Cooperative Search for Fair Nurse Rosters

Simon Martin!, Djamila Ouelhadj!, Pieter Smet?, Greet Vanden Berghe?,
Ender Ozcan?

! Logistics and Mathematics Management Group,
University of Portsmouth, Department of Mathematics, UK
email: simon.martin@port.ac.uk, djamila.ouelhadj@port.ac.uk
200DeS, KAHO, Computer Science, Belgium
ITEC, iMinds, KULeuven, Belgium.
e-mail: pieter.smet@kahosl.be, greet.vandenberghe@kahosl.be
3 Automated Scheduling, Optimisation and Planning Research Group,
University of Nottingham, Department of Computer Science, UK
email: ender.ozcan@nottingham.ac.uk

Abstract

The development of decision support systems acceptable for nurse roster-
ing practitioners still presents a daunting challenge. Building on an existing
nurse rostering problem, a set of fairness-based objective functions recently
introduced in the literature has been extended. To this end, a generic agent-
based cooperative search framework utilising new mechanisms is described,
aiming to combine the strengths of multiple metaheuristics. These different
metaheuristics represent individual planners’ implicit procedures for improv-
ing rosters. The framework enables to explore different ways of assessing
nurse rosters in terms of fairness objectives. Computational experiments have
been conducted across a set of benchmark instances. The overall results indi-
cate that the proposed cooperative search for fair nurse rosters outperforms
each metaheuristic run individually.

Keywords: Cooperative search, agent-based systems, nurse rostering,
fairness.

1. Introduction

Optimisation problems are usually solved by one or more human planners
who developed a mental model of the objective to be optimised and a heuristic
procedure for generating solutions. One of the hardest issues to address when

Preprint submitted to Ezpert Systems with Applications May 13, 2013

developing decision support systems is modelling of the problem in a way that
the human planners experience as natural, while producing solutions that
reveal part of the optimisation process. When multiple decision makers are
involved, not necessarily sharing the same models and the same heuristics,
the problem turns out to be even more challenging. An obvious example can
be found in hospitals, where individual nurses cooperate and have a say in
establishing the monthly roster for the entire ward, at least when the process
is not fully automatised. An interesting question is whether situations with
multiple decision makers can be mimicked into an optimisation approach and
whether the obtained results are better than after optimisation from a single
planner’s point of view.

Nurse rostering is a domain of interest to many researchers and practition-
ers across different fields, including computer science, operational research
and artificial intelligence (Burke et al., 2004, 2001; Beddoe and Petrovic,
2006; Ozcan, 2005, 2007; Petrovic and Vanden Berghe, 2012). A nurse ros-
ter is a timetable consisting of shift assignments of nurses at a health-care
institution. Creating nurse rosters subject to a set of constraints based on
individual preferences and on requirements imposed by administration is a
challenging task (Even et al., 1976; Karp, 1972).

Cooperative search is defined as a search process performed by agents ca-
pable of exchanging information, e.g., models, solutions and/or other search
space characteristics during the search process (Clearwater et al., 1992;
Crainic and Toulouse, 2008; Blum and Roli, 2003; Hogg and Williams, 1993;
Toulouse et al., 1999). It has been successfully used to solve a number of
difficult combinatorial optimisation problems, such as multi-commodity lo-
cation with balancing requirements (Crainic et al., 1995, 1997), capacitated
network design (Crainic and Gendreau, 2002), vehicle routing (Bouthillier
and Crainic, 2005), quadratic assignment (James et al., 2009), labour con-
straint scheduling (Cavalcante et al., 2001), permutation flow shop scheduling
(Ouelhadj and Petrovic, 2010; Vallada and Ruiz, 2009). These studies have
shown that the combination of several metaheuristics with different parame-
ter settings increases the robustness of the global search relative to variations
in problem instance characteristics.

Agent-based cooperative metaheuristic approaches are fairly new in nurse
rostering. Wang and Wang (2009) developed an agent-based approach to
self rostering. Haspeslagh et al. (2009) addressed the problem of exchanging
nurses between wards and sorting out personnel shortages. Haspeslagh et al.
(2009) presented a Pareto optimal negotiation approach for leveraging the

2

workload across different wards. Most of the work on agent-based fairness
centres around game theoretic approaches (De Jong et al., 2008) where the
agents are used to model human behaviour and interactions. To the best
of our knowledge, there has been no work in the literature on agent-based
cooperative search for fairness making use of multiple fairness-based objective
functions.

Smet et al. (2013b) introduced different different fairness-based objec-
tive functions representing individual planners’ impressions of good quality
rosters We propose a novel cooperative search agent-based framework that
uses this recent work. (Smet et al., 2013a) present different solution methods
which may correspond to the planners’ individual and implicit procedures for
improving rosters. The cooperative search agent-based framework combines
the strengths of different metaheuristics and fairness models. The agents are
able to use the same or different fairness objective functions enabling them
to find the most appropriate model for a given problem. By the same to-
ken, each agent in this framework is autonomous and capable of executing
different metaheuristic combinations with different parameter settings. The
agents cooperate asynchronously using pattern matching and reinforcement
learning to produce high quality solutions with respect to fairness.

A brief overview of the nurse rostering problem and a set of alternative
fairness objective functions along with measures of fairness for nurse ros-
tering are provided in Section 2. In Section 3, we present an agent-based
framework for cooperative metaheuristic search for fair nurse rostering. The
experimental design is discussed in Section 4, including the implementation
details of different metaheuristic agents. The results of the computational
experiments are reported in Section 5. Section 6 concludes with a discussion
on the contribution and some directions for future research.

2. Problem description and fairness-based objective functions

The goal of automated nurse rostering is to assign shifts to a set of nurses
so that 1) the minimum staff requirements are fulfilled and 2) the nurses’
contracts are respected (Burke et al., 2004).

Nurse rostering is a highly constrained scheduling problem which was
proven to be NP-hard (Karp, 1972) in its simplified form. The problem is
represented as a constraint optimisation problem using 5-tuples: (i) set of
nurses, (ii) set of days (periods) including the relevant bits from the previous

Hard constraints Soft constraints

Single Assignment Start Per Nurse Per Day | Coverage Constraints

No Overlap between Assignments Assignment to the Primary Skill
Honour Skill Types Rest Times

Operations on Defined Assignments Only Requests

Schedule Locks Time-related Constraints

Table 1: Hard and soft constraints

and upcoming schedule, (iii) set of shift types, (iv) set of skill types and (v)
constraints.

The nurse rostering model addressed in this paper is based on the model
of Bilgin et al. (2012). A roster consists of a set of assignments from the
discrete space defined by nurses, skill types, shift types, and schedule period
subject to given constraints. It defines different types of constraints: hard,
soft, time-related and coverage constraints. The hard and soft constraints of
the model are described in Table 1 and a full description of this model can
be found in Bilgin et al. (2012); Smet et al. (2013a). A roster is feasible if
and only if all hard constraints are satisfied. Times constraints are a type of
soft constraint concerned with sequences of shift patterns. Soft constraints
represent preferences. A solution method aims at resolving as many soft con-
straints as possible for a given problem. When a soft constraint is violated, a
penalty is incurred proportional to the importance of the constraint and the
severity of its violation. The importance of each constraint is expressed using
weights. The higher the weight, the more important the constraint is, rela-
tive to the other constraints. A frequently used objective function in nurse
rostering is referred to as the weighted sum objective function MWW S. Let
¢ € C be the set of soft constraints then, w, is the weight associated with
constraint ¢ and n. the number of violations of ¢. We define:

QTOS(i>: Z WeNe <1>

0<e<(O]

We also define p,;,; which represents the coverage violations accrued by any
over- or under-staffing in a given roster. Therefore MinW S consists of two
parts: ¢r.s(i) associated with the costs of assigning a nurse to a given shift
and py the coverage constraints. Thus the objective is to find a roster with
the lowest overall penalty, denoted as MinWS.

4

MinW S = min (Z QTos(n> +pviol> (2>

neN

Smet et al. (2013b) address the issue of fairness in automated nurse ros-
tering. The fair distribution of contractual violations among nurses is an
important contributor to the satisfaction nurses get based on their work
schedules, and thus a large influence on the overall job satisfaction of nurses.
Smet et al. (2013b) show that, the commonly used MinW.S does not result
in fair solutions. They investigated alternative fairness models from the lit-
erature (Julian et al., 2002; Vasupongayya and Chiang, 2005) to solve the
problem of fairness in nurse rostering and show that by optimising these
models, fairer solutions are obtained, generally at the cost of an increased
number of constraint violations. The objective functions they introduced will
also be used in this study. They are defined below by Equations 4, 5 and 6.

All these fairness objective functions try to even the distribution of nurse
roster violations so that no nurse is favoured over another.

First of all, we define the average individual roster quality of the nurses:
1, calculated as:

1
n = W Z QTos<n) (3>

Based on (Smet et al., 2013b) we describe the four fairness objective
functions used in this study:

MinMazr = min (|N| (m%(qros(n)) + pviol) (4)
ne

MinDev = min ((Z(m — ¢ros(n)|) + |N| ,u) —i—pyiol) (5)

neN

MinError = min <|N| <(I£1€%< Qros(n) — min qms(n)) + ,u) + pm-ol) (6)

5

We also introduce the objective function MinSS which is similar to
MinMax as it tries to reduce the worst roster of a given nurse. However, it
does this by emphasising on the worst individual rosters by squaring. The
aim is therefore to reduce these poor individual rosters. w; and ws are weights
used to scale the two parts of equation.

MinSS = min (wl Z qTos<n)2 + w2p12)iol) (7)

neN

3. Agent-based cooperative metaheuristic search

3.1. An agent-based framework for cooperative metaheuristic search

Cooperative search provides a class of strategies to design more effective
search methodologies by combining metaheuristics for solving combinatorial
optimisation problems. This area has been little explored in operational re-
search. We introduce a generic agent-based distributed framework where
each agent implements a metaheuristic and a fairness objective function. An
agent continuously adapts itself during the search process using a coopera-
tion protocol based on reinforcement learning and pattern matching. Good
patterns which make up improving solutions, are identified and shared by
the agents.

The agent-based system is composed of a launcher agent and metaheuris-
tic agents (Martin et al., 2012).

e Launcher agent: The launcher agent reads problem instances from
XML benchmark files, executes seed algorithms using one of the fairness
objective functions and then sends the seed schedules, one at a time,
to each of the metaheuristic agents. After the improving phase, it also
collects the final schedules from the metaheuristic agents and selects
the fairest rosters.

e Metaheuristic agent: The metaheuristic agents receive a problem
from the the launcher agent which they try to optimise using their
given metaheuristic and local search heuristic combinations. They also
cooperate asynchronously with the other agents according to a coop-
eration protocol where the agents try to find recurring good schedule
patterns. The agents share the good patterns and each try to build
new improving rosters which they then optimise according to the given

fairness objective functions and metaheuristics. After a number of it-
erations, the metaheuristic agents each send their best roster to the
launcher. The launcher then chooses the fairest roster.

The metaheuristic agents cooperate asynchronously by iterating a com-
munication protocol which is a distributed algorithm. At each iteration a
conversation initiator (identified in the previous iteration) sends the result
of its latest metaheuristic search using its own fairness objective function to
the other agents. The agents compare this result with their own and then
generate patterns (Section 3.3) which they send back to the initiator. The
initiator then identifies good patterns and shares them amongst the meta-
heuristic agents. Each agent then generates a new potential solution. The
metaheuristic agent with the lowest objective function value in the present
iteration is chosen to be the initiator of the next. In the next iteration the
new potential solutions are used to further the search in the manner just
described.

Figure 1 shows how the agents perform a search by cooperating with
each other running asynchronously in parallel and executing different meta-
heuristic and heuristic combinations with different parameter settings. They
use ontologies (Section 3.2) to enable the agent-based system to be adapted
easily to new problem domains.

The internal structure of a metaheuristic agent is mediated at two levels
through the use of ontologies. Ontologies are defined as a set of general
representational primitives to model semantic elements of a domain (Gruber,
1993).

3.2. Ontologies

The ontology currently used by the framework generalises the notions of:
assignments, pairs of assignments, constraints and roster or schedule. In the
ontology these are called SolutionElements, HeuristicData, Constraints and
SolutionData objects respectively.

e SolutionElements: A SolutionElement represents the assignment of
a nurse with specific skills to a shift on a certain day as required by a
given nurse rostering problem.

e HeuristicData: A HeuristicData object contains two SolutionEle-
ments objects. These represent pairs of assignments in a roster that

Metaheuristic agent,,

Create agent/Solve problem A
Launcheragent | -tttttttmoommemoemoeeeoooooeoes >

best-found, o
N Metaheuristic agent,,

best-found

s: best-so-far ,

N-2 Metaheuristic agent,,,,

Receive
Vi pattern,

leader of the jth conversation

uoIBSIBAUOD Yores
Je suianed pue suonnjos poob abueyox3

best-found,

Metaheuristic agent,

Send good solutions at the end of every M
conversations

best-found,;

« Metaheuristic agent, v

mmmmm — Conversations between metaheuristic agents

—— = Conversations between launcher and metaheuristic agents

Figure 1: Agent-based framework for cooperative metaheuristic search

will be used in the cooperation protocol to identify good patterns of
assignments in improving rosters.

e Constraints: The Constraints interface is the interface between the
high level framework and the concrete constraints used by the nurse
rostering problem. These are used to verify a valid roster.

e SolutionData: A SolutionData object represents the list of assign-
ments that make up a valid nurse roster.

The ontology is represented in XML, corresponding to the representa-
tion of most of the nurse rostering benchmark problems. This makes the
interface between problem definition and ontology seamless in practice. As a
consequence the elements defined in a specific problem instance will be used

directly by the system. Figure 2 shows the structure of the ontology and
how SolutionElements is the interface between the framework and the nurse
rostering problem instances.

The SolutionElements, HeuristicData, Constraints and SolutionData ob-
jects are also used in the agents to facilitate inter-agent cooperation.

The next section describes the cooperation protocol and how this is im-
plemented with the use of ontologies.

Ontology for Agent Based Framework

SolutionData

Objects of Agent-based framework ‘ A
HeuristicData Constraint
> A

/The SolutionElements
" object is the interface between
y the framework and

. j specific problems instances
SolutionElements *P*" P

Objects of specific problems Interface

Y
Assignment

Assignment is the basic object
of the nurse rostering system

Figure 2: The interface between the framework and problem instances

3.8. Asynchronous cooperative search by pattern matching and reinforcement
learning for nurse rostering

The agents cooperate by exchanging patterns defined as a permutation
of assignments. This is a simple distributed metaheuristic.

Given such a permutation of assignments, it is always possible to generate
n pairs from it. In the following example, we define the permutation of nurse
assignments using the following ID’s, where n = 10: <2,4,7,6,5,8,9,0,1,3>.
The following n pairs can be generated:

(2,4),(4,7),(7,6),(6,5),(5,8),(8,9),(9,0),(0,1),(1,3),(3,2)

9

The permutation is broken into patterns of the same length while retain-
ing the basic order of the permutation. The agents can then each compare
pairs of assignments generated by their own metaheuristic with pairs shared
by the other agents. All the pairs from each agent are scored based on how
frequently they appear. Only those pairs that have the highest frequency
score are shared out amongst the agents. The idea behind this step is that
the lists of assignments have already been optimised by each agent’s respec-
tive metaheuristic so each list must have elements that make up a good
roster. It is argued that these pairs will occur more frequently as the search
progresses.

Once the good pairs are shared out, the agents use these pairs to generate
a new roster by using a greedy heuristic. This is a simple heuristic that
makes the new roster by taking the good patterns first and then filling the
rest of the roster with the agent’s previous best-so-far permutation. The
new permutation of assignments is now ready to be optimised by an agent’s
metaheuristic and fairness objective function.

This protocol involves diversification and intensification phases. Diversi-
fication involves pattern matching and the application of the greedy heuristic
to produce a new roster. This roster is then intensified using a metaheuristic.
One application of these two phases is called a conversation. It should be
noted that the pattern matching results in a controlled diversification of the
search. Good patterns are retained and used to build new potential solutions
which will diversify the search just enough to enable new areas of the solution
space to be explored. The metaheuristics then intensify the search.

The asynchronous cooperative search is implemented as follows:

1. A metaheuristic agent taking on the role of conversation initiator starts
a conversation. It takes a new roster either generated from a previous
conversation or supplied by the launcher agent. The new roster is then
improved by the initiator agent. When an improved roster is generated
locally, it is sent to the other metaheuristic agents.

2. The metaheuristic agents have also generated their best-so-far rosters
using their fairness objective functions. They break up the rosters
sent from the initiator and their own into pairs. The pairs are then
compared and only those that are common to both rosters are kept.
HeuristicData objects are created from these pairs storing the first and
second assignments of the pair. These are then sent by the metaheuris-

10

tic agents to the initiator. The metaheuristic agents also send the value
of their fairest roster found so far. These rosters will be used by the ini-
tiator to determine which metaheuristic agent will be the new initiator
in the next conversation.

. Upon receiving the HeuristicData objects from the other metaheuristic
agents, the initiator pools them locally. Each HeuristicData object is
scored by counting how frequently it occurs in the pool. The initiator
then tries to build a linked list from these high scoring HeuristicData
objects.

For example, if the pool contains the following HeuristicData objects
with first and second assignments expressed here as pairs (4,7) (6,1)
(7,2) (2,6) (5,9) (3,8), the linked list generated from the HeuristicData
objects will have the following order (4,7) (7,2) (2,6) (6,1). Any Heuris-
ticData objects not linked in this way are stored in an unlinked list (5,9)
(3,8).

. The initiator then determines which metaheuristic agent is going to
be the initiator in the next conversation. This is done by pooling all
the fairness objective function values of the best rosters found so far
by the metaheuristic agents and then identifying which metaheuristic
agent has the best fairness objective function value. The metaheuristic
agent with the best objective value will be the new initiator in the
next conversation. The initiator then sends these lists of best-so-far
HeuristicData objects to the metaheuristic agents. In the same message
it also indicates which metaheuristic agent will be the new initiator in
the next conversation.

. The metaheuristic agents receive the lists of HeuristicData objects.
Both initiator and metaheuristic agents then create a new roster from
these objects, as well as their current best roster. The new roster is
created by trying to build first a list of HeuristicData objects, while the
metaheuristic agent’s best-so-far roster provides any missing numbers.
In this way a new unique roster for each agent is generated and the
objective function value is calculated.

. The conversations are repeatedly exchanged between the metaheuristic
agents for a maximum number of conversations set in the configuration
file of the launcher agent.

11

4. Experimental Design

Section 4.1 discusses the configuration of the agent-based system. Section
4.2 real-world examples from two Belgian hospitals are described that are
used in the experiments. We also describe two different scenarios and the
measures used to verify the fairness of a roster.

4.1. Implementation of the agent-based framework

The agent-based framework for cooperative search is implemented using
the open source FIPA compliant development platform JADE (Bellifemine
et al., 2005). We implemented three different metaheuristic agents in the
framework:

e Tabu Search agents (Glover, 1990): The tabu search agents im-
plement a basic tabu search. The search starts from a feasible roster
and moves iteratively from the current roster to its best neighbouring
roster using neighbourhoods even if that neighbourhood worsens the
objective function value.

e Simulated Annealing agents (Bertsimas and Tsitsiklis, 1993):
The simulated annealing agents implement the basic algorithm with a
geometric cooling schedule.

e Variable Neighbourhood Search agents (Bilgin et al., 2012):
The variable neighbourhood search agents implement a perturbation
heuristic which uses local search heuristics to improve an initial solu-
tion. The algorithm proceeds by randomly choosing a heuristic from
the list of available neighbourhood operators. Each possible move is
validated against the hard constraints ensuring that at every stage of
the search each new solution remains feasible.

Tabu Search, Simulated Annealing and VNS use the local search moves
developed by Bilgin et al. (2012). The neighbourhoods are:

e Shift: It assigns a nurse to a new shift to the roster.
e Delete shift: This move deletes a shift from the roster.

e Single shift day: An assignment is removed from a nurse’s schedule
and added to another nurse on the same day if the second nurse has no
assignment on that day and has the associated skill type.

12

e Change assignment based on compatible shift type: The shift
type of an assignment is changed to another compatible shift type de-
fined in the coverage constraints for the associated day and skill type.

e Change assignment based on skill type: This neighbourhood can
be used when the nurses have at least two different skill types. It deletes
an assignment and adds another assignment to one of the nurse’s other
skill types.

e General Assignment Change: An assignment is changed to another
shift type where the skill type of the assignment remains the same.

The experiments were conducted using a network of 13 agents, configured
as follows:

e Launcher agent

e 4 Tabu Search agents

e 4 Simulated Annealing agents

e 4 Variable Neighbourhood Search agents

The metaheuristic agents are configured from a file which they execute
at start-up. This file specifies to the agent which metaheuristic to run; how
many iterations to perform; which fairness objective function to use; also,
parameters such as the size of tabu tenure or which cooling schedule function
to use if configured to run SA. All agents run the same local search heuristics
described above.

The parameter settings of the individual agents remain unchanged
throughout all testing. Fach agent evaluates its given metaheuristic for 500
iterations or until no further improving solutions are found. Experimentation
shows that it provides a good balance between diversification using pattern
matching while the 500 iterations of the metaheuristic intensifies the new ros-
ter just enough that the agents tend to converge to good rosters. T'S agents
have a tabu tenure set to seven. SA agents use a geometric temperature
cooling schedule set at 0.9 for a more diverse search. All agents randomly
select the next local search heuristic to run.

Each agent ran on a HP Compaq 6000 pro with Intel Core 2 duo E8400
processor with 4 GB RAM in a 2x2 GB configuration. The agents were
configured to use only 1 GB of memory.

13

4.2. Ezxperimental data and fairness evaluation measures

The experiments were conducted on the data used by Smet et al. (2013b)".
The instances are based on four different hospital wards from two Belgian
hospitals: emergency, geriatrics, psychiatry and reception. Table 2 provides
an overview of the instance characteristics. For each ward, two cases are con-
sidered: one where all the nurses have the same contract (referred to as name
of instance_i), and one where each nurse has an individual contract with both
common and personalised constraints (referred to as name of instance_d).

Instance No. nurses No. shifts No. skills Planning period
Emergency 27 27 4 28 days
Geriatrics 21 9 2 28 days
Psychiatry 19 14 3 31 days
Reception 19 19 4 42 days

Table 2: The properties of the benchmark instances used during the experiments obtained
from a Belgian hospital.

The fairness objective functions guiding the search process towards fair
rosters and the metrics measuring fairness are separated. This is due to
the reason that the objective functions take into account different compo-
nents, particularly, contractual constraints and coverage constraints during
the search process, while the fairness metrics ignore the coverage constraints
to better assess how fair the full roster is from the point of view of nurses. In
this study, we use the Jains fairness index (Jain et al., 1984; Muhlenthaler
and Wanka, 2012), denoted by Jains, to measure the fairness of a roster.
Equation 8 shows how this measure is calculated for a given solution with
N, the set of nurses.

(ngv qms(n)> 2
INI- 22 47s(n)

neN

Jains =

http://allserv.kahosl.be/~pieter/nurserostering

14

The value of Jains fairness index varies from 1/|N| (worst fairness case) to
1 (best fairness case), which denotes that the violations for each individual
nurse is the same. If the assignment of a set of nurses to form a roster
generates no violations then the value of the roster is 1. In such as case the
roster is deemed to be completely fair.

To compare the performance of two different fairness objective functions,
A and B over a given set of instances, we use %gap indicating the percentage
change that an algorithm using the objective function B generates over A
(i.e., gap from A to B):

A—-B
%gap = 5 x 100 (9)

Assuming that A = MinFO, where MinFO € {MinMax, MinDev,
MinError, MinSS} and B = MinW S, if an algorithm using the minimis-
ing objective function MinFO improves the (average) solution quality when
compared to an algorithm using MinW .S over a set of runs for an instance,
then (average) %gap < 0. If B is 0 the search has found a solution with no
violations. This %gap measure is not applicable (N/A) in this case.

4.8. Experimental Scenarios

Two experimental scenarios were conducted to evaluate the performance
of the proposed cooperative search. In the first scenario, all 12 metaheuristic
agents executed the same objective function on all the instances. Each ob-
jective function was tested separately in this manner. The same tests were
conducted in stand alone mode where metaheuristic agents do not cooper-
ate. Here a single agent runs the same experiments evaluating its fairness
objective function the same number of times as all the 12 cooperating agents
added together. For example, in cooperation mode 12 agents conducted 200
conversations evaluating their objective functions as most 500 times. There-
fore, in the stand alone experiments, a metaheuristic evaluates the fairness
objective function 12 x 200 x 500 = 1200000 times. In all the experiments,
wy = we = 1 for MinSS.

The Jains fairness index defined in (Equation 8) is used to evaluate the
relative fairness of the solutions produced by each configuration. The average
percentage increase (Equation 9) from MinW S for each instance was used to
evaluate the efficiency of each fairness objective function in terms of number
of constraint violations.

15

In the second scenario, the same instances were used but all four fairness
objective functions are used at the same time to generate the nurse rosters.
The idea behind this test is to identify which fairness measures are best for
each problem instance. Of the twelve metaheuristic agents, a group of three
different metaheuristic agents generated nurse rosters using MinMazx, three
ran MinDev, three ran MinError and finally three ran MinSS. When the
search is finished, each agent sends their best roster to the launcher which
then selects the roster with the largest Jains fairness measure.

All experiments were conducted on real-world benchmark problems with
20 repeated runs for each problem instance. In the first scenario, these ex-
periments were conducted five times for each of the five objective functions.
The resulting nurse rosters were then each recalculated using the other ob-
jective functions not used in the optimisation of the roster so that they could
be compared with the original. In the second scenario each experiment was
also repeated 20 times for each instance. The agents conducted only 200
conversations to complete each search taking no longer than 6 minutes to
produce a new roster for each problem instance.

5. Computational Results

In this section, we present the results of the two test scenarios described
in Section 4.3. In the first test scenario, the metaheuristic agents use coop-
erative search to generate the nurse rosters using the same fairness objective
function, while in the second one, the metaheuristic agents use cooperative
search and a mixture of the fairness objective functions to generate the nurse
rosters. As a statistical test, a Wilcoxon singed-rank test has been performed
to compare pairwise performance of two given algorithms. The following no-
tation is used: Given A versus B, < (<) denotes that B is better than A
and this performance variance is (not) statistically significant within a 95%
confidence level. The software used for generating and evaluating rosters was
provided by the authors of (Smet et al., 2013a)2.

5.1. Scenario 1 test results

Table 3 summarises the first scenario results using average Jains fairness
index over 20 runs for each instance. Considering the average performance

2Personnel rostering software kernel, KAHO, Gent

16

of cooperative search with respect to the Jains fairness index using differ-
ent fairness objective functions, MinDev ad MinMax are the best choices
under scenario 1, performing well on all instances. Their performance is sig-
nificantly better than the rest of the objective functions. MinDev performs
better than MinMax on average across five instances including Emergency i,
Emergency_d, Geriatric_i, Geriatric.d, Psychiatry_.d and this performance
difference is statistically significant. MinDev and MinMazx both deliver a
similar performance on Psychiatry_i. On the other hand, MinMax performs
significantly better than MinDev on the Reception instances. MinError,
MinSS and MinW S follows MinMax in the given order when their over-
all average performances are compared. Smet et al. (2013b) showed that
MinW S produces the least fair rosters and similar phenomena are observed
under the cooperative search Scenario 1 setting.

Instance MinWS | MinMax | MinDev | MinError | MinSS
Emergency _i 0.5638 0.9983 | 0.9991 0.9074 | 0.9609
Geriatrici 0.4451 0.9784 | 0.9861 0.6023 | 0.5613

Psychiatry_i 0.6069 | 0.9995 | 0.9995 0.9054 | 0.8938
Reception_i 0.6273 | 0.8808 0.8515 0.7191 | 0.1076
Emergency.d | 0.6295 0.9973 | 0.9982 0.8574 | 0.9228
Geriatric_d 0.6013 0.9980 | 0.9986 0.9491 | 0.3349
Psychiatry.d | 0.4446 0.9986 | 0.9988 0.6882 | 0.6719
Reception_d 0.3321 | 0.9895 | 0.9824 0.8052 | 0.2603

Table 3: The average Jains fairness index over 20 runs of a given fairness-based objective
function for each benchmark instance under Scenario 1, where the bold entries indicate
the best one for a given instance.

Table 4 shows the average Jains fairness index over 20 runs for each in-
stance considering the stand-alone tests in which a single metaheuristic is
used as a sequential metaheuristic. When a given metaheuristic makes use of
a different objective function, its performance changes. In general, MinDev
is a better choice than the other fairness-based objective functions to be
used by a stand-alone metaheuristic. MinMax is the second best choice as
an objective function to produce fair rosters. As expected, MinW.S does
not generate high quality solutions as well as the other objective functions
in terms of fairness in most of the cases. MinW .S generates fairer solutions
when compared to MinSS for Reception_i, regardless of the standalone algo-
rithm used. A similar phenomenon is observed for the standalone VNS using
MinW S when compared to VNS using MinW S on the Geriatric instances.
VNS performs slightly better than the other stand-alone metaheuristics in

17

the overall when MinDev is used as the fairness-based objective function.
Cooperative search based on Scenario 1 using MinDev performs significantly
better than all stand-alone metaheuristics regardless of the objective function
used on all instances, except for Psychiatry_i and Reception_i. For Psychi-
atry_i, Scenario 1 using MinDev performs similar to the stand-alone VNS
using MinDev. For Reception_i, stand-alone VNS using MinMax performs
better than Scenario 1 using MinDev. Figure 3 provides the box plots of
Jains fairness index for the Emergency_i instance over 20 runs considering
cooperative and stand-alone metaheuristics using different objective func-
tions as an example. The results indicate the success of cooperative fairness
approach over the approach without cooperation when MinDev, MinMax
or MinSS is used as an objective function. This performance variation is
statistically significant.

18

Stand-alone VNS
Instance MinWS | MinMax | MinDev | MinError | MinSS
Emergency_i 0.7477 0.9812 | 0.9966 0.8697 | 0.9605
Geriatric_i 0.5646 0.9714 0.9646 0.5413 | 0.6101
Psychiatry i 0.8070 0.9874 | 0.9995 0.9652 | 0.9809
Reception_i 0.7148 0.8893 0.8277 0.8192 | 0.5766
Emergency_d 0.6829 0.9845 | 0.9955 0.8094 | 0.9556
Geriatric_d 0.6362 0.9747 | 0.9981 0.9466 | 0.4337
Psychiatry_d 0.6299 0.8929 | 0.9931 0.7714 | 0.9158
Reception_d 0.4970 0.8654 0.7106 0.6601 | 0.5618
Stand-alone Simulated Annealing
Instance MinWS | MinMax | MinDev | MinError | MinSS
Emergency_i 0.8657 0.9751 | 0.9927 0.9337 | 0.9314
Geriatric_i 0.6789 0.9718 0.9533 0.8117 | 0.7530
Psychiatry i 0.8979 0.9542 | 0.9929 0.9532 | 0.9809
Reception_i 0.7660 0.8380 0.8332 0.8323 | 0.7792
Emergency_d 0.8222 0.9592 | 0.9706 0.8878 | 0.8869
Geriatric_d 0.7572 0.9460 | 0.9820 0.8838 | 0.9175
Psychiatry_d 0.6946 0.9160 | 0.9767 0.7723 | 0.8998
Reception_d 0.6204 0.8451 0.7449 0.7184 | 0.7157
Stand-alone Tabu Search
Instance MinWS | MinMaz | MinDev | MinError | MinSS
Emergency_i 0.8398 0.9821 | 0.9900 0.9274 | 0.9406
Geriatric_i 0.6949 0.9618 | 0.9660 0.7306 | 0.7320
Psychiatry i 0.8693 0.9778 | 0.9979 0.9699 | 0.9721
Reception_i 0.7875 0.8532 0.8071 0.7995 | 0.7681
Emergency_d 0.7562 0.9711 | 0.9921 0.8784 | 0.9394
Geriatric_d 0.7256 0.9551 | 0.9391 0.8577 | 0.9245
Psychiatry_d 0.7101 0.8857 | 0.9650 0.7783 | 0.9048
Reception_d 0.5796 0.8033 0.7680 0.6397 | 0.7734

Table 4: The average Jains fairness index obtained over 20 runs for a given fairness-based
objective function for the stand-alone case, where the bold entries indicate the best one
for a given instance.

19

Emecrgency_i MinMax 12 Agents and stand alone labu, 54, VNS Emergency_i MinDev 12 Agents and stand alone labu, SA, VNS

== == . |
0sn noos ?‘
H ! H —
H H -
H - ® H -
S uuy ! £ v.eon “
o7 505
036 . i . .
12 agent Tab o s

12 Agents Tabu sk s gents

(a) MinMax (b) MinDev

Emergency_| MinError 12 Agents and stand alone Tabu, SA, VN S Emergency_112 Agents and stand alone Tabu, SA, VNS
0
|
[—
] £ 0oe
: < 0
£ £ e |

Figure 3: The box plots of Scenario 1 algorithm and stand-alone metaheuristics based on
Jains fairness index values obtained from 20 runs on Emergency_i for each fairness-based
objective function.

We have re-evaluated all rosters produced at the end of each run by the
Scenario 1 algorithm using a given fairness-based objective function with
respect to the MinWS objective function. For each instance, the average
result obtained by Scenario 1 using MinW S as objective function over 20
runs is used as a basis. Table 5 provides the average %gap (Equation 9) from
the basis to the average MinW.S over 20 runs when a fairness-based objec-
tive function is used. The negative entries indicate improvement. Although
MinDev and MinMax produce more fair rosters, the quality of these rosters
is not as good in terms of the generic objective value, as expected (Smet
et al., 2013b). In Scenario 1, it can be observed that MinSS and MinError
performs better than the rest of the fairness-based objective functions on
average, generating high quality roster with respect to MinWS. Scenario
1 using MinError and MinSS make 5-7% and 80-90% improvement upon
the results of Scenario 1 algorithm using MinW S for the Reception instances
and Geriatric_i, respectively. On the other hand, MinSS' is one of the worst
performing objective function in terms of fairness (Table 3).

20

Instance MinWS | MinMax | MinDev | MinError | MinSS
Emergency i 23245 | 367.55% | 37.21% 22.88% | 39.55%
Geriatric_i 3799 | 316.98% | 427.11% 61.66% | 85.34%
Psychiatry_i 29516 | 331.34% | 315.43% 1.46% 8.45%
Reception_i 66719 39.36% 18.72% -5.21% | -81.57%
Emergency_d 17477 | 465.85% | 406.33% 39.54% | 45.72%
Geriatric_d 38835 18.07% 74.55% -6.99% | -90.03%
Psychiatry_d 11591 | 642.50% | 600.85% 1.66% | 41.61%
Reception_d 19018 71.84% | 113.35% -5.40% | -79.55%

Table 5: The average % gap from MinW S to the MinW .S value of each fairness-based
objective function for each instance.

5.2. Scenario 2 test results and comparison to Scenario 1

In the second test scenario, all the fairness models are used and tested
at once. This is motivated by the idea that people planning a roster will
have different concepts/models of fairness. If these models are allowed to
cooperate, will the rosters be fair and obtained fast? Furthermore will this
approach enable us to identify the best performing fairness-based objective
function and guide search process? To this end the experiments are con-
ducted in accordance with the first scenario in that 12 metaheuristic agents
and 1 launcher employed under the cooperative search framework and 20 runs
are performed for each instance. However, in this scenario three agents are
grouped to form four different groups. Each group optimises with respect
to one of the MinMax, MinDev, MinError and MinSS fairness-based
objective functions, separately.

Table 6 provides the results for Scenario 2 and compares its performance
to the best stand-alone metaheuristic, VNS using MinMax and cooperating
agents under Scenario 1 using MinDev based on the average and best Jains
fairness index over 20 runs. The Scenario 2 algorithm outperforms all stand-
alone algorithms (Table 4) regardless of the objective function generating
the most fair rosters for any given instance and this performance variation is
statistically significant for all instances. Moreover, cooperative search under
Scenario 2 consistently outperforms Scenario 1 using MinDev or any other
fairness based objective function on average and this performance difference
is statistically significant for each instance. Scenario 1 and 2 produce the best
rosters for three and four instances, respectively, with a tie in one instance.
Figure 4 provides the box plots of Jains fairness index for the Geriatric_i
instance over 20 runs considering cooperative and stand-alone metaheuris-
tics using different objective functions as an example. VNS, Tabu and SA

21

performs best using MinDev on this instance. The results confirm the suc-
cess of Scenario 2 over an approach with no cooperation even if it is used
with the best performing objective function and this performance variation
is statistically significant, except for Emergency_i. Still, Scenario 2 performs
slightly better than Scenario 1 using MinDev.

‘ Best-of-runs Average
Instance VNS | Scenario 1 | Scenario 2 VNS | Scenario 1 | vs. | Scenario 2
Emergencyi | 0.9993 0.9998 0.9997 || 0.9966 0.9991 | < 0.9993
Geriatrici 0.9946 0.9978 0.9980 || 0.9646 0.9861 | < 0.9942
Psychiatry i | 0.9997 0.9999 0.9999 || 0.9995 0.9995 | < 0.9997
Receptioni | 0.8439 0.9540 0.9557 || 0.8277 0.8515 | < 0.9528
Emergency_d | 0.9982 0.9997 0.9995 || 0.9955 0.9982 | < 0.9989
Geriatric_d 0.9991 0.9993 0.9998 || 0.9981 0.9986 | < 0.9992
Psychiatry_d | 0.9994 0.9999 0.9997 || 0.9931 0.9988 | < 0.9992
Reception.d | 0.7727 0.9949 0.9999 || 0.7106 0.9824 | < 0.9986

Table 6: Performance comparison of stand-alone VNS metaheuristic and scenario one
using MinDev, and Scenario 2 based on the average and best-of-runs Jains fairness index
values over 20 trials for each instance. Bold entries mark the best algorithm.

Geriatrics_i best Jains results over all scenarios

[Tea

0.90 *

ness Index

*

©2-12 Agents S1-12 MinDev Tabu-MinDew SA-MinDew WHE-MinDew

Figure 4: The box plot for Scenario 2 (S2) and Scenario 1 (S1), Tabu, SA and VNS using
MinDev based on Jains fairness index obtained from 20 runs for Geriatric_i.

Table 7 provides the average %gap (see Equation 9) from the basis (first
column) in Table 5 to the average MinW.S over 20 runs under Scenario
2. This quantity indicates how MinW.S objective value changes while the
fairness is optimised under Scenario 2. The results are consistent with the
previous findings by Smet et al. (2013b), indicating that optimising MinW S
does not help much in terms of fairness. Scenario 2 is performing worse than
Scenario 1 in the overall, regardless of the objective function used within
the framework in terms of MinW S, yet it is much better at producing fair
rosters as compared to Scenario 1.

22

Instance MinWS | Scenario 2
Emergency i 23245 | 340.60%
Geriatric_i 3799 501.93%
Psychiatry_i 29516 311.68%
Reception_i 66719 28.60%
Emergency d 17477 | 456.62%
Geriatric_d 38835 67.49%
Psychiatry_d 11591 601.16%
Reception_d 19018 177.32%

Table 7: The average %gap over 20 run for a given objective function measured from the
basis (first column of Table 5) to Scenario 2 for each instance.

6. Conclusion

This paper describes a flexible generic agent-based cooperative search
framework to build fair nurse rosters. The cooperative search framework
combines the strength of multiple metaheuristics and several fairness ob-
jective functions to generate high quality rosters. The agents improve the
quality of local rosters using the same or different metaheuristic solution
methods with the same or different fairness objective functions and param-
eter settings. The agents cooperate asynchronously using pattern matching
and reinforcement learning in order to generate fair nurse rosters.

The experiments were conducted to evaluate the effectiveness of using co-
operation to generate fair nurse rosters using existing real world benchmark
problems. The experimental results demonstrated the success of cooperative
search in producing fairer rosters. Furthermore, when all agents cooperate
using the same fairness objective function, the function minimising the devi-
ation from the average roster turned out to be superior, while the weighted
sum objective function produced the least fair rosters. This observation con-
firms the results obtained by Smet et al. (2013b).

Finally, cooperative search with combined fairness models produced the
fairest nurse rosters. Supposedly, this phenomenon can be ascribed to the
fact that cooperation of the different fairness models introduced an element
of efficiency. This could be in line with the strength of human coopera-
tion, where the cooperation of nurses sharing different impressions of fair
nurse rosters can lead to better rosters in terms of fairness. The results
have confirmed that the cooperation of multiple decision makers who do not
necessarily share the same models and the same heuristics produced fairer
rosters than optimisation from a single planner’s point of view. Future work

23

will investigate the fairness issues in other problem domains.

References

G. R. Beddoe and S. Petrovic. Selecting and weighting features using a ge-
netic algorithm in a case-based reasoning approach to personnel rostering.
European Journal of Operational Research, 10(1):649-671, 2006.

F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. Jadea java agent devel-
opment framework. Multi-Agent Programming, pages 125-147, 2005.

D. Bertsimas and J. Tsitsiklis. Simulated annealing. Statistical Science,
pages 1015, 1993.

B. Bilgin, P. De Causmaecker, B. Rossie, and G. Vanden Berghe. Local
search neighbourhoods to deal with a novel nurse rostering model. Annals
of Operations Research, 194(1):33-57, 2012.

C. Blum and A. Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys (CSUR),
35(3):268-308, 2003.

A. L. Bouthillier and T. G. Crainic. A cooperative parallel meta-heuristic for
the vehicle routing problem with time windows. Computers € Operations

Research, 32(7):1685-1708, 2005.

E. K. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden Berghe. Fitness
evaluation for nurse scheduling problems. In Proceedings of the Congress
on Evolutionary Computation (CEC2001), pages 11391146, Seoul, Korea,
May 27-30 2001. IEEE Press.

E. K. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem.
The state of the art of nurse rostering. Journal of Scheduling, 7(6):441-499,
2004.

C. C. B. Cavalcante, C. Carvalho de Souza, M. W. P. Savelsbergh, Y. Wang,
and L. A. Wolsey. Scheduling projects with labor constraints. Discrete
Applied Mathematics, 112(1):27-52, 2001.

S. H. Clearwater, T. Hogg, and B. A. Huberman. Cooperative problem
solving. Computation: The Micro and the Macro View, pages 33-70, 1992.

24

T. Crainic and M. Toulouse. Explicit and emergent cooperation schemes for
search algorithms. Learning and intelligent optimization, pages 95-109,
2008.

T. G. Crainic and M. Gendreau. Cooperative parallel tabu search for capac-
itated network design. Journal of Heuristics, 8(6):601-627, 2002.

T. G. Crainic, M. Toulouse, and M. Gendreau. Synchronous tabu search
parallelization strategies for multicommodity location-allocation with bal-
ancing requirements. OR Spectrum, 17(2):113-123, 1995.

T. G. Crainic, M. Toulouse, and M. Gendreau. Toward a taxonomy of parallel
tabu search heuristics. INFORMS Journal on Computing, 9:61-72, 1997.

S. De Jong, K. Tuyls, and K. Verbeeck. Artificial agents learning human
fairness. In Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems-Volume 2, pages 863-870. In-
ternational Foundation for Autonomous Agents and Multiagent Systems,
2008.

S. Even, A. Itai, and A. Shamir. On the Complexity of Timetable and
Multicommodity Flow Problems. SIAM Journal on Computing, 5(4):691—
703, 1976.

F. Glover. Tabu search: a tutorial. Interfaces, pages 74-94, 1990.

T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199-220, 1993.

S. Haspeslagh, P. De Causmaecker, and G. Vanden Berghe. A multi-agent
system handling personnel shortages in hospitals. In Proceedings of the
4th Multidisciplinary International Conference on Scheduling: Theory and
Applications (MISTA 2009), MISTA, pages 693-695, Dublin, August 2009.

T. Hogg and C. P. Williams. Solving the really hard problems with coop-
erative search. In Proceedings Of The National Conference On Artificial
Intelligence, pages 231-231, 1993.

R. Jain, Dah-Ming Chiu, and William R. Hawe. A quantitative measure
of fairness and discrimination for resource allocation in shared computer

system. Eastern Research Laboratory, Digital Equipment Corporation,
1984.

25

T. James, C. Rego, and F. Glover. A cooperative parallel tabu search algo-
rithm for the quadratic assignment problem. European Journal of Opera-
tional Research, 195(3):810-826, 2009.

D. Julian, M. Chiang, D. O’Neill, and S. Boyd. Qos and fairness constrained
convex optimization of resource allocation for wireless cellular and ad hoc
networks. In INFOCOM 2002. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IFEFE,
volume 2, pages 477-486. IEEE, 2002.

R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85-103. Plenum Press, 1972.

S. Martin, D. Ouelhadj, P. Beullens, and E. Ozcan. A generic agent-based
framework for cooperative search using pattern matching and reinforce-
ment learning. Technical report, University of Portsmouth, January 2012.

M. Muhlenthaler and R. Wanka. Fairness in academic course timetablling. In
Practice and Theory of Automated Timetabling (PATAT), pages 114-130,
2012.

D. Ouelhadj and S. Petrovic. A cooperative hyper-heuristic search frame-
work. Journal of Heuristics, 16(6):835-857, 2010.

E. Ozcan. Memetic algorithms for nurse rostering. In Proceedings of the
20th international conference on Computer and Information Sciences, 1S-
CIS’05, pages 482-492. Springer-Verlag, 2005. ISBN 3-540-29414-7, 978-
3-540-29414-6. doi: 10.1007/11569596_51. URL http://dx.doi.org/10.
1007/11569596_51.

E Ozcan. Memes, self-generation and nurse rostering. In EdmundK.
Burke and Hana Rudov, editors, Practice and Theory of Automated
Timetabling VI, volume 3867 of Lecture Notes in Computer Science,
pages 85-104. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-77344-3.
doi: 10.1007/978-3-540-77345-0.6. URL http://dx.doi.org/10.1007/
978-3-540-77345-0_6.

S. Petrovic and G. Vanden Berghe. A comparison of two approaches to nurse
rostering. Annals of Operations Research, 2012.

26

P. Smet, P. De Causmaecker, B. Bilgin, and G. Vanden Berghe. Nurse ros-
tering: a complex example of personnel scheduling with perspectives. In
Automated Scheduling: Real World Case Studies. Springer, 2013a.

P. Smet, S. Martin, D. Ouelhadj, E. Ozcan, and G. Vanden Berghe. Fairness
in nurse rostering. Technical report, KU Leuven - KAHO Sint-Lieven and
University of Portsmouth, 2013b.

M. Toulouse, K. Thulasiraman, and F. Glover. Multi-level cooperative search:
A new paradigm for combinatorial optimization and an application to
graph partitioning. Furo-Par’99 Parallel Processing, pages 533-542, 1999.

E. Vallada and R. Ruiz. Cooperative metaheuristics for the permutation
flowshop scheduling problem. FEuropean Journal of Operational Research,
193(2):365-376, 20009.

Sangsuree Vasupongayya and Su-Hui Chiang. On job fairness in non-
preemptive parallel job scheduling. Parallel and Distributed Computing
and Systems (PDCS), (17), 2005.

2.G. Wang and C. Wang. Automating nurse self-rostering: A multiagent
systems model. In 2009 IEEFE International Conference on Systems, Man
and Cybernetics, volume 1-9 of SMC 2009, pages 4422—-4425, 2009.

27

