark functions.

References

1. D. Beasley, D.R. Bull, R.R. Martin, A Sequential Niching Technique for Multimodal Func-
tion Optimization, Evolutionary Computation, 1(2), MIT Press, 1993, pp. 101-125.

2. F. van den Bergh, An Analysis of Particle Swarm Optimizers, PhD Thesis, Department of
Computer Science, University of Pretoria, Pretoria, South Africa, 2002.

3. F. van den Bergh, A.P. Englebrecht, A study of particle swarm optimization particle trajec-
tories, Information Sciences 176, 2006, pp. 937-971.

4. R. Brits, A.P. Engelbrecht, F. vanden Bergh, Solving Systems of Unconstrained Equations
using Particle Swarm Optimization, Int. Conf. on Sys.,Man and Cyber., v.3, 2002, no.pp. 6.

5. R. Brits, A.P. Engelbrecht, F. van den Bergh, A niching particle swarm optimizer, Proc. 4th
Asia-Pacific Conf. on Simulated Evolution and Learning, vol. 2, 2002, pp. 692-696.

6. R. C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle
swarm optimization, Proc. of the IEEE Congress on Evolutionary Comp., 2000, pp. 84-88.

7. J. Kennedy, R.C. Eberhart, Particle Swarm Optimization, Proc. IEEE Int. Conf. on N.N.,
1995, pp. 1942-1948.

8. J.-P. Li, M.E. Balazs, G.T. Parks, P.J. Clarkson, A Genetic Algorithm using Species Con-
servation for Multimodal Function Optimization, Journal of Evolutionary Computation,
vol. 10, no. 3, 2002, pp. 207-234.

9. X. Li, Adaptively Choosing Neighborhood Bests using Species in a Particle Swarm Opti-
mizer for Multimodal Function Optimization, Proc. of GECCO 2004, LNCS 3102, eds.
Deb, K. et al., Springer-Verlag, Seattle, USA, 2004, pp. 105-116.

10. M. Løvbjerg, T.K. Rasmussen, T. Krink, Hybrid Particle Swarm Optimizer with Breeding
and Subpopulations, Proc. of the Genetic and Evolutionary Comp. Conf., v. 1, 2001, pp.
469-476.

11. E. Ozcan, C.K. Mohan, Particle Swarm Optimization: Surfing the Waves, Proc. of IEEE
Congress on Evolutionary Computation, Piscataway, NJ. 1999, pp. 1939-1944.

12. K. E. Parsopoulos, M. N. Vrahatis, Modification of the particle swarm optimizer for locat-
ing all the global minima, Proc. of the ICANNGA, 2001, pp. 324-327.

13. K. E. Parsopoulos, M. N. Vrahatis, UPSO: A Unified Particle Swarm Optimization
Scheme, Lecture Series on Comp. and Computational Sci., Vol. 1, Proc. of the Int. Conf. of
Computational Methods in Sci. and Eng., 2004, pp. 868-873.

14. I.L. Schoeman, A.P. Engelbrecht, A Parallel Vector-Based Particle Swarm Optimizer,
Proc. of the International Conf. on Neural Networks and Genetic Algorithms, 2005, pp.
268-271.

15. D.G. Sotiropoulos, V.P. Plagianakos, M.N. Vrahatis, An evolutionary algorithm for mini-
mizing multimodal functions, Proc. of the Fifth Hellenic- European Conf. on Comp. Math.
and its App., vol. 2, 2002, pp. 496-500.

16. F. Streichert, G. Stein, H. Ulmer, A. Zell, A Clustering Based Niching EA for Multimodal
Search Spaces, Artificial Evolution, 2003, pp. 293-304.

17. R.K. Ursem, Multinational evolutionary algorithms, Proc. of the 1999 Congress of Evolu-
tionary Computation (CEC-1999), vol. 3, 1999, pp. 1633-1640.

