
An Investigation of Selection Hyper-heuristics in
Dynamic Environments

Abstract. Hyper-heuristics are high level methodologies that perform
search over the space of heuristics rather than solutions for solving com-
putationally difficult problems. A selection hyper-heuristic framework
provides means to exploit the strength of multiple low level heuristics
where each heuristic can be useful at different stages of the search. In
this study, the behavior of a range of selection hyper-heuristics is inves-
tigated in dynamic environments. The results show that hyper-heuristics
embedding learning heuristic selection methods are sufficiently adaptive
and can respond to different types of changes in a dynamic environment.

1 Introduction

Many real world optimization problems change over time, i.e. they are dynamic.
In a dynamic environment, a change may occur in the objective function, the
constraints of the problem or the problem instance itself. Moreover, the charac-
teristics of the change dynamics may be different, e.g. the environment may be
changing quickly or slowly, the magnitude of the change may be very high or
low, and/or there may be a pattern in the change. A good optimization method
solving a problem in a dynamic environment should be capable of adapting itself
to those changes, modifying the candidate solution(s) to track the changing op-
tima as quickly and as closely as possible. This necessitates setting up a strategy
that specifies how the method should react to the environmental changes.

A hyper-heuristic is a high-level methodology which selects or generates low-
level heuristics to solve difficult problems [5, 7]. In a selection hyper-heuristic
framework, a hyper-heuristic selects a low-level heuristic without using any prob-
lem domain specific information and applies it to the solution at hand [18]. The
new solution is either accepted or rejected based on an acceptance criterion.
This process, based on a single point search, continues iteratively until a stop-
ping condition is met. The heuristic selection and the acceptance methods are
the two key components of selection hyper-heuristics. The idea of choosing from
heuristics (or neighbourhoods) dates back to the 1960s [10, 12]. Denzinger et al.
[11] introduced the term hyper-heuristic for the first time. There is a growing
interest in hyper-heuristic research.

Cowling et al [9] investigated the performance of a variety of heuristic selec-
tion methods over a timetabling problem. The simple heuristic selection method-
ologies include Simple Random (SR), which chooses a low-level heuristic at ran-
dom and then applies it to the candidate solution and Greedy (GR), which ap-
plies all low level heuristics to the same solution separately and then selects the
one producing the best result. A more sophisticated learning heuristic selection
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method was also proposed in this study. The Choice Function (CF) heuristic
selection mechanism scores each low level heuristic based on its individual per-
formance, its collective performance considering the previous low level heuristic
invocation and the elapsed time since it was last called. A low level heuristic
with the maximum score is selected at each step and its statistics are updated.

Reinforcement learning (RI) can also be used as a heuristic selection mecha-
nism [6, 20]. In Reinforcement learning, each heuristic has a score. Initial scores
of each heuristic are the same. If the current heuristic produces an improved
solution, its score is increased; otherwise it is decreased. The scores are allowed
to vary within predetermined lower and upper bounds.

Move acceptance strategies can be deterministic or non-deterministic. All
Moves (AM) accepted, Only Improving (OI) accepted, Improving and Equal (IE)
accepted are some examples for the deterministic acceptance criteria in litera-
ture [6, 9]. There are other more sophisticated acceptance mechanisms that were
investigated as part of hyper-heuristics, such as Monte Carlo, Simulated Anneal-
ing and Great Deluge acceptance methods [1, 16, 4]. More on hyper-heuristics can
be found in [6, 3, 21].

A preliminary study on the applicability of hyper-heuristics in a dynamic
environment was conducted by Ozcan et al. [19]. A Greedy hyper-heuristic was
used in the experiments. The results show that hyper-heuristics are indeed appro-
priate for solving dynamic environment problems. This is not surprising consider-
ing the adaptive nature of hyper-heuristics. This study extends the previous one
with the goal of comparing the performances of hyper-heuristics using different
heuristic selection mechanisms controlling a set of mutational low level heuristics
in a dynamic environment. The Moving Peaks Benchmark, which allows full con-
trol over all change dynamics, is used in the experiments. The remainder of this
paper is organized as follows. The next section provides background on dynamic
environments. Section 3 gives the experimental design and results of the compu-
tational experiments for comparing the performance of hyper-heuristics to solve
dynamic environment problems based using the Moving Peaks Benchmark, and
Section 4 concludes the paper.

2 Dynamic Environments

In a dynamic environment different problem components, such as the objectives
or the constraints, may change in time, restructuring the search landscape of
a given problem. The problem solving methodologies should adaptively react
to these changes and track the moving optima quickly and closely. Different
change characteristics generate different dynamic environments with different
requirements. These characteristics can be categorized as follows [2]:

– Frequency of change defines how often the environment changes.
– Severity of change defines the magnitude of the change in the environment.
– Predictability of change is a measure of the correlation between changes.
– Cycle length/cycle accuracy is a property that defines whether the optima
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Different techniques should be used for environments exhibiting different
change characteristics. The simplest approach is to restart the search algorithm
each time a change occurs. However, usually the change in the environment is
not too drastic and information gained during the previous environments can be
used to locate the new optima much quicker. The main problem in this case is the
issue of convergence. Many evolutionary approaches, which take these into con-
sideration, have been developed for dynamic environments. These are grouped
into four main categories in [15] as follows: (i) Approaches which increase di-
versity after a change, (ii) approaches that maintain diversity throughout the
running, (iii) memory based approaches, (iv) multipopulation approaches.

In the first group, during the stationary period, the evolutionary algorithm
is applied normally. However, whenever a change occurs in the environment, a
mechanism is used to increase diversity. Hypermutation [8] is the most common
approach that belongs to this category, where the mutation rate is increased
drastically for a number of generations when a change in the environment is
detected. In [24], the mutation rate is increased gradually after a change occurs.
In these approaches, the main problem is to determine the amount of required
diversity. This amount depends highly on the magnitude of the change in the
environment. Generating too much diversity will disrupt the search process,
while too little will not be sufficient to solve the problem of convergence. The
approaches in this category are generally more useful when the magnitude of the
change is not too high.

In the second group of approaches, convergence is always prevented by main-
taining diversity all throughout the generations. One of the well known methods
in this category is the random immigrants approach [13]. In this method, a num-
ber of randomly generated individuals are inserted into the current generation.
Maintaining a high level of diversity all the time may effect the search process
negatively during the stationary periods by preventing convergence. The ap-
proaches in this category are generally more useful when the magnitude of the
change is relatively high but the change frequency is relatively low.

In the third group of approaches, the evolutionary algorithm uses a mem-
ory to remember solutions which have been successful in previous environments.
This memory is implemented explicitly or implicitly. In approaches which use
an explicit memory, e.g. as in [27, 25], useful individuals are stored separately to
be used later on. In approaches which use an implicit memory, e.g. as in [14, 23],
memory is implemented by using redundant representations. The approaches in
this category are generally more useful when previous environments are encoun-
tered later during the search.

In the fourth group of approaches, the population is divided into subpop-
ulations, each of which conduct search in different regions of the search space.
Among the well known approaches in this group are the self-organizing scouts [2]
and the multi-national GA [22]. The approaches in this category aim to track
several optima in different parts of the search space.

Detailed information on dynamic environments can be found in [2, 17] and
more recently in [26].



3 Computational Experiments

3.1 Experimental Design

In this study, we use a parametrized Gaussian mutation to create different low-
level heuristics. In Gaussian mutation, random values drawn from a Gaussian
distribution with given mean and standard deviations, are added to each element
of a candidate solution to generate a new one. Mean value for the Gaussian
distribution in all low-level heuristics is taken as zero. The standard deviations
are chosen as: 0.5, 2, 7, 15, 20, 25, and 30. These are determined experimentally.

As heuristic selection methods, Simple Random (SR), Greedy heuristic selec-
tion (GR), Choice Function (CF), and Reinforcement Learning (RI) are chosen.
These selection heuristics are all representatives of different approaches. The
first one is random and uses no information. The second one is greedy, i.e. tries
to select the best option at each step. The last two incorporate some form of
adaptation and learning. With each heuristic selection mechanism, Improving
and Equal move (IE) acceptance scheme is used.

To observe the effectiveness of our hyper-heuristic, we include a hypermuta-
tion based single point search method (HM) in our experiments. In this method,
a Gaussian mutation with zero mean and a predetermined standard deviation is
applied during the stationary periods. Whenever the environment changes, the
standard deviation is increased for a number of consecutive iterations. The pa-
rameter settings are again determined experimentally. The standard deviation of
the Gaussian mutation during the stationary periods is 2. When change occurs,
this is increased to 7 for 70 consecutive fitness evaluations, after which it is reset
to 2.

For the experiments, we use the Moving Peaks Benchmark (MPB), which is
a multidimensional dynamic landscape generator. In this benchmark, the height,
width and location of the peaks in the landscape can be altered in a controlled
fashion [2], where each peak has time varying height, width and location pa-
rameters. The height, the width and the location of each peak are randomly
initialized.

Table 1 lists the parameters of the MPB used in the experiments. These are
also experimentally determined.

Table 1. Parameter settings for the MPB

Parameter Setting Parameter Setting

Number of peaks p 5 Number of dimensions d 5
Peak heights ∈ [30, 70] Correlation coefficient λ 0
Peak widths ∈ [0.8, 7.0] Basis function none

Change severity vlength 1.0/5.0/10.0 Peak function cone
Height severity 0.0 Minimum coordinates 0.0
Width severity 0.0 Maximum coordinates 100.0



In this study, we focus on exploring the effects of two change characteris-
tics on the performance of the chosen hyper-heuristics: frequency of the changes
and severity of the changes. To determine the duration of the stationary peri-
ods between the changes for various change frequency settings, we take the SR
heuristic selection as basis. We let the hyper-heuristic using SR and IE run for
long periods without any changes in the environment. By looking at the average
convergence plots for these runs, we determine the change periods1 as 6006 fit-
ness evaluations for low frequency (LF), 1001 for medium frequency (MF) and
126 for high frequency (HF). 6006 fitness evaluations correspond to a stage in the
plot where the algorithm has been converged for some time, 1001 corresponds
to a time where the approach has not yet fully converged and 126 is very early
on in the search. In this study, we only change the positions of the peaks and
keep their width and length parameters fixed. The step size parameter deter-
mines how far the peaks can move at each change, thus it determines the change
severity in the environment. In the experiments, the values of this parameter
are determined empirically as 1.0, 5.0, and 10.0, for low severity (LS), medium
severity (MS),and high severity (HS), respectively.

In order to compare the performance of the algorithms, the results are re-
ported in terms of offline error [2], which is calculated as the cumulative average
of the differences between the best values found so far and the optimum value
at each time step, as given below.

1
T

T∑
t=1

(optt − e∗t ) (1)

e∗t = max{eτ , eτ+1, . . . , et} (2)

where T is the total number of evaluations and τ is the last time step (τ < t)
when change occurred.

For RI, the initial scores of each heuristic are set to 15. Their lower and upper
bounds are set to 0 and 30, respectively [20]. If the current heuristic produces a
better solution than the previous one, its score is increased by 1, otherwise it is
decreased by 1. For CF, α, β, and δ are set to 0.5 and updated by ±0.01 at each
iteration. Whenever the environment is changed, the parameters of CF and RI
are reset to their initial values.

3.2 Results and Discussion

All results are presented as the average offline error of 100 runs. For each run
of the algorithms, 20 changes occur after the initial environment. Each hyper-
heuristic is denoted by their heuristic selection and move acceptance components
as in Greedy-IE, where this hyper-heuristic is the greedy heuristic selection
method combined with improving and equal as the move acceptance method.
1 Since we have 7 low level heuristics and the greedy heuristic selection method eval-

uates all at each step, these values are determined as multiples of 7 to give each
method an equal number of evaluations during each stationary period.



The total number of evaluations between each consecutive change is kept the
same for all approaches for a fair comparison.

Table 2. Offline error of each approach for each dynamic environment type which is
determined by a given frequency and severity of change

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

GR-IE 1.793 1.964 2.099 5.707 7.733 8.834 21.764 24.887 31.981
SR-IE 2.539 2.7 2.727 11.477 11.963 12.57 44.959 46.065 46.701
CF-IE 0.706 0.767 0.838 1.669 2.062 2.399 8.793 10.091 13.894
RL-IE 1.279 1.317 1.402 3.133 3.266 3.666 9.253 10.747 14.299
HM-IE 4.782 5.716 7.083 13.908 17.047 20.96 32.724 34.883 40.596

Table 2 summarizes the experimental results. The comparison of different
approaches in nine different dynamic environments generated by combinations
of three change periods and three change severities are given based on the offline
error box plots in Figure 1(a)–(c), 2(a)–(c), and 3(a)–(c). In general, while the
change frequency is increased, the performance of all methods degrade. More-
over, when the change severity is increased, the offline error is also increased,
particularly even more for the high change frequency. It is observed that the
choice function-IE hyper-heuristic outperforms the other approaches.

One-way ANOVA and Tukey HSD tests are performed to observe whether
the pairwise performance variations between the approaches are statistically
significant or not. The corresponding results are provided in Table 3. Greedy-
IE performs significantly better than Simple random-IE and Hypermutation-IE
for all different change frequencies and change severities. Choice function-IE
and Reinforcement learning-IE are always significantly better than the other
hyper-heuristics for all cases. Moreover, Hypermutation-IE is almost always sig-
nificantly worse than the other hyper-heuristics. For the dynamic environment
problems where the change frequency is high, Simple random-IE performs signifi-
cantly better than Hypermutation-IE. Even if this is the case, Simple random-IE
does not require any parameter tuning.

4 Conclusion and Future Work

In this study, we compare the performance of five hyper-heuristics combining
four previously proposed heuristic selection mechanisms and a hyper-mutation
based method with IE managing a set of mutational heuristics. The results show
that the heuristic selection mechanism with learning, namely, choice function
and reinforcement learning, outperform all other methods based on the offline
error, when used within hyper-heuristics in dynamic environments generated
using the Moving Peaks Benchmark.
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Fig. 1. Comparison of hyper-heuristics combining greedy, simple random, choice func-
tion, reinforcement learning and hyper-mutation heuristic selection with IE for different
change severity and low frequency settings based on the offline error box plots.

We will further our experiments to include more heuristic selection and accep-
tance methods, and so we will analyse the behavior of different hyper-heuristics
in dynamic environments. Additionally, the performance of hyper-heuristics will
be compared to the previously proposed methods and state-of-the-art algorithms
for dynamic environments. In this study, it is assumed that the hyper-heuristics
are aware of the time when the environment change occurs and acts on this. We
are planning to work on a novel approach that does not require this.
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