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Abstract. In this paper, five previous Particle Swarm Optimization (PSO) algo-
rithms for multimodal function optimization are reviewed. A new and a suc-
cessful PSO based algorithm, named as CPSO is proposed. CPSO enhances the 
exploration and exploitation capabilities of PSO by performing search using a 
random walk and a hill climbing components. Furthermore, one of the previous 
PSO approaches is improved incredibly by means of a minor adjustment. All 
algorithms are compared over a set of well-known benchmark functions.  

1   Introduction 

Inspiring from the swarms in nature, such as; birds, fish, etc., Kennedy and Eberhart  
[7] proposed a population based algorithm called Particle Swarm Optimization 
(PSO). PSO combines cognition only model that values solely the self-experience and 
social only model that values solely the experience of neighbors. A particle encodes a 
candidate solution to a problem at hand. The algorithm uses a set of particles flying 
over a search space and moving towards a promising area to locate a global optimum. 
However, there are a set of problems requiring discovery of equal quality candidate 
solutions, so that, a user could make a choice in between them. In some problems, 
local optima, or a set of solutions with a predetermined quality levels can also be 
requested. Multimodal optimization problems represent such class of problems in 
which the researchers are interested. Different PSO algorithms have been already 
proposed for solving multimodal problems. These algorithms are mostly based on 
existing approaches used in the evolutionary algorithms for multimodal optimization.  

Most of the real world problems carry multimodal characteristics; hence develop-
ing efficient algorithms for multimodal optimization problems is still a research area. 
Previous approaches can be categorized as iterative and subpopulation methods [8]. 
In the iterative methods, the algorithm is applied several times consecutively to locate 
each optimum. In the subpopulation methods, the population is divided into parts to 
search optima simultaneously. In this paper, the previous PSO algorithms for multi-
modal optimization based on subpopulation model are compared to a proposed Parti-
cle Swarm Optimizer with craziness and hill climbing, named as CPSO. Additionally, 
a previous niching PSO approach is modified, yielding an improved performance. All 
algorithms are described in Section 2 and 3. The experimental results are presented in 
Section 4. Finally, the conclusions are provided in Section 5. 



2   PSO Systems for Multimodal Function Optimization 

In a PSO system based on inertia weight [6], particles representing candidate solu-
tions start their flight from random locations in a search landscape. At each step, a 
particle updates its velocity to move to another location based on Eq.(1) and (2). The 
flight is influenced by a fitness function that evaluates the quality of each solution. 

vid(t+1)=w vid(t)+c1 r1(t) (yid(t)–xid(t))+c2 r2(t) (ygd(t)–xid(t)) , (1) 

xid(t+1)= xid(t)+ vid(t+1) . (2) 

where xid(t) is the position of the ith particle at time t on dimension d, v is the velocity, 
w is the inertia weight, c1 and c2 are constant values, r1 and r2 are uniform random 
numbers in [0,1], yi is the ith particle’s best position (generating the best fitness) that 
has been found so far, and yg is the best position visited by the neighbors. Generally, 
the neighborhood is chosen as the whole population for global optimization. If c1 is 
set to 0 (and c2≠0), the PSO system turns into the social only model and if c2 is set to 
0 (and c1≠0), then the system becomes the cognition only model. In this paper, five 
multimodal PSO algorithms are discussed that are extended from the generic ap-
proach: Species-based PSO (SPSO), Niching PSO (NichePSO), nbest PSO (nbest-
PSO), Unified PSO (UPSO) and Parallel Vector-Based PSO (PVPSO).  

Li’s [8] Species-based PSO gathers the similar particles into the sub-swarms called 
species. As a similarity measure Euclidean distance is used. SPSO requires an addi-
tional parameter called species radius; rs. The best fit particle in a species is called the 
species seed, and the boundary of a species is the circle having the radius of rs around 
this seed. The particles in the entire swarm move within their own species at each 
iteration. Then, they are evaluated and the species are redefined. The multiple optima 
are maintained in a parallel manner. The convergence rate of the algorithm is en-
hanced by the communication of particles in the swarm through the PSO algorithm 
and the reconstruction of the species. 

Brits, Engelbrecht and van den Bergh [4] proposed the nbestPSO. This method re-
defines the neighborhood best position to increase the diversity during the informa-
tion sharing between particles. For each particle i, k nearby particles are determined, 
and the neighborhood best position ygi is calculated as the center of mass of the best 
positions visited by these k particles. In Eq.(1), ygi replaces yg. Then the same velocity 
update equation in Eq.(2) is used. Increasing, decreasing and constant k values are 
analyzed by the researchers. The results show that linearly decreasing k value yields 
the best performance. 

The Unified PSO, introduced by Parsopoulos and Vrahatis [13], aims to bring a 
balance to the global and local variants of PSO. The algorithm requires local and 
global neighborhoods to be defined. In this algorithm, the velocity update equation 
(Ui

(k+1)) is changed and divided into local (Li
(k+1)) and global (Gi

(k+1)) parts. A particle 
samples two different velocities using two different velocity update PSO equations 
based on the constriction PSO model, where the constriction factor X controls the 



velocity’s magnitude [6]. The newly introduced unification factor; u∈[0,1] deter-
mines the effect of the global and local information: 

Ui
(k+1) = u Gi

(k+1) + (1–u) Li
(k+1) , where Ui

(k+1) is the new location of the ith particle 
after the kth iteration. Additionally, a normally distributed random parameter is also 
introduced to be multiplied with either Gi

(k+1) or Li
(k+1), yielding two different models 

that supports mutation. 
The Parallel Vector-Based PSO (PVPSO), introduced by Schoeman and Engel-

brecht [14], uses a set of vector operations to form niches in the search space. PVPSO 
performs better than their previous approach the Vector-Based PSO (VBPSO). In 
PVPSO, the initial niches are identified as in VBPSO, but all particles are evaluated 
simultaneously. The velocity update is done using the personal best and the best 
neighborhood positions. A sub-swarm may absorb the other particles that come close 
by and/or merge with another one. 

2.1   The Niching Particle Swarm Optimizer (NichePSO) 

Brits, Engelbrecht and van den Bergh proposed an algorithm as presented in Fig.1 to 
locate the multiple optima using a particle swarm based algorithm, referred as 
NichePSO [5]. The initial swarm, called as the main swarm is generated by uniformly 
distributing particles over the search space. The quality of the particles is monitored 
during the iterations. If a particle’s fitness does not change for some epochs, its posi-
tion is set to be a candidate solution. Then, this particle is removed from the main 
swarm and a new sub-swarm is generated. As the algorithm proceeds, the main 
swarm loses its members as the new sub-swarms are created. Dynamically generated 
sub-swarms are expected to locate all global and local optima in parallel.  
 

 
Fig. 1. Pseudocode for the NichePSO algorithm 

The algorithm of Løvbjerg et al. [10] is adapted for improving swarm diversity. If 
the swarm size is small, then PSO algorithm has a disadvantage of getting stuck at a 

NichePSO 
Initialize particles in the main swarm 
Repeat 
1. Train particles in the main swarm using a single iteration of the cognition only 

model 
2. Update fitness of each particle in the main swarm 
3. For each subswarm: 

a. Train subswarm particles using a single iteration of the GCPSO algorithm 
b. Update fitness of each particle 
c. Update subswarm radius 

4. If possible, merge subswarms 
5. Allow subswarms to absorb any particles from the main swarm that moved into it 
6. Search main swarm for any particle that meets the partitioning criteria – If found, 

create a new subswarm with this particle and its closest neighbor 
Until stopping criteria are met 



position when xi≅yi≅yg, where velocity might approach to zero. Therefore, NichePSO 
uses Van den Bergh’s GCPSO algorithm [1] to prevent sub-swarms from halting. The 
initial swarm is vital for the success of the NichePSO, hence Faure-sequences are 
used to distribute the initial particles uniformly over the search space. If a particle 
does not belong to a niche, and the variance of its fitness is below a threshold for 
some epochs, then a niche is created around it. These niches may merge, if the dis-
tance between the best particles in them is less than some value μ or absorb the other 
particles which do not belong to a niche. NichePSO is implemented as described in 
[5]. It is observed that the niche radius may increase, spanning the whole search space 
and causing most of the particles to converge to a single optimum. In this paper, a 
modified version, referred as mNichePSO is proposed to prevent this type of behav-
ior. Simply, the niche radius size is not allowed to exceed a maximum value. 

3   PSO with Craziness and Hill Climbing (CPSO) 

In most of the algorithms used for optimization, the balance between exploration and 
exploitation is vital for success. The proposed CPSO algorithm (Fig. 2) for multimo-
dal function optimization uses a random walk component and a hill climber to en-
hance the exploration and exploitation capabilities of PSO, respectively.  
 

 

Fig. 2.  Pseudocode for the CPSO algorithm 

In this algorithm, the main swarm is divided into sub-swarms of size n according to 
their geographical positions. Starting from the first particle, for each particle which 

CPSO 
Initialize particles 
Repeat 
1. On the first and every m epochs, construct sub-swarms according to their 

geographical positions, with a neighborhood size n. 
2. For each particle compute 2 candidate positions: 

a. Use the original PSO, where yg is the sub-swarm’s best. 
b. if (the fitness variance of a particle or particles in a subswarm for k epochs is 

smaller than a variance threshold) 
then 
     use the original PSO, where yg is the sub-swarm’s best 
else 

         generate a random position using Eq.(5) 
3. Compute the fitness values of these candidate positions. Choose the position with the 

better fitness as particles’ current positions. If the random position produces a better 
fitness, set the particles’ velocities using Eq.(6). 

4. If (the fitness variance of a particle for p epochs is smaller than a variance threshold) 
then 

 reset the velocity of the particle using Eq.(6). 
Until stopping criteria met 



does not belong to a sub-swarm, the nearest (n−1) particles, which also do not belong 
to a sub-swarm, are detected. At every m epochs, the sub-swarms are rearranged 
according to their current geographical positions. This action provides a type of 
communication and information diffusion between particles, since a local best value 
might change within a neighborhood. Each particle generates two candidate positions, 
denoted by x1 and x2, at each epoch. Let v1 and v2 denote velocities for the related 
candidate positions. In Eq.(3), ygi is the best position visited so far within the 
neighborhood of the ith particle. The parameters maxxd and minxd, in Eq.(5), are the 
limits of the search space at dimension d. The first candidate position is computed 
using Eq.(3) and (4), and the second one is computed using Eq.(5) during the initial 
moves. For the candidate positions x1 and x2, each particle makes a decision based on 
the fitness values. A particle moves to the position that generates a better fitness.  

v1
id(t+1)=w v1

id(t)+c1 r1(t) (γid(t)–xid(t))+c2 r2(t) (ygid(t)–xid(t)) , (3) 

x1
id(t+1)=x1

id(t)+v1
id(t+1) , (4) 

x2
id(t+1)= minxd + r3 (maxxd-minxd) , (5) 

Moving to a better candidate position can be considered as a hill climbing step. A 
single meme consisting of two phases is used: sampling and acceptance. As a sam-
pling technique either a random walk (craziness) or the PSO algorithm itself is in-
voked, depending on the mode of operation as described in Fig. 2. As an acceptance 
strategy, only improving moves are admitted. If the position x2 is chosen, then the 
previous velocity becomes useless. Hence, a new velocity has to be assigned to the 
particle. Eq.(6) is used for that purpose. 

vid(t+1)= α maxv r5(t+1) , (6) 

where α is a constant number, maxv is the limit for the velocity of the particles, and 
r5(t) is a uniform random number in [-1,1] at time t. If the variance of the fitness for 
the last p epochs is smaller than a threshold value, all particles in a sub-swarm stop 
making random moves. The mode of operation switches to a refined search. Particles 
generate two velocities invoking the Eq.(3) twice, yielding two candidate positions 
and the search continues as described in Fig. 2. CPSO algorithm introduces the fol-
lowing parameters: n, k, p, m, variance (threshold) and α. 

4   Experiments 

The runs are performed on a 2 GHz, Windows 2003 operating system with 512 MB 
of memory. A Matlab application is implemented for the experiments, available at 
http://cse.yeditepe.edu.tr/ARTI/projects/cpso. Each experiment is repeated 50 times. 
A run is terminated either the maximum number of evaluations is exceeded or all 
required global optima are found within a fitness range of 0.00005.  



4.1   Experimental Setup and Comparison Criteria 

Well-known benchmark functions are used during the experiments as presented in 
Table 1. The initial experiments are performed for obtaining the best set of parame-
ters for CPSO. Then, seven different multimodal PSO algorithms (SPSO, NichePSO, 
nbestPSO, CPSO, UPSO, mNichePSO, PVPSO) are tested on 10 different benchmark 
functions (F1-F10). The swarm size is chosen as 30 and 50, for functions F1-F4 and 
F5-F10, respectively. The problem dimension is one for the functions F1-F4, two for 
the functions F5-F10. For a fair comparison, the maximum number of evaluations is 
limited to 15,000 for F1-F4, and 25,000 for F5-F10. In UPSO, X is used as 0.729, and 
c1 and c2 are set to 2.05. For the rest of the algorithms, the inertia weight is linearly 
decreased from 0.8 to 0.6, and c1 and c2 are set to 1.5 for a stable PSO. More discus-
sions on the choice of parameters can be found in [6], [8], [11] and [12]. 

Table 1. Benchmark functions used during the experiments; minx and maxx indicate the lower 
and upper bound for each dimension, #gl. and #lo. indicate the total number of global and local 
optima, respectively, for the corresponding function 

lb. Function minx, maxx #gl. #lo. Source(s) 
F1 y=1–sin(5πx)6 0.0, 1.0 5 0 [8,5,1] 
F2 y=1–exp(–2log(2)((x–0.1)/0.8)2)sin(5πx)6 0.0, 1.0 1 4 [8,5] 
F3 y=1–sin(5π(x(3/4)–0.05))6 0.0, 1.0 5 0 [8,5,1] 

F4 y=1–(exp(–2log(2)*((x–0.08)/0.854)2) 
 sin(5π (x(3/4)–0.05))6) 

0.0, 1.0 
 

1 
 

4 
 

[8,5,1] 
 

F5 z=(x2+y–11)2–(x+y2–7)2 –10.0, 10.0 4 0 [8,5] 
F6 

 
z=sin(2.2 π x+π/2)(( 2–|y| )/2)(( 3–|x| )/2)  
    +sin(0.5πy2+π/2)(( 2–|y| )/2)(( 2–|x| )/2) 

–2.0, 2.0 
 

4 
 

8 
 

[16,17] 
 

F7 z=cos(x)2+sin(y)2 –4.0, 4.0 6 0 [12] 

F8 
 
 

z= (cos(2x+1)+2cos(3x+2)+3cos(4x+3)+ 
          4cos(5x+4)+5cos(6x+5)) 

(cos(2y+1)+2cos(3y+2)+3cos(4y+3)+ 
          4cos(5y+4)+5cos(6y+5)) 

–2.0, 2.5 
 
 
 

2 
 
 
 

38 
 
 
 

[8,15] 
 
 
 

F9 
 

z=(y2–4.5y2)xy–4.7cos(3x–y2(2+x)) 
 sin(2.5πx)+(0.3x)2 

–1.2, 1.2 
 

1 
 

9 
 

[13] 
 

F10 z=4x2–2.1x4+(1/3)x6+xy–4y2+4y4 –1.9, 1.9 2 4 [13] 
 
In SPSO, the species radius is chosen as (maxx–minx)/20. In NichePSO, the pa-

rameters μ and the variance are set to 0.001 and 0.0001, respectively [5]. Addition-
ally, in mNichePSO, the maximum niche radius is set to (maxx–minx)/10. In nbest-
PSO, the neighborhood size is linearly decreased from 6 to 2. To evaluate the effect 
of the maximum velocity, each algorithm is investigated with two different values: 
(maxx–minx)/20 and (maxx–minx)/2, where each algorithm is labeled as algo-
rithm_abbriviation-20 and algorithm_abbriviation-2, respectively. 

In the multimodal optimization problems, not only multiple global optima having 
equal quality are to be searched, but also a predetermined set of local optima might be 
required. Therefore, it is difficult to evaluate and compare different algorithms. 



Global peak ratio (gpr) is defined as the ratio of the average number of global optima 
found to the total number of global optima. Local peak ratio (lpr) is defined similarly 
using the local optima. Global success consistency ratio (gscr) denotes the proportion 
of the runs in which all global optima are discovered to the total number of runs, and 
local success consistency ratio (lscr) denotes the proportion of the runs in which all 
local are discovered to the total number of runs. The overall success rate (osr) is used 
as a single comparison criterion to evaluate all these aspects at once as shown in Eq. 
(7). If there are no local optima, lpr and lscr are set to 0, and the divisor to 2. Conse-
quently, osr values are in the range [0,1] and a higher ratio indicates a better perform-
ance. 

4.2   Parameter Tuning for CPSO 

324 different parameter sets are tested based on the combination of the following 
values for each CPSO parameter with maxv=(maxx–minx)/20: 
− The sub-swarm size; n∈{2, 3, 4}  
− The number of epochs k∈{3, 5, 7} (step 2 (b) in Fig. 2)  
− The number of epochs p∈{3, 5, 7} (step 4 in Fig. 2) 
− The variance (threshold)∈{0.0001, 0.01}  (step 2 (b) and 4 in Fig. 2) 
− The number of epochs m∈{5,7,10} for the sub-swarm reconstruction 
− The velocity reset constant α∈{0.001, 0.01 } (step 3 and 4 in Fig. 2, Eq. (6)) 
The performance of CPSO with each parameter set is compared with respect to the 
average osr over all benchmark functions. The results are summarized in Table 2. The 
best parameter set contains: n=2, k=3, p=3, variance=0.01, m=5 and α=0.01. It seems 
that relatively low values for n, k, p, and m and relatively high values for variance 
and α  are good initial choices in a CPSO. 

Table 2.  The parameter sets that rank top ten based on their performances 

rank variance n k p m      α 
1 0.01 2 3 3 5 0.01
2 0.01 2 3 5 7 0.01
3 0.01 2 3 3 7 0.01
4 0.01 2 3 7 5 0.01
5 0.01 2 3 5 5 0.01
6 0.01 2 3 5 5 0.001
7 0.01 2 3 7 10 0.01
8 0.01 2 3 3 10 0.01
9 0.01 2 3 7 7 0.01
10 0.01 2 3 3 5 0.001

4
 )( lscrlprgscrgprosr +++

=  (7) 



4.3   Experimental Results 

During the experiments, none of the algorithms is capable of finding all optima on all 
functions as summarized in Table 3. The maximum velocity choice can affect the 
performance of an algorithm considerably. NichePSO, mNichePSO, CPSO and 
PVPSO are more sensitive to the maximum velocity as compared to the others. On 
average, NichePSO, mNichePSO, CPSO algorithms perform better with a relatively 
low maximum velocity. PVPSO is the only algorithm that performs better with a 
relatively high maximum velocity. This choice does not generate a significant per-
formance variance for SPSO, nbestPSO and UPSO.  

Table 3.  Average osr of each algorithm over all runs for each benchmark function. The best 
values (algorithms) for the benchmark functions are marked with the bold entries. 

Algorithm F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 avr.osr. stdev. 

SPSO-2 0.98 0.82 0.96 0.84 1.00 0.64 0.97 0.58 0.65 0.59 0.80 0.17 
SPSO-20 0.99 0.99 1.00 0.94 0.95 0.48 0.72 0.27 0.64 0.82 0.78 0.25 
NichePSO-2 0.45 0.69 0.40 0.64 0.13 0.10 0.15 0.13 0.59 0.14 0.34 0.24 
NichePSO-20 0.97 1.00 0.94 0.96 0.19 0.21 0.45 0.13 0.66 0.45 0.60 0.35 
nbest-2 0.71 0.85 0.77 0.80 0.89 0.47 0.72 0.41 0.52 0.60 0.67 0.17 
nbest-20 0.81 0.93 0.74 0.84 0.90 0.43 0.74 0.31 0.46 0.58 0.67 0.22 
CPSO-2 0.96 0.78 0.83 0.78 0.28 0.56 0.98 0.17 0.56 0.53 0.64 0.27 
CPSO-20 0.96 0.87 0.90 0.90 1.00 0.66 1.00 0.52 0.63 0.62 0.81 0.18 
UPSO-2 0.72 0.70 0.66 0.70 0.81 0.47 0.64 0.51 0.56 0.50 0.63 0.11 
UPSO-20 0.72 0.81 0.68 0.74 0.88 0.54 0.55 0.48 0.45 0.54 0.64 0.15 
mNiche-2 0.70 0.69 0.61 0.67 1.00 0.54 0.91 0.62 0.75 0.64 0.71 0.14 
mNiche-20 1.00 1.00 1.00 1.00 1.00 0.66 0.99 0.14 0.47 0.91 0.82 0.30 
PVPSO-2 0.99 0.93 0.98 0.97 0.45 0.57 0.79 0.39 0.55 0.62 0.72 0.23 
PVPSO-20 1.00 1.00 1.00 1.00 0.21 0.38 0.46 0.20 0.35 0.71 0.63 0.35 

 

 
The proposed modification to NichePSO, mNichePSO as described in Section 2.1, 

delivers a significantly better performance compared to the original one considering 
the average osr. Furthermore, mNiche-20, CPSO-20 and SPSO-2 are the top three 
algorithms in that order with respect to the average osr. PVPSO-20 is as successful as 
mNichePSO-20 for locating the multiple optima in the 2D search landscapes, while 
its performance deteriorates extremely for the 3D search landscapes.  

The particle positions at the end of a sample run of a PSO algorithm for F6 are il-
lustrated in Fig. 3. SPSO is good at locating the required optima. Mostly, at end of the 
runs, the species were evenly distributed around these optima. NichePSO provides 
good separation of niches, but, sometimes, all niches might merge into a single one. 
Preventing the niche radius to grow, as in mNichePSO, yields a better diversity. The 
nbestPSO produces a poor convergence rate. The proposed CPSO algorithm is very 
successful in locating the global optima as compared to the local optima (Fig. 3-4). 
Although, UPSO performs poorly, the parameters provide an effective way to derive 



the algorithm to locate any optima.  
 

 
Fig. 3.  Particle positions after a sample run of each algorithm on F6 

 

 

Fig. 4.  A sample run of CPSO-20 on F5 

5   Conclusions 

There are five essential PSO algorithms that have been proposed for multimodal 
function optimization: SPSO, NichePSO, nbestPSO, UPSO and PVPSO. During the 
preliminary experiments, it is observed that the performance of NichePSO can be 
improved significantly restricting the growth of the niche radius beyond a predefined 
value. mNichePSO performs much better than NichePSO on the benchmark func-
tions, considering the evaluation criteria. In this paper, a new multimodal particle 
swarm optimization algorithm called CPSO is introduced. CPSO is compared against 
these approaches. All algorithms introduce additional parameters, requiring fine tun-
ing. Except UPSO, all algorithms are computationally expensive due to the need of 

SPSO-2 NichePSO-20 nbestPSO-20 

CPSO-20 mNichePSO-20  PVPSO-2 

              iteration #1                             iteration #5                             iteration #37 



the distance calculations. If the dimensionality increases, the scalability issue might 
arise, causing this cost to become remarkable. In CPSO, the cost is somewhat reduced 
by making the computations at a predefined frequency. With its enhanced exploration 
and exploitation capabilities based on craziness and hill climbing, CPSO has a good 
performance especially in locating multiple global optima, matching the overall per-
formance of mNichePSO and SPSO on the benchmark functions.  
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