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Abstract. Hyper-heuristics are proposed as a higher level of abstraction as 
compared to the metaheuristics. Hyper-heuristic methods deploy a set of simple 
heuristics and use only nonproblem-specific data, such as, fitness change or 
heuristic execution time. A typical iteration of a hyper-heuristic algorithm 
consists of two phases: heuristic selection method and move acceptance. In this 
paper, heuristic selection mechanisms and move acceptance criteria in hyper-
heuristics are analyzed in depth. Seven heuristic selection methods, and five 
acceptance criteria are implemented. The performance of each selection and 
acceptance mechanism pair is evaluated on fourteen well-known benchmark 
functions and twenty-one exam timetabling problem instances.  

1   Introduction 

The term hyper-heuristic refers to a recent approach used as a search methodology [2, 
3, 5, 11, 21]. It is a higher level of abstraction than metaheuristic methods. Hyper-
heuristics involve an iterative strategy that chooses a heuristic to apply to a candidate 
solution of the problem at hand, at each step. Cowling et al. discusses properties of 
hyper-heuristics in [11]. An iteration of a hyper-heuristic can be subdivided into two 
parts; heuristic selection and move acceptance. In the hyper-heuristic literature, sev-
eral heuristic selection and acceptance mechanisms are used [2, 3, 5, 11, 21]. How-
ever, no comprehensive study exists that compare the performances of these different 
mechanisms in depth.  

Timetabling problems are real world constraint optimization problems. Due to 
their NP complete nature [16], traditional approaches might fail to generate a solution 
to a timetabling problem instance. Timetabling problems require assignment of time-
slots (periods) and possibly some other resources to a set of events, subject to a set of 
constraints. Numerous researchers deal with different types of timetabling problems 
based on different types of constraints utilizing variety of approaches. Employee 
timetabling, course timetabling and examination timetabling are the research fields 
that attract the most attention. In this paper, seven heuristic selection methods and 
five different acceptance criteria are analyzed in depth. Their performance is meas-
ured on well-known benchmark functions. Moreover, thirty-five hyper-heuristics 



generated by coupling all heuristic selection methods and all acceptance criteria with 
each other, are evaluated on a set of twenty-one exam timetabling benchmark prob-
lem instances, including Carter’s benchmark [10] and Ozcan’s benchmark [25].  

The remainder of this paper is organized as follows. In Section 2 background is 
provided including hyper-heuristics, benchmark functions and exam timetabling. 
Experimental settings and results for benchmarks are given in Section 3. Hyper-
heuristic experiments on exam timetabling are presented in Section 4. Finally, con-
clusions are discussed in Section 5.  

2   Preliminaries 

2.1 Hyper-heuristics 

Hyper-heuristic methods are described by Cowling et al. [11] as an alternative 
method to meta-heuristics. Metaheuristics are ‘problem-specific’ solution methods, 
which require knowledge and experience about the problem domain and properties. 
Metaheuristics are mostly developed for a particular problem and require fine tuning 
of parameters. Therefore, they can be developed and deployed only by experts who 
have the sufficient knowledge and experience on the problem domain and the meta-
heuristic search method. Hyper-heuristics, on the other hand are developed to be 
general optimization methods, which can be applied to any optimization problem 
easily. Hyper-heuristics can be considered as black box systems, which take the prob-
lem instance and several low level heuristics as input and which can produce the 
result independent of the problem characteristics. In this concept, hyper-heuristics use 
only non problem-specific data provided by each low level heuristic in order to select 
and apply them to candidate solution [3, 5, 11]. 

The selection mechanisms in the hyper-heuristic methods were emphasized in the 
initial phases of the research period. Cowling et al. [11] proposed three types of low 
level heuristic selection mechanisms to be used in hyper-heuristics; which are Simple, 
Greedy and Choice Function. There are four types of Simple heuristic selection 
mechanisms. Simple Random mechanism chooses a low level heuristic at a time ran-
domly. Random Descent mechanism chooses a low level heuristic randomly and 
applies it repeatedly as long as it produces improving results. Random Permutation 
mechanism creates an initial permutation of the low level heuristics and at each itera-
tion applies the next low level heuristic in the permutation. Random Permutation 
Descent mechanism is the same as Random Permutation mechanism, except that it 
applies the low level heuristic in turn repeatedly as long as it produces improving 
results. Greedy method calls each low level heuristic at each iteration and chooses the 
one that produces the most improving solution. Choice Function is the most complex 
one. It analyzes both the performance of each low level heuristic and each pair of low 
level heuristics. This analysis is based on the improvement and execution time. This 
mechanism also considers the overall performance. It attempts to focus the search as 
long as the improvement rate is high and broadens the search if the improvement rate 



is low. For each of these low level heuristic selection mechanisms two simple accep-
tance criteria are defined. These are AM, where all moves are accepted and OI where 
only improving moves are accepted [11].  

Burke et al. [5] proposed a Tabu-Search heuristic selection method. This mecha-
nism ranks low level heuristics. At the beginning of the run each heuristic starts the 
execution with the minimum ranking. Every time a heuristic produces an improving 
movement its rank is increased by a positive reinforcement rate. The rank of the heu-
ristics cannot exceed a predetermined maximum value. Whenever a heuristic cannot 
make an improving move; its rank is decreased by a negative reinforcement learning 
rate. Similarly the rank of a heuristic cannot be decreased to a value less than a prede-
termined minimum value. In the case of worsening moves, the heuristic is also added 
to the tabu list. Another parameter is the tabu duration which sets the maximum num-
ber of iterations a low level heuristic can stay in the tabu list. The tabu list is emptied 
every time there is a change in the fitness of the candidate solution [5].  

Burke et al. [8] introduce a simple generic hyper-heuristic which utilizes construc-
tive heuristics (graph coloring heuristics) to tackle timetabling problems. A tabu-
search algorithm chooses among permutations of constructive heuristics according to 
their ability to construct complete, feasible and low cost timetables. At each iteration 
of the algorithm, if the selected permutation produces a feasible timetable, a deepest 
descent algorithm is applied to the obtained timetable. Burke et al. used this hyper-
heuristic method in exam and university course timetabling problem instances. The 
proposed method worked well on the related benchmark problem instances [8]. 

Burke et al. [9] proposed a case based heuristic selection approach. A knowledge 
discovery method is employed to find the problem instances and situations where a 
specific heuristic has a good performance. The proposed method also explores the 
similarities between the problem instance and the source cases, in order to predict the 
heuristic that will perform best. Burke et al. applied Case-Based Heuristic Selection 
Approach to the exam and university course timetabling [9]. 

Ayob and Kendall [2] emphasized the role of the acceptance criterion in the hyper-
heuristic. They introduced the Monte Carlo Hyper-heuristic which has a more com-
plex acceptance criterion than AM or OI criteria. In this criterion, all of the improving 
moves are accepted and the non-improving moves can be accepted based on a prob-
abilistic framework. Ayob and Kendall defined three probabilistic approaches to 
accept the non-improving moves. First approach, named as Linear Monte Carlo 
(LMC), uses a negative linear ratio of the probability of acceptance to the fitness 
worsening. Second approach named as, Exponential Monte Carlo (EMC), uses a 
negative exponential ratio of the probability of acceptance to the fitness worsening. 
Third approach, named as Exponential Monte Carlo with Counter (EMCQ), is an 
improvement over Exponential Monte Carlo. Again, the probability of accepting 
worsening moves decreases as the time passes. However if no improvement can be 
achieved over a series of consecutive iterations then this probability starts increasing 
again. As the heuristic selection mechanism, they all use simple random mechanism 
[2].  

Kendall and Mohamad [21] introduced another hyper-heuristic method which also 
focuses on acceptance criterion rather than selection method. They used the Great 
Deluge Algorithm as the acceptance criterion and Simple Random as heuristic selec-



tion method. In the Great Deluge Algorithm initial fitness is set as initial level. At 
each step, the moves which produce fitness values less than the level are accepted. At 
each step the level is also decreased by a factor [21]. 

Gaw et al. [17] presented a research on the choice function hyper-heuristics, gen-
eralized low-level heuristics, and utilization of parallel computing environments for 
hyper-heuristics. An abstract low level heuristic model is proposed which can be 
easily implemented to be a functional low level heuristic tackling a specific problem 
type. The choice function hyper-heuristic and the low-level heuristics are improved to 
evaluate a broader range of the data. Two types of distributed hyper-heuristic ap-
proaches are introduced. The first approach is a single hyper-heuristic, multiple low-
level heuristics which are executed on different nodes and focus on different areas of 
the timetable. The second approach utilizes multiple hyper-heuristics each of which 
work on a different node. In this approach, hyper-heuristics collaborate during the 
execution [17]. 

According to this survey it is concluded that several heuristic selection methods 
and acceptance criteria are introduced for hyper-heuristics framework. Each pair of 
the heuristic selection and acceptance mechanism can be used as a different hyper-
heuristic method. Despite this fact, such combinations have not been studied in the 
literature. In this study, seven heuristic selection mechanisms, which are Simple Ran-
dom, Random Descent, Random Permutation, Random Permutation Descent, Choice-
Function, Tabu-Search, Greedy heuristic selection mechanisms, are implemented. For 
each heuristic selection method five acceptance criteria: AM, OI, IE, a Great Deluge 
and a Monte Carlo are used. As a result a broad range of hyper-heuristic variants are 
obtained. These variants are tested on mathematical objective functions and exam 
timetabling Problems. 

2.2    Benchmark Functions  

Well-defined problem sets are useful to measure the performance of optimization 
methods such as genetic algorithms, memetic algorithms and hyper-heuristics. 
Benchmark functions which are based on mathematical functions or bit strings can be 
used as objective functions to carry out such tests. The characteristics of these bench-
mark functions are explicit. The difficulty levels of most benchmark functions are 
adjustable by setting their parameters. In this study, fourteen different benchmark 
functions are chosen to evaluate the hyper-heuristics. 

The benchmark functions presented in Table 1 are continuous functions, and Royal 
Road Function, Goldberg’s 3 bit Deceptive Function [18], [19] and Whitley’s 4 bit 
Deceptive Function [31] are discrete functions. Their deceptive nature is due to the 
large Hamming Distance between the global optimum and the local optima. To in-
crease the difficulty of the problem n dimensions of these functions can be combined 
by a summation operator. 

The candidate solutions to all the continuous functions are encoded as bit strings 
using gray code. The properties of the benchmark functions are presented in Table 1. 
The modality property indicates the number of optima in the search space (i.e. be-
tween bounds). Unimodal benchmark functions have a single optimum. Multimodal 



benchmark functions contain more than one optimum in their search space. Such 
functions contain at least one additional local optimum in which a search method can 
get stuck.  

Table 1. Properties of benchmark functions, lb indicates the lower bound, ub indicates the 
upper bound of the search space, opt indicates the global optimum in the search space   

Function, [Source] lb ub opt Continuity Modality 
Sphere, [13] -5.12 5.12 0 Continuous Unimodal 
Rosenbrock, [13] -2.048 2.048 0 Continuous Unimodal 
Step, [13] -5.12 5.12 0 Continuous Unimodal 
Quartic, [13] -1.28 1.28 1 Continuous Multimodal 
Foxhole, [13] -65.536 65.536 0 Continuous Multimodal 
Rastrigin, [28] -5.12 5.12 0 Continuous Multimodal 
Schwefel, [29] -500 500 0 Continuous Multimodal 
Griewangk, [19] -600 600 0 Continuous Multimodal 
Ackley, [1] -32.768 32.768 0 Continuous Multimodal 
Easom, [15] -100 100 -1 Continuous Unimodal 
Rotated Hyperellipsoid,[13] -65.536 65.536 0 Continuous Unimodal 
Royal Road, [23] - - 0 Discrete - 
Goldberg, [17, 18] - - 0 Discrete - 
Whitley, [30] - - 0 Discrete - 

2.3 Exam Timetabling 

Burke et al. [4, 6] applied a light or a heavy mutation, randomly selecting one, fol-
lowed by a hill climbing method. Investigation of various combinations of Constraint 
Satisfaction Strategies with GAs for solving exam timetabling problems can be found 
in [22]. Paquete et. al. [27] applied a multiobjective evolutionary algorithm (MOEA) 
based on pareto ranking for solving exam timetabling problem in the Unit of Exact 
and Human Sciences at University of Algarve. Two objectives were determined as to 
minimize the number of conflicts within the same group and the conflicts among 
different groups. Wong et. al. [32] used a GA utilizing a non-elitist replacement strat-
egy to solve a single exam timetabling problem at École de Technologie Supérieure. 
After genetic operators were applied, violations were fixed in a hill climbing proce-
dure.  

Carter et. al. [10] applied different heuristic orderings based on graph coloring. 
Their experimental data became one of the commonly used exam timetabling bench-
marks. Gaspero and Schaerf [14] analyzed tabu search approach using graph coloring 
based heuristics. Merlot et al. [23] explored a hybrid approach for solving the exam 
timetabling problem that produces an initial feasible timetable via constraint pro-
gramming. The method, then applies simulated annealing with hill climbing to im-
prove the solution. Petrovic et al. [28] introduced a case based reasoning system to 
create initial solutions to be used by great deluge algorithm.  Burke et al. [7] proposed 
a general and fast adaptive method that arranges the heuristic to be used for ordering 
exams to be scheduled next. Their algorithm produced comparable results on a set of 
benchmark problems with the current state of the art. Ozcan and Ersoy [25] used a 



violation directed adaptive hill climber within a memetic algorithm to solve exam 
timetabling problem.  A Java tool named FES is introduced by Ozcan in [26] which 
utilizes XML as input/output format. 

Exam timetabling problem can be formulated as a constraint optimization problem 
by a 3-tuple (V, D, C). V is a finite set of examinations, D is a finite set of domains of 
variables, and C is a finite set of constraints to be satisfied. In this representation a 
variable stands for an exam schedule of a course. Exam timetabling involves a search 
for a solution, where values from domains (timeslots) are assigned to all variables 
while satisfying all the constraints.  

The set of constraints for exam timetabling problem differs from institution to in-
stitution. In this study, three constraints are defined and used as described in [25]: 

(i) A student cannot be scheduled to two exams at the same time slot. 
(ii) If a student is scheduled to two exams in the same day, these should not be as-

signed to consecutive timeslots. 
(iii) The total capacity for a timeslot cannot be exceeded. 

3 Hyper-heuristics for Benchmark Functions  

3.1 Benchmark Function Heuristics 

Six heuristics were implemented to be used with hyper-heuristics on benchmark func-
tions. Half of these are hill-climbing methods and the remaining half are mutational 
operators combined with a hill climber.  

Next Ascent Hill Climber makes number of bits times iterations at each heuristic 
call. Starting from the most significant bit, at each iteration it inverts the next bit in 
the bit string. If there is a fitness improvement, the modified candidate solution is 
accepted as the current candidate solution [24]. Davis’ Bit Hill Climber is the same as 
Next Ascent Hill Climber but it does not modify the bit sequentially but in the se-
quence of a randomly determined permutation [12]. Random Mutation Hill Climber 
chooses a bit randomly and inverts it. Again the modified candidate solution becomes 
the current candidate solution, if the fitness is improved. This step is repeated for total 
number of bits in the candidate solution times at each heuristic call [24].  

Mutational heuristics are Swap Dimension, Dimensional Mutation and Hypermuta-
tion. Swap Dimension heuristic randomly chooses two different dimensions in the 
candidate solution and swaps them. Dimensional Mutation heuristic randomly 
chooses a dimension and inverts each bit in this dimension with the probability 0.5. 
Hypermutation randomly inverts each bit in the candidate solution with the probabil-
ity 0.5. To improve the quality of candidate solutions obtained from these mutational 
heuristics, Davis’ Bit Hill Climbing is applied.  



3.2 Experimental Settings 

 
The experiments are performed on Pentium IV, 2 GHz Linux machines with 256 Mb 
memory. Fifty runs are performed for each hyper-heuristic and problem instance pair. 
For each problem instance, a set of fifty random initial configurations are created. 
Each run in an experiment is performed starting from the same initial configuration. 
The experiments are allowed to run for 600 CPU seconds. If the global optimum of 
the objective function is found before the time limit is exhausted, then the experiment 
is terminated. 

The candidate solutions are encoded as bit strings. The continuous functions in 
benchmark set are encoded in Gray Code. The discrete functions have their own di-
rect encoding. Foxhole Function has default dimension of 2. The default number of 
bits per dimension parameter is set to 8, 3, and 4 for the Royal Road, Goldberg, and 
Whitley Functions respectively. The rest of the functions have 10 dimensions and 30 
bits are used to encode the range of a variable. 

3.3 Experimental Results 

The experimental results of performance comparison of 35 heuristic selection – ac-
ceptance criteria combinations on 14 different benchmark functions are statistically 
evaluated. For each benchmark function the combinations are sorted according to 
their performance. The average number of fitness evaluations needed to converge to 
global optimum is used as the performance criterion for the experiments with 100% 
success rate. The average best fitness reached is used for the experiments with suc-
cess rates lower than 100%. The performances are evaluated statistically using t-test. 
Each combination has been given a ranking. Confidence interval is set to 95% in t-
test to determine significant performance variance. The combinations that do not have 
significant performance variances are grouped together and have been given the same 
ranking. The average rankings of heuristic selection methods and move acceptance 
criteria are calculated to reflect their performance. In Table 2, average rankings for 
the heuristic selection methods are provided on each problem. The averages are ob-
tained by testing the selection methods on each acceptance criteria. In Table 3, aver-
age rankings of acceptance criteria are given where the averages are obtained by 
testing acceptance criteria on each selection method this time. Lower numbers in 
these tables denote a higher placement in the ranking and indicate better performance. 
The average ranking of each selection method on all of the functions is depicted in 
Fig. 1, and the average ranking of each acceptance criterion on all of the functions in 
Fig. 2. 

No heuristic selection and acceptance criterion couple came out to be a winner on 
all of the benchmark functions. Choice Function performs well on Sphere and 
Griewangk functions. Simple Random performs well on Sphere Function. Random 
Descent and Random Permutation Descent perform well on Rotated Hyperellipsoid 
Function. Greedy performs well on Rosenbrock Function. The performance variances 
of heuristic selection methods on remaining functions were not as significant as these 



cases. Choice Function performs slightly better than remaining selection methods on 
average. IE acceptance criterion performs well on Rastrigin, Schwefel, Easom, Ro-
tated Hyperellipsoid, and discrete deceptive functions. OI acceptance criterion per-
forms well on Rosenbrock Function. MC acceptance criterion performs well on Fox-
hole Function. IE acceptance criterion indicates significantly a better performance 
than the remaining acceptance criteria on average.  
 

Table 2. Average ranking of each selection method on each problem; CF stands for Choice 
Function, SR for Simple Random, RD for Random Descent, RP for Random Permutation, RPD 
for Random Permutation Descent, Tabu for Tabu Search, GR for Greedy.   

Name CF SR RD RP RPD TABU GR 
Sphere 7.0 7.0 24.5 14.0 24.5 24.5 24.5 
Rosenbrock 20.2 22.0 16.0 23.8 16.0 16.0 12.0 
Step 17.7 17.7 17.7 18.9 17.7 17.7 18.6 
Quartic w/ noise 17.9 17.9 17.9 17.9 17.9 17.9 18.6 
Foxhole 15.7 15.7 15.7 19.3 15.7 15.7 28.2 
Rastrigin 17.9 17.5 18.5 17.3 18.5 17.7 18.6 
Schwefel 17.0 17.0 18.8 17.0 18.8 18.8 18.6 
Griewangk 11.8 17.2 17.2 17.2 17.2 17.2 28.2 
Ackley 16.5 16.5 16.5 23.5 16.5 16.5 20.0 
Easom 16.0 16.0 21.7 16.0 21.7 21.7 12.9 
Rotated Hyperellipsoid 20.4 21.2 13.4 21.6 14.8 19.8 15.6 
Royal Road 16.8 17.6 17.1 17.4 17.1 17.8 22.2 
Goldberg 18.6 19.3 16.6 19.4 17.4 16.1 18.6 
Whitley 17.9 17.9 17.9 17.9 17.9 17.9 18.6 
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Fig. 1. Average ranking of each selection method on all problem instances 

In Fig. 3 average number of evaluations to converge to global optimum by a selected 
subset of hyper-heuristics is depicted on a subset of benchmark functions, which are 
Sphere, Ackley and Goldberg’s Functions. Fig. 3 (a), (c), and (e) visualize the per-
formance comparison of the heuristic selection methods using IE acceptance criterion 



for Sphere, Ackley and Goldberg’s Functions respectively and Fig. 3 (b), (d), and (f) 
the performance comparison of the acceptance criteria using Choice Function heuris-
tic selection method for Sphere, Ackley and Goldberg’s Functions respectively. 
Lower average number of evaluations intends faster convergence to the global opti-
mum and indicates better performance.  

Table 3. Average ranking of each acceptance criterion on each problem; AM stands for All 
Moves Accepted, OI for Only Improving Moves Accepted, IE for Improving and Equal Moves 
Accepted, MC for Monte Carlo Acceptance Criterion, and GD for Great Deluge Acceptance 
Criterion. 

Name AM OI IE MC GD 
Sphere 19.5 17.0 17.0 17.0 19.5 
Rosenbrock 23.8 12.0 16.0 23.8 16.0 
Step 29.1 18.6 17.7 18.9 17.7 
Quartic w/ noise 29.1 17.4 14.5 14.5 14.5 
Foxhole 12.4 27.7 26.5 11.1 12.4 
Rastrigin 29.1 10.6 7.6 23.9 18.8 
Schwefel 29.1 10.6 7.6 22.6 20.1 
Griewangk 11.9 27.7 26.5 11.9 11.9 
Ackley 19.0 19.0 16.5 16.5 19.0 
Easom 23.3 11.6 8.5 23.3 23.3 
Rotated Hyperellipsoid 25.1 11.7 8.8 22.4 22.6 
Royal Road 28.1 10.6 7.6 23.0 20.7 
Goldberg 29.1 10.6 7.6 22.4 20.4 
Whitley 23.9 10.6 7.6 23.9 23.9 
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Fig. 2. Average ranking of each acceptance criterion on all problem instances 

For Sphere Model, distinct performance variances are observed between heuristic 
selection methods in Fig. 3 (a) on the other side the difference is not so prominent 
between acceptance criteria in Fig. 3 (b). Fig. 3 (a) shows that Random Permutation 
and Choice Function heuristic selection methods achieved faster convergence than 
remaining selection methods. In Fig. 3 (c) and (d) it can be observed that Choice 
Function heuristic selection method and IE acceptance criterion accomplished a faster 



convergence to global optimum on Ackley Function. Fig. 3 (e) and (f) show that 
Choice Function heuristic selection method and IE acceptance criterion performed 
best on Goldberg’s Function. Fig. 3 (f) shows that the performance variances be-
tween different acceptance criteria are enormous on the same function. Also AM 
acceptance criterion cannot reach the global optimum on Goldberg’s Function and no 
average number of evaluations to converge to global optimum value is depicted for 
this criterion in the same figure. 
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Fig. 3. Average number of evaluations to converge to global optimum of hyper-heuristics 
consisting of all heuristic selection methods using IE acceptance criterion on (a) Sphere Model 
function, (c) Ackley Function (e) Goldberg Function, and average number of evaluations to 
converge to global optimum of hyper-heuristics consisting of Choice Function heuristic selec-
tion method and all acceptance criteria on (b) Sphere Model function, (d) Ackley Function (f) 
Goldberg Function.  



4 Hyper-heuristics for Solving Exam Timetabling Problems 

4.1 Exam Timetabling Problem Instances and Settings 

 
Carter’s Benchmark [10] and Yeditepe University Faculty of Architecture and Engi-
neering [25] data sets are used for the performance comparison of hyper-heuristics. 
The characteristics of as illustrated in Table 4.  

Table 4. Parameters and properties of the exam timetabling problem instances 

Instance Exams Students Enrollment Density Days Capacity 
Carf92 543 18419 54062 0.14 12 2000 
Cars91 682 16925 59022 0.13 17 1550 
Earf83 181 941 6029 0.27 8 350 
Hecs92 81 2823 10634 0.20 6 650 
Kfus93 486 5349 25118 0.06 7 1955 
Lsef91 381 2726 10919 0.06 6 635 
Purs93 2419 30032 120690 0.03 10 5000 
Ryes93 486 11483 45051 0.07 8 2055 
Staf83 139 611 5539 0.14 4 3024 
Tres92 261 4360 14901 0.18 10 655 
Utas92 622 21267 58981 0.13 12 2800 
Utes92 184 2749 11796 0.08 3 1240 
Yorf83 190 1125 8108 0.29 7 300 
Yue20011 140 559 3488 0.14 6 450 
Yue20012 158 591 3706 0.14 6 450 
Yue20013 30 234 447 0.19 2 150 
Yue20021 168 826 5757 0.16 7 550 
Yue20022 187 896 5860 0.16 7 550 
Yue20023 40 420 790 0.19 2 150 
Yue20031 177 1125 6716 0.15 6 550 
Yue20032 210 1185 6837 0.14 6 550 
 

Hyper-heuristics consisting of Simple Random, Random Descent, Tabu Search, 
Choice Function, and Greedy heuristic selection mechanisms and all the acceptance 
criteria, described in Section 2.1 are tested with each benchmark exam timetabling 
problem instance.  The fitness function used for solving the exam timetabling prob-
lem takes a weighted average of the number of constraint violations. The fitness func-
tion is multiplied by -1 to make the problem a minimizing problem. 
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In the equation (1), wi indicates the weight associated to the ith constraint, gi indicates 
the number of violations of ith constraint for a given schedule T.  The value 0.4 is 
used as the weight for the first and the third constraint and 0.2 for the second con-
straint as explained in Section 2.3. 

4.1 Heuristics for Exam Timetabling 

Candidate solutions are encoded as an array of timeslots where each locus represents 
an exam to be scheduled. Four heuristics are implemented to be used with the hyper-
heuristics for solving an exam timetabling problem. Three of these heuristics utilize 
tournament strategy for choosing a timeslot to reschedule a given exam to improve a 
candidate solution based on a constraint type, while the last one is a mutation opera-
tor. Heuristics for the constraints (i) and (ii) work similarly. Each improving heuristic 
targets a different conflict. Both heuristics randomly choose a predetermined number 
of exams and select the exam with the highest number of targeted conflict among 
these. Also a predetermined number of timeslots are randomly chosen and the number 
of targeted conflicts are checked when the exam is assigned to that timeslot. The 
timeslot with the minimum number of targeted conflict is then assigned to the se-
lected exam.  

The heuristic which targets the capacity conflicts (iii) randomly chooses a prede-
termined number of timeslots and selects the timeslot with the maximum capacity 
conflict among these. A predetermined number of exams that are scheduled to this 
timeslot are chosen randomly and the exam that has the most attendants is selected 
among them. Again a group of timeslots are chosen randomly and the timeslot with 
the minimum number of attendants is assigned to the selected exam. Mutational heu-
ristic passes over each exam in the array and assigns a random timeslot to the exam 
with a predetermined probability (1/number of courses).  

4.2 Experimental Results 

The experimental results of performance comparison of Simple Random, Random 
Descent, Tabu Search, Choice Function, and Greedy heuristic selection method and 
all acceptance criteria combinations on 21 different exam timetabling problem in-
stances are statistically evaluated. Each pair has been assigned to a ranking. Confi-
dence interval is set to 95% in t-test to determine the significant performance vari-
ance. Similar to the previous experiments, the combinations that do not have signifi-
cant performance variances are assigned to the same ranking.  

Average best fitness values for best performing heuristic selection-acceptance cri-
terion combination are provided in Table 5. If several hyper-heuristics share the same 
ranking, than only one of them appears in the table, marked with *. Seven combina-
tions that have the top average rankings are presented in Fig. 4. According to the 
results, Choice Function heuristic selection combined with Monte Carlo acceptance 
criterion has the best average performance on exam timetabling problems. The hyper-
heuristic combinations with acceptance criteria AM and OI do not perform well on 
any of the problem instances.  



 

Table 5. Average best fitness values for best performing heuristic selection-acceptance crite-
rion combinations on each problem instance; AM stands for All Moves Accepted, OI for Only 
Improving Moves Accepted, IE for Improving and Equal Moves Accepted, MC for Monte Carlo 
Acceptance Criterion, GD for Great Deluge Acceptance Criterion.  

Instance (Av. B. Fit., Std. Dev.) H.Heuristic Alg. 
Carf92 (-1.02E-02, 1.18E-03) TABU_IE * 
Cars91 (-1.93E-01, 1.20E-01) TABU_IE * 
Earf83 (-7.27E-03, 4.94E-04) CF_MC  
Hecs92 (-2.19E-02, 2.43E-03) CF_MC * 
Kfus93 (-3.40E-02, 4.30E-03) SR_GD 
Lsef91 (-1.42E-02, 1.38E-03) CF_MC 
Purs93 (-1.41E-03, 6.98E-05) SR_IE 
Ryes93 (-1.08E-02, 1.37E-03) CF_MC 
Staf83 (-2.68E-03, 1.04E-05) SR_MC * 
Tres92 (-6.79E-02, 1.08E-02) SR_GD 
Utas92 (-1.87E-02, 1.79E-03) TABU_IE * 
Utes92 (-2.27E-03, 8.64E-05) CF_MC 
Yorf83 (-8.32E-03, 4.57E-04) CF_MC 
Yue20011 (-9.02E-02, 1.07E-02) SR_GD 
Yue20012 (-7.54E-02, 9.38E-03) SR_GD 
Yue20013 (-2.50E-01, 0.00E+00) SR_MC * 
Yue20021 (-3.45E-02, 4.55E-03) SR_GD 
Yue20022 (-1.26E-02, 9.08E-04) CF_MC 
Yue20023 (-1.52E-02, 2.69E-04) CF_MC * 
Yue20031 (-1.59E-02, 1.65E-03) CF_MC 
Yue20032 (-5.42E-03, 3.68E-04) CF_MC 

 

Table 6. The performance rankings of each heuristic selection-acceptance criterion on all 
problem instances. Lower rankings indicate better performance. 

(a) 
H.-h. Carf92 Cars91 Earf83 Hecs92 Kfus93 Lsef91 Purs93 
SR_AM  30.5 26.5 26 26 26 26 26 
SR_OI 19.5 19 12.5 16 19 16 8 
SR_IE 7.5 7.5 12.5 16 9 11.5 1 
SR_MC 15 15 7 7.5 15 11.5 23 
SR_GD 7.5 6 8 7.5 1 4.5 9 
RD_AM 30.5 31.5 30 31 31 29.5 31.5 
RD_OI 19.5 19 20 16 19 20 12.5 
RD_IE 7.5 3 12.5 16 9 11.5 4 
RD_MC 7.5 11.5 3.5 4.5 9 4.5 20.5 
RD_GD 30.5 31.5 30 31 31 29.5 31.5 
RP_AM 30.5 31.5 34.5 31 31 34.5 34.5 
RP_OI 19.5 19 20 16 19 20 12.5 
RP_IE 7.5 3 12.5 16 9 11.5 4 
RP_MC 7.5 11.5 3.5 4.5 9 4.5 20.5 
RP_GD 30.5 31.5 34.5 31 31 34.5 34.5 



RPD_AM 30.5 31.5 30 31 31 29.5 31.5 
RPD_OI 19.5 19 20 16 19 20 12.5 
RPD_IE 7.5 3 12.5 16 9 11.5 4 
RPD_MC 7.5 11.5 3.5 4.5 9 4.5 20.5 
RPD_GD 30.5 31.5 30 31 31 29.5 31.5 
CF_AM 30.5 26.5 30 31 31 33.5 27 
CF_OI 19.5 19 20 16 19 20 12.5 
CF_IE 7.5 3 12.5 16 9 11.5 4 
CF_MC 7.5 9 1 1.5 3 1 16.5 
CF_GD 19.5 19 20 16 19 20 12.5 
TABU_AM 30.5 31.5 30 31 31 29.5 28.5 
TABU_OI 19.5 19 20 16 19 20 12.5 
TABU_IE 7.5 3 12.5 16 9 11.5 4 
TABU_MC 7.5 11.5 3.5 4.5 9 4.5 20.5 
TABU_GD 30.5 31.5 30 31 31 29.5 28.5 
GR_AM 24.5 24.5 24 24.5 24.5 24.5 24.5 
GR_OI 19.5 23 20 16 23 20 16.5 
GR_IE 7.5 7.5 12.5 16 9 11.5 7 
GR_MC 7.5 14 6 1.5 2 4.5 18 
GR_GD 24.5 24.5 25 24.5 24.5 24.5 24.5 

(b) 
H.-h. Ryes93 Staf83 Tres92 Utas92 Utes92 Yorf83 
SR_AM 26 31 26 26 26 26 
SR_OI 19.5 16 19.5 15 16 19.5 
SR_IE 8 16 8.5 3.5 16 12 
SR_MC 15 4.5 15 19 7 7 
SR_GD 8 4.5 1 9 8 8 
RD_AM 31 31 31 32.5 31 29.5 
RD_OI 19.5 16 19.5 19 16 19.5 
RD_IE 8 16 8.5 3.5 16 12 
RD_MC 8 4.5 8.5 11.5 4 3.5 
RD_GD 31 31 31 32.5 31 29.5 
RP_AM 31 31 31 32.5 31 34.5 
RP_OI 19.5 16 19.5 19 16 19.5 
RP_IE 8 16 8.5 3.5 16 12 
RP_MC 8 4.5 8.5 11.5 4 3.5 
RP_GD 31 31 31 32.5 31 34.5 
RPD_AM 31 31 31 32.5 31 29.5 
RPD_OI 19.5 16 19.5 19 16 19.5 
RPD_IE 8 16 8.5 3.5 16 12 
RPD_MC 8 4.5 8.5 11.5 4 3.5 
RPD_GD 31 31 31 32.5 31 29.5 
CF_AM 31 26 31 27 31 33 
CF_OI 19.5 16 19.5 19 16 19.5 
CF_IE 8 16 8.5 3.5 16 12 
CF_MC 1 4.5 2 8 1 1 
CF_GD 19.5 16 19.5 19 16 19.5 
TABU_AM 31 31 31 28.5 31 29.5 
TABU_OI 19.5 16 19.5 19 16 19.5 
TABU_IE 8 16 8.5 3.5 16 12 
TABU_MC 8 4.5 8.5 11.5 4 3.5 



TABU_GD 31 31 31 28.5 31 29.5 
GR_AM 24.5 24.5 24.5 24.5 24.5 24.5 
GR_OI 19.5 16 19.5 23 16 19.5 
GR_IE 8 16 8.5 7 16 12 
GR_MC 8 4.5 8.5 14 4 6 
GR_GD 24.5 24.5 24.5 24.5 24.5 24.5 

(c) 
H.-h. Y011 Y012 Y013 Y021 Y022 Y023 Y031 Y032 
SR_AM 26 26 22.5 26 26 9.5 26 28.5 
SR_OI 19.5 19.5 31.5 19.5 16 17.5 16 17.5 
SR_IE 12 11.5 14 12 12 17.5 16 9 
SR_MC 6 11.5 4 8 7.5 3.5 7.5 6.5 
SR_GD 1 1 8 1 7.5 7 7.5 8 
RD_AM 31 31 22.5 03 29.5 9.5 30 28.5 
RD_OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5 
RD_IE 12 11.5 14 12 12 17.5 16 17.5 
RD_MC 6 5 4 4.5 4 1.5 4 3.5 
RD_GD 31 31 22.5 30 29.5 9.5 30 28.5 
RP_AM 31 31 22.5 34.5 34.5 34.5 34.5 34.5 
RP_OI 19.5 19.5 31.5 19.5 20 28 16 17.5 
RP_IE 12 11.5 14 12 12 17.5 16 17.5 
RP_MC 6 5 4 4.5 4 25 4 3.5 
RP_GD 31 31 22.5 34.5 34.5 34.5 34.5 34.5 
RPD_AM 31 31 22.5 30 29.5 31.5 30 28.5 
RPD_OI 19.5 19.5 31.5 19.5 20 28 16 17.5 
RPD_IE 12 11.5 14 12 12 17.5 16 17.5 
RPD_MC 6 5 4 4.5 4 25 4 3.5 
RPD_GD 31 31 22.5 30 29.5 31.5 30 32.5 
CF_AM 31 31 22.5 30 33 9.5 30 32.5 
CF_OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5 
CF_IE 12 11.5 14 12 12 17.5 16 17.5 
CF_MC 3 5 4 4.5 1 1.5 1 1 
CF_GD 19.5 19.5 31.5 19.5 20 17.5 16 17.5 
TABU_AM 31 31 22.5 30 29.5 31.5 30 28.5 
TABU_OI 19.5 19.5 31.5 19.5 20 28 16 17.5 
TABU_IE 12 11.5 14 12 12 17.5 16 17.5 
TABU_MC 6 5 4 4.5 4 25 4 3.5 
TABU_GD 31 31 22.5 30 29.5 31.5 30 28.5 
GR_AM 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5 
GR_OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5 
GR_IE 12 11.5 14 12 12 17.5 16 17.5 
GR_MC 2 2 4 4.5 4 3.5 4 6.5 
GR_GD 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5 
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Fig. 4. Top seven heuristic selection method-acceptance criterion combinations considering  
the average ranking over all problem instances. 

 

5   Conclusion  

An empirical study on hyper-heuristics is provided in this paper. As an iterative 
search strategy, a hyper-heuristic is combined with a move acceptance strategy.  Dif-
ferent such pairs are experimented on a set of benchmark functions. According to the 
outcome, experiments are expanded to cover a set of exam timetabling benchmark 
problem instances.   

The experimental results denote that no combination of heuristic selection and 
move acceptance strategy can dominate over the others on all of the benchmark func-
tions used. Different combinations might perform better on different objective func-
tions. Despite this fact, IE heuristic acceptance criterion yielded better average per-
formance. Considering heuristic selection methods, Choice Function yielded a 
slightly better average performance, but the difference between performance of 
Choice Function and other heuristic selection methods were not as significant as it 
was between acceptance criteria. The experimental results on exam timetabling 
benchmark indicated that Choice Function heuristic selection method combined with 
MC acceptance criterion performs superior than the rest of the hyper-heuristic combi-
nations.  
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