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ABSTRACT
There is a growing body of work in the field of hyper-heuristics.
Hyper-heuristics are high level search methodologies that
operate on the space of heuristics to solve hard computa-
tional problems. A frequently used hyper-heuristic frame-
work mixes a predefined set of low level heuristics during
the search process. While most of the work on such selec-
tion hyper-heuristics in the literature are empirical, we anal-
yse the runtime of hyper-heuristics rigorously. Our initial
analysis shows that mixing heuristics could lead to exponen-
tially faster search than individual (deterministically chosen)
heuristics on chosen problems. Both mixing of variation op-
erators and mixing of acceptance criteria are investigated on
some selected problems. It is shown that mixing operators
is only efficient with the right mixing distribution (param-
eter setting). Additionally, some of the existing adaptation
mechanisms for mixing operators are also evaluated.

1. INTRODUCTION
Hyper-heuristic methodologies are learning mechanisms or
search techniques that mix a prefixed set of user-defined
heuristics (neighbourhood operators) or create automati-
cally new ones based on user-defined components [3]. This
study focuses on the former type of selection hyper-heuristics.
The key components in a single point based selection hyper-
heuristic framework are identified as heuristic selection and
move acceptance [18]. Usually, a high level hyper-heuristic
aims to iteratively improve an initially generated complete
solution by repeatedly selecting a low level perturbative neigh-
bourhood operator, then using it to generate a new complete
solution and finally deciding whether to accept or reject the
new solution at each step. This heuristic selection process
can be viewed as setting the probability of each low level
operator for selection and application of a selected opera-
tor based on these probabilities to a candidate solution. A
number of empirical studies indicate the success of selection
hyper-heuristics which mix different heuristics when solv-
ing real world problems, ranging from Personnel Scheduling
[5] to Vehicle Routing [19]. Additionally, Mısır [13] explored

the behaviour of group decision making strategies which suc-
cessfully mixed well known move acceptance operators and
outperformed individual move acceptance operators when
used as the selection hyper-heuristic components. More ex-
amples on the empirical success of hyper-heuristics can be
found in [2].

Cowling et al. [5] introduced hyper-heuristics as “heuristics
to choose heuristics” and investigated the performance of
simple hyper-heuristics across a set of real-world scheduling
problem instances. The study focused on simple heuristic
selection methods, such as, Simple Random and Random
Permutation. These two methods do not learn, as they do
not receive any feedback during the search process. Simple
Random chooses a low level operator uniformly at random
in each step, while Random Permutation uses a uniform ran-
dom permutation of a given set of low level operators and
successively uses a low level operator from that list. Two
different types of acceptance strategies can be found in the
literature: deterministic or non-deterministic. The authors
used two deterministic acceptance operators which would
make the same acceptance decision regardless of the given
step during the search using the same current and new candi-
date solutions(s) in [5]: All Moves (AM) and Only Improve-
ments (OI). AM accepts all solutions regardless of their qual-
ity (fitness), while OI accepts only improving moves and pre-
vious solution is used in the next step, when a non-improving
move is made.

The learning heuristic selection methods can adapt during
the search process improving their decision capability for the
selection of promising neighbourhood operators. Nareyek
[16] proposed Reinforcement Learning (RL) which scores
each low level operator based on its individual performance.
The probability of an operator being selected is updated de-
pending on these scores. For example, roulette wheel strat-
egy chooses a low level heuristic with a probability given by
the ratio of its individual score to the sum of scores of all
low level operators. After the selected operator is applied to
the current solution, the score of a low level operator is in-
creased in the case of success indicating improvement in the
quality of the new candidate solution and decreased in the
case of a failure. There are many different selection hyper-
heuristic components studied in the literature. An overview
of hyper-heuristics including these components and more can
be found in Burke et al. [2].

A significant trend in research on randomised search heuris-



tics including evolutionary algorithms is the advent of rig-
orously proven results about their expected runtime [1, 17].
Runtime analyses show how the expected optimisation time
of a search heuristic depends on its parameter settings and
the characteristics of the optimisation problem at hand. Such
analyses often provide deeper insights into the behaviour
of search heuristics as compared to the empirical investiga-
tions.

The theoretical work on selection hyper-heuristics is still
very limited. Recently, He et al. [9] compared pure and
mixed strategy (1+1) EAs using the so-called asymptotic
hitting time as performance measure. A mixed strategy
uses multiple mutation operators and chooses one based on a
given fixed distribution, while a pure strategy uses a single
mutation operator. The authors claimed that the asymp-
totic hitting time of a mixed strategy over a set of mutation
operators O, is not worse than that of the worst pure strat-
egy using one operator in O only.

The asymptotic hitting time considered by He et al. [9] is a
different performance measure than the expected runtime,
which is considered in this study. The theoretical work on
the runtime analysis of selection hyper-heuristics is almost
non existent. To the best knowledge of the authors, this
study is one of the initial studies in the area. Our motivation
is to illustrate that mixing (neighbourhood or acceptance)
operators as components of a selection hyper-heuristic can
be more efficient on certain problems. We perform runtime
analyses of hyper-heuristics for choosing the right param-
eter setting for mixing low level operators. Moreover, the
expected runtime of a simple reinforcement learning scheme
and other mechanisms are compared.

1.1 Notation
The following notation is used. For n ≥ 1, define [n] :=
{1, . . . , n}, and [0..n] := {0} ∪ [n]. Given a v ∈ Rn (e.g.,
a bitstring) and i ∈ [n], then vi denotes the i-th element
of v. X ∼ D signifies that X is a random variable with
distribution D. For example, Dp(a, b) with parameter p ∈
[0, 1] is the distribution where X ∼ Dp(a, b) if and only
if Pr [X = a] = p and Pr [X = b] = 1 − p. Define phi :=
1−1/n and plo := 1/n, where n ∈ N is the problem instance
size. Hn is the n-th harmonic number. The analysis uses
standard notation (e.g., O, Ω and Θ) for asymptotic growth
of functions (see, e.g., [4]).

2. MIXING NEIGHBOURHOOD OPERATORS
This section considers hyper-heuristics that mix neighbour-
hood operators (also called variation operators). The progress
made in runtime analysis of evolutionary algorithms demon-
strates the importance of completely understanding the sim-
ple algorithms and simple problems before proceeding to
runtime analysis of more complex algorithms and more com-
plex problems. We therefore consider a simple hyper-heuristic,
Algorithm 1 below, which is a variant of the well-known
(1+1) EA [6]. This algorithm is also similar to the ran-
domised local search (RLS) variant used in Giel and We-
gener [8].

The RLS algorithm maintains a current solution x, from
which a neighbouring candidate solution x′ is generated in
each iteration. The candidate solution replaces the current

Algorithm 1

1: x ∼ Unif({0, 1}n)
2: while termination criteria not satisfied do
3: Var ∼ Dp̄(Op1,Op2, ...,Opm) // Selects a neighbour-

hood operator.
4: x′ ∼ Var(x)
5: if f(x′) ≥ f(x) then x← x′.
6: end while

solution if it is not worse than the current solution. The
(1+1) EA produces the candidate solution by flipping each
bit in the current solution with probability 1/n. In contrast,
Algorithm 1 produces the candidate solution using one of
the m neighbourhood operators. Based on the probability
distribution p̄, it selects and applies the operator Opi with
probability pi, for i ∈ [m], where

∑m
i=1 pi = 1.

We will use fitness-based partitions, which is a well known
method for runtime analysis of randomised search heuristics.

Definition 1. A tuple (A0, A1, . . . , A`) is an f-based par-
tition of a function f : {0, 1}n → R if

1.
⋃`

i=0 Ai = {0, 1}n

2. Ai ∩Aj = ∅ for ∀i, j and i 6= j

3. f(Ai) < f(Aj) for ∀i, j and i < j

4. f(A`) = maxx f(x)

The set Ai, i ∈ [`] is referred to as the i-th fitness level. If
the probability of leaving fitness level i is at least si, then
the expected time to leave fitness level i is at most 1/si.

Theorem 1. Given any f-based partition, let si be the
minimum probability for a (1+1) EA to leave Ai towards
Ai+1 ∪ · · · ∪A`. The expected runtime of (1+1) EA on f is
bounded from above by

E[T(1+1) EA,f ] ≤
`−1∑
i=0

1

si

Theorem 1 can also be applied to the hyper-heuristic frame-
work in Algorithm 1. Assuming that there is a fitness based
partition for a given problem, Theorem 2 shows that the up-
per bound on the expected runtime of an algorithm mixing
a set of operators as in Algorithm 1 can be computed based
on the shortest expected running time for a solution to move
from one fitness level to an upper level across all levels based
on a given probability distribution.

Theorem 2. Given a function f : {0, 1}n → R and an
f-based partition (A0, . . . , A`), let T be the runtime of Algo-
rithm 1 with parameters pi > 0, ∀i on the function f . For
each i ∈ [0..`−1], let rki be the minimum probability for Algo-
rithm 1 to leave fitness level Ai towards Ai+1∪· · ·∪A` using



the mutation operator Opk. Then, the expected runtime of
Algorithm 1, is bounded from above by

E[TAlgorithm 1,f ] ≤
`−1∑
i=0

min
1≤k≤m

1

pkrki
≤ min

1≤k≤m

`−1∑
i=0

1

pkrki
(1)

Proof. Use Theorem 1, with

si =

m∑
k=1

pkr
k
i ≥ max

1≤k≤m
pkr

k
i ,

for i ∈ [0..m− 1], and the theorem follows.

Algorithm 2 (HH) is a special case of Algorithm 1, where
m = 2:

Algorithm 2

1: x ∼ Unif({0, 1}n)
2: while termination criteria not satisfied do
3: Var ∼ Dp(RLSmoveOneBit,RLSmoveTwoBits)

// Selects a neighbourhood operator.
4: x′ ∼ Var(x)
5: if f(x′) ≥ f(x) then x← x′.
6: end while

With probability p, HH applies the 1-bitflip operator
RLSmoveOneBit which flips one uniformly chosen bit posi-
tion. With probability 1−p, HH picks the 2-bitflip operator
RLSmoveTwoBits which flips two different and uniformly
chosen bit-positions.

2.1 Analysis of the Onemax function
The following “warm-up” analysis describes the behaviour of
a simple and standard hyper-heuristic which mixes heuris-
tics on a familiar problem. We do not expect that a hyper-
heuristic performs well in a case where the optimal setting
is known, since hyper-heuristics are meant to be general
methodologies that could be applied to a variety of prob-
lem domains.

The Onemax function is a well known benchmark function
which counts the number of nonzero bits in the given bit-
string.

Onemax(x) :=

n∑
i=1

xi (2)

Theorem 3. The expected runtime of Algorithm 2 on
Onemax is

E[THH,Onemax] ≤

{
( 1
p
)n(ln(n) + 1) if p > ln(n)+1

n+ln n
, and

1
(1−p)

n2 otherwise.

Proof. We apply Theorem 2 with the canonical partition
Ai := {x | Onemax(x) = i}, for i ∈ [0..n]. In order for a so-
lution to be improved to a higher fitness level, it is sufficient
to flip a single 0-bit. The minimum probability for this event

considering a candidate solution at the i-th fitness level is
given by r1

i = (n− i)/n or r2
i = (n− i)(n− i−1)/n2 (assum-

ing i ≤ n− 2, otherwise r2
i = 0) when RLSmoveOneBit or

RLSmoveTwoBits is selected, respectively. By Theorem 2,

E[THH,Onemax] ≤min

{
n−1∑
i=0

1

pr1
i

,

n−1∑
i=0

1

(1− p)r2
i

}

= min

{
1

p

n−1∑
i=0

n

(n− i)
,

1

1− p

n−2∑
i=0

n2

(n− i)(n− i− 1)

}

= min

{
n

p
Hn,

n2

1− p

n−1∑
j=1

1

j(j + 1)

}

≤min

{
n

p
(ln(n) + 1),

n2

1− p

(
1− 1

n

)}
.

The first term on the righthand-side will be the minimum if

n

p
(ln(n) + 1) <

n2

1− p

(
1− 1

n

)
1

p
− 1 <

n− 1

ln(n) + 1

and the theorem follows.

2.2 Analysis of the GapPath function
As a simple benchmark, we use the GapPath function de-
fined below.

GapPath(x) :=


Zm(x) if Ridge(x) ≡ 1 (mod 3)

Zm(x)+ otherwise.

2nRidge(x)

(3)

where Zm(x) :=
∑n

i=1(1− xi), and

Ridge(x) :=

{
i if x = 1i0n−i for i ∈ [0..n]

0 otherwise.

In order not to unnecessarily complicate the analysis, we
assume that n = 3k for some integer k ≥ 1.

The GapPath function is a variant of the Spi function (short
path with increasing values on the path), which is a standard
benchmark function in theoretical analysis of evolutionary
algorithms [12, 11]. These functions feature a short path
which corresponds to all search points on the form 1i0n−i.
The function value of any search point outside the path is the
number of 0-bits, and is inferior to the path members. The
function GapPath differs from Spi, in that the path contains
gaps where the function values are inferior to the rest of the
path. The gaps correspond to all search points on the form
1i0n−1 where i ≡ 1 (mod 3). A typical randomised search
heuristic will optimise GapPath by first locating the search
point 0n, then by traversing along the path while “jumping”
across the gaps. Due to the gaps in the GapPath function, it
is straightforward to see that using only a 1-bitflip operator,
or only using a 2-bitflip operator will not be effective.

Theorem 4. If p = 0 or p = 1, then the expected runtime
of Algorithm 2 on GapPath is infinite.



Proof. Setting p = 0 implies that the algorithm will
only use the 2-bitflip operator. With probability 1/2n, the
initial search point is 120n−2. All search points within Ham-
ming distance 2 from this point have inferior function value.
Hence, the algorithm will never accept any search point pro-
duced from the 2-bitflip operator. By the law of total prob-
ability, the expected runtime is therefore infinite. An analo-
gous argument can be made for the case p = 1 with respect
to the initial search point 130n−3 and the 1-bitflip opera-
tor.

We will therefore consider mixing of operators, i.e., choos-
ing p ∈ (0, 1), and study how the choice of parameter p
influences the expected runtime. We start by estimating the
expected time to make a single improving step along the
path.

Lemma 1. Let plo = 1/n and phi = 1 − plo. Assume that
the current search point is x = 1j0n−j, where j ≡ i (mod 3)
for i ∈ {0, 2}. Let Ti be the random time until a search
point with strictly higher function value is obtained. Then,
the expectation of Ti is

E (Ti | p) =


n3

2
− n2

2
if i = 0 and p = phi(

n2

2
− n

2

)
(1 + Θ(1/n)) if i = 0 and p = plo

n + Θ(1) if i = 2 and p = phi

n2 if i = 2 and p = plo.

Proof. The probability that the 2-bitflip operator im-
proves a search point where Ridge(x) ≡ 0 (mod 3) is r0 :=
(2/n)(1/(n − 1)), and the probability that a 1-bitflip oper-
ator improves a search point where Ridge(x) ≡ 2 (mod 3)
is r2 := 1/n. Hence,

E (T0 | p = phi) =
1

r0(1− p)
=

n(n− 1)

2/n
=

n3

2
− n2

2
,

E (T0 | p = plo) =
1

r0(1− p)
=

n(n− 1)

2(1− 1/n)

=

(
n2

2
− n

2

)
(1 + 1/(n− 1)),

E (T2 | p = phi) =
1

r2p
=

n

1− 1/n
= n(1 + 1/(n− 1)), and

E (T2 | p = plo) =
1

r2p
=

n

(1/n)
= n2.

We have chosen plo = 1/n in Lemma 1. In this case, with plo

probability, the 1-bitflip operation is performed, otherwise
the 2-bitflip operator is invoked.

It is now easy to calculate the expected runtime with fixed
mutation probabilities.

Theorem 5. The expected runtime of Algorithm 2 ini-
tialised with the search point 0n on GapPath with fixed pa-
rameter setting is (1/2)n3 +O(n2) if p = plo, and (1/6)n4−
(1/6)n3 + (1/3)n2 + O(n) if p = phi.

Proof. To obtain the optimum, it is necessary to tran-
sition from state Ridge(x) ≡ 0 (mod 3) to Ridge(x) ≡ 2
(mod 3) and back n/3 times. Hence, the expected runtime
of the algorithm is (n/3) (E (T0 | p) + E (T2 | p)) , where the
expectations of T0 and T2 are given in Lemma 1. In the case
when p = plo, the expected runtime is (n/3)

(
n2/2 + O(n)

)
=

n3/2 + O(n2). In the case when p = phi, the expected run-
time is (n/3)(n3/2−n2/2+n+O(1)) = n4/6−n3/6+n2/3+
O(n).

We will revisit and use the GapPath function in Section 4.

3. MIXING ACCEPTANCE CRITERIA
This section considers hyper-heuristics that mix move ac-
ceptance operators. We show that mixing move acceptance
operators can be efficient on problems where individual ac-
ceptance operators fail.

Algorithm 3

1: x ∼ Unif({0, 1}n)
2: while termination criteria not satisfied do
3: x′ ∼ FlipRandomBit(x)
4: Acc ∼ Dp(Am,Oi) // Selects an acceptance operator.
5: if Acc(x, x′) then x← x′

6: end while

Algorithm 3 follows the same outline as Algorithm 2, but
differs in the choice of neighbourhood operator and move
acceptance operator. Algorithm 3 always uses the 1-bitflip
operator as neighbourhood operator, and it mixes two dif-
ferent move acceptance operators. With probability p, it
chooses the Am (x, x′) acceptance operator (always move)
which always accepts the candidate solution x′. With prob-
ability 1− p, it uses the Oi(x, x′) acceptance operator (only
improvement) which accepts the candidate solution x′ if and
only if f(x′) > f(x), ie., it is strictly better than the current
candidate solution.

The pseudo-Boolean function RRk, also called the royal road
function [20], splits a bitstring of length n into m := bn/kc
blocks of length k. A block containing exactly i 0-bits, for i ∈
[0..k] is called an i-block. The function value of a bitstring
equals the number of 0-blocks in the bitstring.

RRk(x) :=

bn/kc∑
i=1

k∏
j=1

xk(i−1)+j .

The simplest case k = 1 equals to the well-known Onemax
function. The problem becomes harder for larger values of
k. The RRk function is similar but not identical to, the
Royal Road function defined in [14].

We will first show that it is necessary to mix the acceptance
criteria, i.e. choosing p ∈ (0, 1), in order to optimise RRk

efficiently. By setting p = 0, Algorithm 3 will only accept
improving moves, which is problematic because RRk with
k ≥ 2 contains large plateaus.

Theorem 6. If p = 0, then the expected optimisation
time of Algorithm 3 on RRk with k ≥ 2 is infinite.



Proof. Any search point that is obtained by flipping any
of the first k positions in the bitstring x := 021n−2 has the
same function value as x, and will not be accepted by the
Oi-operator. Any search point that is obtained by flipping
any of the n − k last bit positions in x will have inferior
function value, and will not be accepted by the Oi-operator.
The initial search point is x with probability 1/2n. The
expected runtime on RRk is therefore infinite by the law of
total probability.

It is obvious that Algorithm 3 degenerates into a random
walk over the set of bitstrings when p = 1. Mixing the
acceptance operators is therefore necessary, and a natural
question is to determine the right parameter setting for p.
By intuition, if p is chosen too high, the algorithm will accept
too many worsening moves. In fact, Theorem 8 which will be
presented later, shows that the expected runtime is super-
polynomial, even for as small parameter settings as p =
ω(log(n)/n). The following theorem shows how to set p to
guarantee polynomial expected runtime.

Theorem 7. For any integer k ≥ 2, let m := bn/kc. If
0 < p ≤ 1/(6mkk), then the expected runtime of Algorithm 3
on RRk is no more than m(1 + mkk)/p. If additionally
p = Ω(1/mkk), then the expected runtime is O(m3k2k).

Proof. Consider the vector-valued stochastic process Xt ∈
Nk+1, where Xt = v if the current search point in iteration
t consists of vi blocks with exactly i 0-bits for all i ∈ [k].
The drift of this process will be analysed with respect to the
distance function g(v) =

∑k
i=0 fivi, where for all i ∈ [0..k]

fi :=


0 if i = 0
k

2m
if i = 1

k
2m

+
∑i

j=2 k
k+2−j if 2 ≤ i ≤ k.

Note that fi+1−fi = kk+1−i and fi+1−fi−1 = kk+1−i(1+k)
for all i ∈ [2, k−1]. Obviously, the distance function g is non-
negative and bounded from above by B := k/2 + mkk+1 >
mfk.

Define the random variable

∆t(v) := (g(Xt−1)− g(Xt) | Xt−1 = v) .

For each pair i, j ∈ [k], where i 6= j, let the random variable
Mt(i, j) denote the number of i-blocks in iteration t−1 that
was turned into j-blocks in iteration t. For each i ∈ [k], let
Mt(i, i) = 0. Now, define the conditional random variables

∆
(i)
t (v) :=

(
k∑

j=0

(fi − fj)Mt(i, j) | Xt−1 = v

)

Intuitively, the random variable ∆
(i)
t describes the drift con-

tribution from i-blocks, so that the total drift can be decom-

posed as

∆t(v) =

k∑
i=0

fivi −
k∑

i=0

fiXt(i)

=

k∑
i=0

fivi −
k∑

i=0

fi

(
vi +

k∑
j=0

Mt(j, i)−
k∑

j=0

Mt(i, j)

)

=

(
k∑

i=0

fi

k∑
j=0

Mt(i, j)

)
−

(
k∑

i=0

fi

k∑
j=0

Mt(j, i)

)

=

k∑
i=0

k∑
j=0

(fi − fj)Mt(i, j) =

k∑
i=0

∆
(i)
t (v).

The drift contribution from the 0-blocks is ∆
(0)
t (v) = −p ·

(v0/m)(k/2m) ≥ −pk/(2m). The drift contribution from the
1-blocks is

∆
(1)
t (v) =

v1

km

(
k

2m
− (k − 1)pkk

)
≥ v1

2m

(
1

m
− 2pkk

)
.

The drift contribution from the i-blocks with i ∈ [2, k−1] is

∆
(i)
t (v) =

pvi
m

(
i(fi − fi−1)

k
+

(k − i)(fi − fi+1)

k

)
=

pvi
m

(
i(fi+1 − fi−1)

k
− (fi+1 − fi)

)
=

pvi
m

kk+1−i

(
i(1 + k)

k
− 1

)
=

pvi
m

kk+1−i

(
i

k

)
≥ pvik

m
.

Finally, the drift contribution from the k-blocks is

∆
(k)
t (v) = p

vk
m

k2.

Two cases are now distinguished. In the first case when
v1 ≥ 1,

∆t(v) ≥ ∆
(1)
t (v) + ∆

(0)
t (v) ≥ v1

2m

(
1

m
− 2pkk

)
− pk

2m

≥ 1

2m

(
1

m
− p(2kk + k)

)
>

1

2m

(
1

m
− 1

2m

)
=

1

4m2
,

where the assumption p ≤ 1/(6mkk) < 1/(2m(2kk + k)) is
used.

In the second case, where v1 = 0, and v0 ≤ m− 1, then

∆t(v) ≥ ∆
(0)
t (v) + ∆

(2)
t (v) + · · ·+ ∆

(k)
t (v)

≥ kp

m

(
v2 + · · ·+ vk −

1

2

)
≥ kp

2m
.

In both cases, ∆t(v) ≥ ∆ := kp/(2m) holds. Given that
g(Xt) ≤ B, it follows by the polynomial drift theorem (see
eg. [10]) that the expected time until g(Xt) = 0 is no more
than B/∆ ≤

(
k/2 + mkk+1

)
(2m)/(kp) ≤ m(1 + mkk)/p,

and the theorem is proved.



We then show that if the parameter p in Algorithm 3 is
chosen asymptotically larger than log(m)/(km), then the
expected runtime on the RRk problem is super-polynomial.
This theorem also covers the special case p = 1, stating that
Algorithm 3 becomes ineffective when the Am acceptance
operator is used alone.

Theorem 8. If p > g(m)/(km) for any function g(m) ≤
m/2, then the expected runtime of Algorithm 3 on RRk is

eΩ(g(m)).

Proof. Assume optimistically that the number of 1-blocks
never increases above g(m)/2 + 1, and that all other blocks
are 0-blocks. Clearly, this will only make Algorithm 3 opti-
mise RRk faster. If the number of 1-blocks is no more than
g(m)/2, then the probability of increasing the number of 1-
blocks is at least q := (3/4)p ≤ (m − g(m)/2)p/m and the
probability of decreasing the number of 1-blocks is no more
than r := (1/2)p ≥ g(m)/(2km).

The algorithm is modelled by the stochastic process Xt ∈ N
on the integers where Pr [Xt = Xt−1 + 1] = q/(r + q) and
Pr [Xt = Xt−1 − 1] = r/(r+ q). Assume that X0 = g(m)/2.
By the gambler’s ruin problem (see [7]), it follows that the
probability that the process reaches the point 0 before first
reaching the point g(m)/2 + 1 is(

q
r

)
− 1(

q
r

)g(m)/2 − 1
=

1
2(

3
2

)g(m)/2 − 1
= e−Ω(g(m)).

It is therefore clear, that if the algorithm at some point has
g(m)/2 1-blocks, then the probability that the algorithm
reaches 0 1-blocks before reaching g(m)/2 + 1 1-blocks is

also e−Ω(g(m)). By a Chernoff bound (see eg. [15]), the
number of 0-blocks in the initial search point is less than m−
g(m)/2−1 ≥ (3/4)m−1 with probability 1−e−Ω(m). Hence,
the expected number of times the current search point has
m − g(m)/2 − 1 0-blocks before reaching the optimum is

eΩ(g(m)), which concludes the proof.

The result in Theorem 8 is complemented with a plot of the
drift field corresponding to the number of 1-blocks and 2-
blocks in the case k = 2. With i 1-blocks, and j 2-blocks,
these drifts are respectively

D1(i, j) =
(m− i− j)p

m
+

jp

m
− ip

2m

D2(i, j) =
ip

2m
− jp

m

When the mixing parameter p is too high, the algorithm
accepts too many worsenings, and the current search point
drifts towards an equilibrium point which is far from the
global optimum at origin, as shown in Fig. 1.

4. ADAPTATION OF THE MIXING PARAM-
ETER

The previous two sections have shown that mixing operators
can be more efficient than each individual operator. How-
ever, the results also show that the efficiency of the mixing
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Figure 1: The drift of the number of 1-blocks (hori-
zontal) and the number of 2-blocks (vertical) in the
current search point of Algorithm 3 on RRk when
k = 2, m = 100, and p = 1/5. The global optimum 1n

is located at origin.

approach depends on having an appropriate mixing distri-
bution. Theorems 7 and 8 tell us that the expected run-
time (i.e., exponential vs polynomial) depends critically on
the mixing parameter p, and that the right choice of p is
problem-dependant (in the case of RRk, it depends on pa-
rameter k).

We therefore consider mechanisms for online adaptation of
the mixing parameter p in the context of neighbourhood
operators. For simplicity, we assume a scenario where Algo-
rithm 2 can choose between two parameter settings, p = phi

or p = plo. Setting p = phi implies that the 1-bitflip operator
will be chosen most often, while setting p = plo implies that
the 2-bitflip operator will be chosen most often. The permu-
tation mechanism deterministically chooses p = phi in even
iteration numbers, and p = plo in odd iteration numbers.
The simple reinforcement learning mechanism sets p = phi if
the last improving step was made with the 1-bitflip operator,
and p = plo if the last improving step was made with the 2-
bitflip operator. The initial p value is chosen randomly. The
simple reinforcement approach is also commonly referred to
as random permutation gradient hyper-heuristic in the liter-
ature [5, 2].

Theorem 9. The expected runtime of Algorithm 2 on
GapPath with simple reinforcement learning is (1/6)n4 +
(1/6)n3 when starting with p = phi and the search point 0n.

Proof. Starting from Ridge(x) = 0, the first improving
step will be made by the 2-bitflip operator. In all subsequent
iterations, the algorithm will choose the parameter setting
p = phi when Ridge(x) ≡ 0 (mod 3), and p = plo when
Ridge(x) ≡ 2 (mod 3). Hence, the expected optimisation
time is by Lemma 1

n

3
(E (T0 | p = phi) + E (T2 | p = plo))

=
n

3

(
n3

2
− n2

2
+ n2

)
=

n4

6
+

n3

6
.

Finally, we have the following theorem for the permutation
mechanism.



Theorem 10. The expected runtime of Algorithm 2 on
GapPath with the permutation mechanism is no more than
(1/3)n3 +(1/3)n2 +O(1) when starting with the search point
0n.

Proof. Let r be the probability of making an improv-
ing step, assuming that the correct mutation operator is
selected. Let qhi and qlo be the probabilities of selecting the
correct mutation operator given that p = phi, respectively
p = plo. Since there are only two operators to choose from,
it holds that

qhiqlo = (1− plo)plo =
1

n

(
1− 1

n

)
.

Starting from an even iteration number, the probability of
making at least one improvement within the next two iter-
ations is

qhir + (1− qhir)qlor = r(1− qhiqlor) = r(1−O(r/n)),

So the expected number of iterations to make an improve-
ment is no more than (2/r)(1 + O(r/n)) = 2/r + O(1/n).

In the case where Ridge(x) ≡ 0 (mod 3), the probability of
making an improvement with the 2-bitflip operator is r =
(2/n)(1/(n− 1)). Hence, it holds that E (T0) ≤ n(n− 1) +
O(1/n).

In the case where Ridge(x) ≡ 2 (mod 3), the probability
of making an improvement with the 1-bitflip operator is
r = 1/n. Hence it holds that E (T2) ≤ 2n + O(1/n). Fol-
lowing the same argument as above, the expected runtime
on the problem is no more than (n/3) (E (T0) + E (T2)) ≤
(n/3)

(
n2 + n + O(1/n)

)
= n3/3 + n2/3 + O(1).

Starting from a random solution will yield an additional ex-
pected running time to obtain 0n (see Section 2.1). This
process is exactly the same as solving Onemax in which the
0-bits are counted instead of 1-bits. In order to emphasise
the remaining expected time, this additional runtime com-
plexity is omitted in Table 1.

5. CONCLUSION
Hyper-heuristic studies have been mostly empirical. This
paper provides one of the first runtime analyses of selec-
tion hyper-heuristics. We have shown that mixing different
neighbourhood or move acceptance operators can be more
efficient than using stand-alone individual operators in some
cases. However, the analysis also shows that the perfor-
mance of the mixing operators rely critically on having the
right mixing distribution, which is problem dependent. Ta-
ble 1 shows the result of an analysis of mechanisms for on-
line adaptation of the mixing distribution. Most notably,
a previous successful mechanism which reinforces the oper-
ator performs poorer than the static mixing distributions.
This is just a first step towards more rigorous analysis of
hyper-heuristics. Future work should consider more com-
plex hyper-heuristics, and more complex problem scenarios.
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Table 1: Impact of parameter update mechanism on the runtime of Algorithm 2 on the GapPath function.
The mechanisms are ordered w.r.t. increasing runtime.
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