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ABSTRACT

Mutation in a Genetic Algorithm is the key variation opera-
tor adjusting the genetic diversity in a population through-
out the evolutionary process. Often, a fixed mutation prob-
ability is used to perturb the value of a gene. In this study,
we describe a novel data science approach to adaptively gen-
erate the mutation probability for each locus. The trail of
high quality candidate solutions obtained during the search
process is represented as a 3"¢ order tensor. Factorizing
that tensor captures the common pattern between those so-
lutions, identifying the degree of mutation which is likely
to yield improvement at each locus. An online bin packing
problem is used as an initial case study to investigate the
proposed approach for generating locus dependent mutation
probabilities. The empirical results show that the tensor
approach improves the performance of a standard Genetic
Algorithm on almost all classes of instances, significantly.
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1. INTRODUCTION

There is a wide variety of population based approaches,
solving computationally hard problems, which are referred
to as ‘knowledge-based’ evolutionary computation methods.
Knowledge can be extracted and used in many ways in vari-
ous stages of the evolutionary process. For instance, Knowl-
edge Based Genetic Algorithm (KBGA) [26] used problem
domain knowledge to produce an initial population and guide
the operators of a Genetic Algorithm (GA) using that knowl-
edge at all the stages of the evolution. In [11] problem spe-
cific ‘knowledge’ was represented in form of ground facts
and training examples of Horn clauses. This knowledge is
exploited in a GA for inductive concept learning and is used
in mutation and crossover operators to evolve populations
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of if-then rules. [23] employed prior problem specific ‘knowl-
edge’ to generate locus level bias probabilities when selecting
allele for crossover, resulting in a Knowledge Based Nonuni-
form Crossover (KNUX). In [9], a mutation operator was
designed based on knowledge capturing the distribution of
candidate solutions in Extremal Optimization context. This
method was successfully applied to PID tuning. The ap-
proach proposed in [35] utilized rough set theory to explore
hidden knowledge during the evolutionary process of a GA.
The extracted knowledge is then used to partition the solu-
tion space into subspaces. Each subspace is searched using
a separate GA.

In this study, we use tensor analysis to generate mutation
probabilities for each locus of a chromosome, also referred to
as individual, representing a candidate solution. Tensorial
techniques are powerful analysis methods for high dimen-
sional data and are nowadays widely used in data mining
and machine learning applications. In our approach, within
a GA, the trail of high quality solutions, where each solution
has a matrix form, is represented as a 3"% order tensor. Fac-
torizing such a tensor reveals the latent relationship between
various chromosome locations through identifying common
subspaces of the solutions where mutation is more likely to
succeed in producing better offspring. In addition to sub-
space learning, one would expect a powerful data mining
approach to discover the related genes. Possession of such
information should naturally result in having similar proba-
bility values for closely related genes. Our experiments show
that tensor factorization achieves this objective and identi-
fies genes which should have similar mutation likelihoods
due to their close relationship.

An online bin-packing problem is used as a case study
to analyse the performance of the proposed approach. The
approach in [24] represents candidate solutions to a given
packing problem as index policies (e.g., [14]). These policies
have a matrix form in which an entry scores each potential
packing option separately and the highest value option is
selected. Due to this implicit two dimensional encoding of
policies as candidate solutions, their trail during the evolu-
tionary search process takes the form of a 3"% order tensor.
Hence, online bin packing forms a good playground for test-
ing the proposed approach. The first results (reported in
[24] and later in [4] and [36]) indicates that the GA approach
finds high quality policies for the specific packing problems
that perform significantly better than the generic ‘human
designed’ heuristics, such as, first fit and best fit [27, 10]. In



this paper, we show that by modifying mutation probabili-
ties using tensor analysis, the performance of this framework
can be improved significantly (when compared to the results
achieved for our implementation of the GA approach in [24]
as well as standard heuristics) on almost all instances.

The structure of the paper is as follows: Section 2 gives
basic definitions of the bin-packing problem, the instances
that we use, and the existing standard heuristics. In Sec-
tion 3, index policies (policy matrices) are introduced and
the original GA framework which evolves these policies is
presented. Subsequently, Section 4 gives an introduction to
tensorial representation and the factorization method used
in this study. Section 5 describes the proposed approach
which integrates tensor analysis into the GA approach. The
setting used during the experiments as well as the exper-
imental results are given in Section 6. Finally, Section 7
concludes the study and discusses future research directions.

2. ONLINE BIN PACKING PROBLEM

An online bin packing problem deals with the packing of
items having various sizes which arrive one at a time. Each
item has to be immediately packed into one of the open
bins before the next item arrives and its size is revealed.
This decision process is extremely difficult, since the future
impact of the decisions made is extremely difficult to predict.
Each bin has a fixed capacity of C' > 1. The size of each item
is chosen from a given range [smm7 smax] where Smin > 0
and Smar < C. If an item is placed into an empty bin,
a new bin is opened immediately, guaranteeing that there
always exists a new empty bin. A bin is closed whenever its
remaining capacity is too small to take in any new item.

A parameterized stochastic generator is used to produce
uniform bin packing instances. Such a generator is repre-
sented by the formalism UBP ( C, $min, Smasz, N) (adopted
from [24]). In this formalism C is the bin capacity, Smin and
Smaz are minimum and maximum item sizes and N is the
number of total items. As an example, UBP(30, 4, 25,10°) is
a random instance generator, producing a class of problem
instances where each one is a sequence of 10° integer val-
ues. Each value represents the size of items and is randomly
drawn from the range [4, 25]. It should be remembered that
UBP’s are instances of distributions. The actual sequence
representing an instance varies depending on the seed given
to the random number generator. That is, the generator is
seeded with different seed values to generate a different se-
quence of items at each time used. This is indeed the case
when our approach is tested as it will be seen in the coming
sections.

Note that there are various instances available in the lit-
erature ([30] and [13]), however, these instances are devised
for offline bin packing algorithms and usually consist of a
small number of instances. That is the reason why we gen-
erate our own random instances. In this study, we always
deal with instances for which the number of items is 10°.
Therefore, throughout the remainder of the paper, we use a
shortened notation for UBP’s, omitting the last term. For
example the UBP in the above example is simply denoted
by UBP(30,4,25)

There are well known ‘human-designed’ heuristics for on-
line bin packing such as First Fit (FF), Best Fit (BF) and
Worst Fit (WF) [17, 27, 10]. The FF heuristic assigns the
item to the first open bin where an assignment is feasible.
The BF heuristic places the current item into the bin with

the least remaining space among all open bins whereas the
WF heuristic assigns the item to the bin with the largest re-
maining space. Another well known heuristic for online bin
packing is the harmonic based approach [22, 28]. Compared
to other heuristics, harmonic based algorithms provide a bet-
ter worst case performance ratio. However, the assumption
is the items sizes are chosen from the range (0, 1]. The har-
monic algorithm partitions the range into sub-intervals and
each arriving item is assigned to its category depending on
its size.

The performance of a bin packing solution can be evalu-
ated based on various criteria. For example, one could use
the number of bins used B for this purpose. B increases as
larger number of items (IN) are considered. Another per-
formance evaluation criteria is the average generic fullness
Fy; which provides an insight into the variation of resulting
fullness between bins. Consider that the fullness of bin ¢
is equal to fi, t € {1,..., B} then the average generic bin
fullness is calculated as: Fyy = 1/B>", f7. In our study
however, average fullness is considered as the fitness value
of function evaluations. Average fullness, denoted by Fyy is
the value of the occupied space, averaged over the number
of used bins and is calculated according to Eq.1 below.

Fay=1/BY fi (1)

3. POLICY MATRIX REPRESENTATION

A packing policy /heuristic can be represented as a matrix,
referred to as ‘policy matrix’. In a policy matrix, each entry
at the r" row and s* column, denoted as W, is a score.
Wy s determines the priority of placing an item of size s in
a bin with remaining capacity r. The values for scores W, s
are integer values and chosen from a range [Wmin, Wmaz)-
Given a policy matrix, one could simply scan the remaining
bin capacity of existing (and feasible) open bins, assign each
bin a score from the policy matrix, and then choose the bin
with the highest score. The placement of an item in an open
bin is feasible when the bin has sufficient free space to ac-
commodate that item (r > s). During the packing process,
an open empty bin is always considered as an option.

Some elements of the policy matrix do not require a place-
ment strategy. For instance, cases were s > r can never
occur, i.e , a policy matrix always has a lower triangular
structure. Thus, not all the elements in the policy matrix
correspond to real cases and therefore no policy is required
to handle such cases. The elements for which a handling
policy is required are referred to as active entries whereas
the rest of elements are called inactive entries. In other
words, inactive entries correspond to pairs of item size and
bin remaining capacity which either can never occur or are
irrelevant. The active entries along columns of the policy
matrix contain score values and represent a policy for a spe-
cific item size. Since the policy for a certain item size can be
very different than that of other item size, the scores in each
column are considered to be independent from each other.

In order to further clarify how a policy matrix functions,
an example is given here. The policy matrix in Figure 1 is
evolved to solve packing instances generated by UBP(15,5,10).
Assume that, during the packing process, an item of size 5
arrives. This item size corresponds to the fifth column in
the given policy matrix. The entries of this column repre-
sent the set of scores which are associated to each possible



remaining bin capacity for the current item size. Assume
that, currently, only bins with remaining capacities of 9 and
10 are open. As always, the empty bin is also available for
item placement. The scores associated with remaining bin
capacities 9 and 10 are 4 and 1 respectively. The empty bin
has a score of 2. Since the bin with the remaining capacity
9 has the highest score, the item is placed in this bin.

In all policy matrices, the last row represents the scores
assigned to the empty bin for different item sizes. Suppose
that, in the previous example, the score associated to the
empty bin is 7 (instead of 2 in Figure 1). In this case, the
item would be no longer put in bin with remaining capacity
9. Instead it would be placed in the empty bin (bin with re-
maining capacity 15) and a new empty bin would be opened
immediately.

Ties can occur and the tie breaking strategy employed
here is first fit. As an example, assume that the arriving
item has a size 8. Therefore, in order to determine which
bin to choose for item placement, the scores in column 8
will be investigated. Assume that currently there are open
bins with all possible remaining bin capacities as well as
the always available empty bin. Scanning the scores, bins
with remaining capacities 8 and 10 emerge as top scoring
ones because they both have the highest score which is 7.
However, due to the first fit tie breaking strategy, the first
bin from the top is chosen and the item is put in the bin
with remaining capacity 8.

r\s 1 2 3 4 5 6 7 8 910 11 12 13 14 15
2:
3: Lo
4: Lo
5: 6 . .
6: 37 .
7: 7 4 2
8: 12 27
9: 4 3 6 4 5
10: 17 37 2 4
11: N .
12:
13: .
14: .
15: 2 5 6 5 3 4
Figure 1: An example of a policy matrix for

UBP(15,5,10)

There is a growing interest on automating the design of
heuristics (e.g. for some recent work see [29, 7]). In [24],
a GA framework was proposed in which policy matrices as
described above were evolved, resulting in automatic gener-
ation of heuristics in form of index policies. In addition to
this original study, there has been a number of studies re-
lated to this topic. For example, in [25], an approach based
on policy matrices was proposed for analysing the effect of
the mutation operator in Genetic Programming (GP) in a
regular run using online bin packing. In [4] dimensionality
reduction was considered for policy matrices in that they
were derived from one dimensional vectors (say, policy vec-
tors). Evolving policy vectors in a fashion similar to the evo-
lution of policy matrices was shown to produce high quality
solutions. In [5] an Apprenticeship Learning approach was
proposed where an agent observes and learns the actions of
high quality policy matrices during packing and generalizes
its knowledge to unseen instances of various sizes exhibiting

high performance particularly for larger instances. In [36],
policy matrices are seen as heuristics with many parameters
and are approached from a parameter tuning perspective.
The Irace package was used to tune policies during train-
ing. Trained policies were then tested on unseen instances
with performances close to that of the GA framework and
significantly better than the man-made heuristics. In this
study, we use the same GA with the same settings as de-
scribed in [24], however, we present a tensor-based approach
for improving its performance via an adaptive locus based
mutation operator, instead of using a generic one.

4. TENSOR ANALYSIS

There is a plethora of applications and research areas ben-
efiting from tensorial representation and tensor analytic ap-
proaches. Tensor tools have a great record of contribution
to many research fields, such as, computer vision [33], video
processing [20], data compression [34], web mining [1] and
etc. Generally speaking, many problems produce data which
are high dimensional in nature. For instance, video streams
constitute a data which is three dimensional (pixel coordi-
nates and time) or higher (when information such as audio,
text, change of environment and etc are also considered).
The traditional approach in data mining has been to col-
lapse this data into a two dimensional dataset in order to
apply machine learning techniques and perform tasks such
as classification and prediction. However, recent research
([33],]2] and [1]) shows that preserving the natural dimen-
sionality of the data is useful in that it keeps the informa-
tion regarding latent relationship between variables along
different dimensions. Tensor representation fulfils this re-
quirement as tensors are multidimensional arrays and can
represent data with high dimensions. The order of a tensor
indicates its dimensionality where each dimension of a ten-
sor is referred to as a mode. The interested readers can refer
to a comprehensive survey on tensors and their applications
in [19] for further information. The method widely used
to extract the latent relationship between various modes of
data involves in factorising (decomposing) the tensor into
its basic factors. Basic factors are then used in different
ways depending on the objective of the algorithm. The ten-
sor decomposition methods are mainly generalizations of the
Singular Value Decomposition (SVD) to higher dimensions.
Higher Order SVD (HOSVD) [21], Tucker decomposition
[32], Parallel Factor (a.k.a PARAFAC or CANDECOMP or
CP) [16] and Non-negative Tensor Factorization (NTF) [31]
are among numerous factorization methods proposed by re-
searchers. In this paper, we use CP factorization ([3]) as
described in the following subsection with the goal of en-
abling an adaptive locus based mutation operator within a
GA for online bin packing.

4.1 CP Factorization

We use, boldface Euler script letters, boldface capital let-
ters and boldface lower-case letters to denote tensors (e.g.,
T), matrices (e.g., M) and vectors (e.g., v), respectively.
Scalar values (e.g., tensor, matrix and vector entries) are in-
dexed by lower-case letters. For instance, tpqr is the (p, q,7)
entry of a 3"?—order (three dimensional) tensor 7.

CP decomposition uses the Alternating Least Square (ALS)
algorithm ([8],[15]) to factorize (decompose) a tensor. Fac-



Figure 2: Factorizing a tensor to K components.

torizing a 3"¢ order tensor' 7 of size P x Q@ X R using the
CP factorization results in another tensor 7 which approx-
imates 7 as in Equation 2. This process is also illustrated
in Figure 2.

K
T:Z)\kakobkock (2)
k=1

In Eq.2, A € Ry, a, € RY, by € R? and ¢, € RE for
k=1---K, where K is the number of desired components.
A component is expressed as (Ar ai o by o ¢i) and the re-
sulting vectors (e.g., ax, br and ci ) are called basic factors.
Ak is the weight of the kth component. Note that “o” is
the outer product operator. The outer product of three vec-
tors produces a 3"%-order tensor. For instance, the product
A a1 oby oc; results in a 3"%-order tensor where each tensor
entry, indexed as pgr is computed through a simple multi-
plication like apbgc,. In a special case, the outer product of
two vectors a; and by produces a matrix By of size P x @@
for each component k

By =aigoby (3)

The matrix B will be referred to as the Basic Frame
throughout the paper. The basic frame By quantifies the
relationship between the object pairs across the first two
dimensions in each component. In other words, this quantity
indicates the “level of interaction” between pairs of object,
each from a separate tensor dimension, in component k [19].

The ALS algorithm approximates the original tensor 7~
by minimizing the error difference between 7 and the esti-
mation (7). This error is denoted as € and calculated as in
Eq.4 (the subscript F' refers to the Frobenious norm as in
Eq.5).

1 .
e = SIIT =Tl (4)

P Q R

T =T =355 (tpar — fpar)” (5)

p=1g=1r=1

The approximated tensor is, to some extent, a generalized
representation of the original tensor and immune to data
anomalies, such as, missing data. Basic factors produced
by the factorization method can be used to represent the
high dimensional data in a compressed manner. The tensor
factorization exhibit other interesting characteristics. It en-
ables the detection of more comprehensible sub-space from

'In this study we only focus on 3" order tensors.

the original data. This can be very useful in many appli-
cations. In computer vision, for instance, [18] and [20] sep-
arately showed that factorization of a 3"*-order tensor of a
video sequence results in basic frames which reveal the loca-
tion and functionality of synchronously moving human body
parts. Evolutionary algorithms are among many approaches
which produce high dimensional data. This possibility was
first acknowledged in [3] where the trail of a hyper-heuristic
search algorithm was represented as a tensor. The space
of heuristics where the hyper-heuristic conducts the search
was then partitioned using the basic factors obtained from
factorizing the tensor. The proposed tensor based approach
achieves impressive results despite its simplicity. The search
history formed by GA can be turned into multi-dimensional
data in a similar fashion to the search history of a hyper-
heuristic as described in [3]. For example, collecting high
quality individuals (candidate solutions) from the popula-
tions in several successive generations while GA operates,
naturally, yields a 3"%-order tensor, representing the chang-
ing individuals in time.

S. PROPOSED APPROACH

In the original framework [24], policy matrices are pro-
duced using GA in a train and test fashion. The evolu-
tionary cycle is performed for a given stochastic sequence
generator (UBP) resulting in a policy matrix for that UBP.
At the beginning, a random population of policy matrices is
generated. At each generation, mutation and crossover are
applied to the individuals (policy matrices). Each individual
representing a packing policy/heuristic is then handed over
to a separate evaluator (bin packer) which applies the policy
to a stream of items, returning the fitness (Eq.1) as feedback.
The cycle of evolution continues until the stopping criterion
is met. Our method modifies the training procedure as il-
lustrated in Figure 3. During every 5 generations, a tensor
(T) containing the top 20% individuals (policy matrices) is
constructed and factorized into its basic factor, producing a
basic frame. The elements of the basic frame is used as mu-
tation probabilities for the next 5 generations from which
a new tensor is constructed. Subsequent to training, the
best individual is then tested on several unseen instances
for evaluation.

Crossover

High quality
individuals

( Fitness Evaluator)

Online Bin Packer
Cycle of Evolution

for
5 generations passed? Evaluate

Mutation
4

Basic factor: new ==
[ ———>mutation probabilities
Li«

Factorize 7" and re-

Run the packing
heuristic based on

the Policy Matrix

initialize tensor

Figure 3: The GA+TA framework

The tensor 7 has the size C x C' x R where R is the
number of the top 20% individuals and C' is the bin capacity
as described in Section 2. The order according to which the



policy matrices are put into the tensor is precisely the order
in which they are generated by the GA framework. This
tensor is then factorized where K in Eq.2 is set to 1. That is,
the original tensor 7T is approximated by 7 as the following

T=Xaoboc (6)

where the length of the vectors a, b and ¢ are C', C and R
respectively. As depicted in Figure 4, the outer product of
vectors a and b results in a basic frame B which is exactly
the shape of a policy matrix with the size C' x C' (Eq.3 is
used with & = 1 to produce B). The difference between
B and a policy matrix is that instead of containing integer
score values in the range of [Wmin, Wmaz], it contains real
values between 0 and 1. These values point towards regions
in policy matrices where change of score values has been a
common pattern among good quality matrices.

b

Basic Frane

Figure 4: Extracting the basic frame for K = 1 in
Eq.2.

Thus, the values in B are perceived as mutation probabil-
ity of each locus for the next 5 generations. That is, during
the next 5 generations, a gene indexed (%, j) is mutated with
a probability B(7, j). The initial mutation probabilities are
fixed as m for the first 5 generations. Data

. gth . .
collection for tensor construction occurs at the same time
when the generated basic frame B has been applied.

6. EXPERIMENTS

In this section, after providing the details of our experi-
mental setting, we discuss the results. In order to to gain
a better understanding of our approach, the basic frames
achieved from our experiments are investigated first. Subse-
quently, we compare our approach to the original framework
by conducting a comparative study between the performance
of the two algorithms on ten different classes of instances.

6.1 Experimental Setting

The setting used for the GA framework is adopted from
[24]. That is, for each training phase, the number of genera-
tions is set to 200 while the population size is [C/2]. Tour-
nament selection is the strategy of choice for parent selection
and the tour size is 2. Crossover and mutation operators are
uniform and traditional respectively and the crossover prob-
ability is equal to 1.0. As discussed in Section 3, the scores
in policy matrices are chosen from the range [Wmin, Wmaz]-
In our experiments wmin = 1 and Wmae is equal to the max-
imum number of active entries along the columns of the pol-
icy matrix (i.e. for the policy matrix in Figure 1, wmaz = 7).
For tensor operations, Matlab Tensor Toolbox [6] has been
used. The GA framework is implemented in the C language.
In order to use the toolbox, the Matlab DeployTool has been
used to generate an executable of the Matlab code. This
executable is then called when necessary from the C code

without a need to load the Matlab environment. The ap-
proach proposed in this paper is compared to the original
GA framework. Throughout the experiments, our approach
is referred to by the GA4+TA whereas the original work in
[24] is referred to by GA. The experiments regarding the
original GA framework have been repeated here (instead of
using the results reported elsewhere) and the train-test con-
ditions (seeding etc.) for both GA and GA+TA are the

same.

6.2 Basic Frames: An Analysis

As discussed in Section 5, the GA+TA algorithm fre-
quently constructs and factorizes a tensor of high quality
candidate solutions. The factorization process results in the
basic frame which is used as a mutation probability. This
section is dedicated to the analysis of these basic frames and
the manner with which they evolve along side the main cycle
of evolution.

Figure 5 illustrates the gradual change in probabilities
produced by tensor analysis throughout the generations. The
instance generator on which the policies were trained in Fig-
ure 5 is UBP(30, 4, 25). The basic frame generated after the
first factorization (Figure 5(a)) is notably less detailed com-
pared to the ones generated in later generations. However,
during the time, a common pattern seems to emerge. This
pattern reveals that, for this UBP, good quality matrices
tend to frequently change the score values corresponding to
small item sizes and large remaining bin capacities. Thus,
subjecting these locus to mutation more frequently would
probably result in better packing performance.

Different UBP’s indicate different patterns though. For
instance, Figure 6 shows one of the basic frames produced
for the instance generator UBP(40, 10,20). Using this ba-
sic frame, the best policy matrix was found during training.
The pattern here is certainly different from those in Figure 5
indicating a whole different group of items sizes and remain-
ing bin capacities as the most frequently changing genes. It
also is less focused and more disconnected compared to the
basic frames in Figure 5(d).

A closer look at Figure 5 shows another interesting aspect
of the generated basic frame. It seems that in addition to
finding common changing locus in the chromosome, the basic
frame also identifies groups of different genes with similar (if
not equal) probabilities. In other words, basic frames seems
to partition genes into groups (with no clear border) where
genes within each group are related. This is no surprise and
it is one of the achievements of the ALS algorithm. In Eq.6,
the factor a captures the gene patterns corresponding to bin
remaining capacity while b does the same for gene patterns
concerning the item size. The factor ¢ captures the temporal
profile of the patterns in the first two factors. Hence, our
approach is able to detect recurring gene patterns along each
dimension (remaining capacity and item size). Moreover,
when constructing the tensor, only good quality solutions
were allowed in the tensor. Thus, any pattern detected along
each dimension is equally promising. The basic frame is
calculated from the outer product of a and b, combining
the gene patterns related to each dimension of the tensor.
It has been observed in many studies (such as [12] and [20])
that the basic frame quantifies the relationship between the
elements of the two factors. Hence, the relationship between
any gene pattern detected along the first and the second
dimensions is scored in the basic frame. Thus, if there are
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Figure 5: Various basic frames achieved in different stages of the search for an instance generated by
UBP(30,4,25). The basic frame in 5(d) is the probability matrix using which the best policy is achieved
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regions with similar score values ? in the basic frame (as it
is visible in both figures 5 and 6), the genes are considered
to be related.

5 0.1

10

0.08
15
20 0.06
25

0.04
30
35 0.02
40

10 12 14 16 18 20

Figure 6: The basic frame for UBP(40,10,20) using
which the best policy matrix was found.

It is important to stress the fact that the produced basic
frames are in no way representing the index scores generated
by the GA framework. That is, we are not trying to infer
score values in the policy matrix from the corresponding
elements of a basic frame. The policy matrix in Figure 7 is
generated using the probabilities in Figure 5(d) and solves
instances generated by UBP(30,4,25) instance generator.
It is evident from the figures that although the two matrices
are similar in dimensions, they are not similar at all when

2Not to be confused with the scores in the policy matrix.
The score here refers to the quantity achieved from the fac-
torization procedure.
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Figure 7: The best policy matrix obtained by
GA+TA for UBP(30,4,25) using the basic frame en-
tries (see Figure 5(d)) as mutation probabilities.

it comes to the contents. The rough structure of the policy
matrix itself compared to the smooth structure of the basic
frame confirms that there is little correlation between scores
and mutation probabilities.

6.3 Experimental Results

The experimental results show that our algorithm (GA+TA)
outperforms the original GA framework on almost all in-
stances significantly. A Wilcoxon sign rank test is per-
formed to confirm this. Table 1 summarizes the results.
The only instance generator on which GA+TA seems to be
under-performing is UBP(60, 15, 25). On all other instances,
GA+TA outperforms the GA framework.

Our studies show that it is very hard to increase the per-



formance of the GA algorithm even slightly. Nevertheless,
the GA+TA algorithm has improved the performance sub-
stantially. One major reason that contributes to the success
of the GA+TA algorithm is the representation. Tensor fac-
torization algorithms are designed for high dimensional data
where it is expected that various dimensions of data are cor-
related. Perhaps the study in [20] is a very good example
confirming this argument. Thus, matrix representation of
packing policies prepares a suitable ground for analytic al-
gorithms with an expectation of existing relations between
various dimensions of data. The fact that the first dimen-
sion of a policy matrix is dedicated to remaining bin capac-
ities and the second to item sizes fits very well to the fac-
torization algorithm. This is something which couldn’t be
achieved if the policies were vectorized (as in [4]). Therefore,
the representation matters and it has a great contribution
to the performance of GA4+TA. However, apart from rep-
resentation, the strength of tensor analytic approaches has
also a great impact on the performance. In previous study
[3] introduced the use of these approaches in heuristic re-
search for the first time. The impressive results achieved in
this study confirms this and is encouragement for further re-
search in transferring tensor analytic approaches to the field
of (meta)heuristic optimization.

7. CONCLUSION

In this study, a powerful data mining tool, namely, tensor
analysis is integrated into a GA framework [24] for solving
an online bin packing problem. Online bin packing policies
with matrix representation enables construction of a 37%-
order tensor as the high quality candidate solutions vary
from one generation to another under the genetic operators
in GA. This construction process is repeated periodically
throughout the evolutionary process. At the end of each
period, the obtained tensor is factorized into its basic fac-
tors. Then those basic factors are used to identify recurring
gene patterns identifying the frequency with which genes are
modified in high quality solutions. This information is di-
rectly used to set the mutation probability for each gene,
accordingly. The empirical results show that the proposed
tensor analysis approach is capable of adaptation at the gene
level during the evolutionary process yielding a successful
locus based mutation operator. The tensor analysis embed-
ded into GA significantly improves the performance of the
generic GA with standard mutation on almost all online bin
packing instance classes used during the experiments.
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