
Hyperion - A Recursive Hyper-heuristic

Framework

Jerry Swan, Ender Özcan, Graham Kendall

Automated Scheduling, Optimisation and Planning (ASAP) Research Group,
School of Computer Science, University of Nottingham,

Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK.
{jps,exo,gxk}@cs.nott.ac.uk

Abstract. Hyper-heuristics are methodologies used to search the space
of heuristics for solving computationally di�cult problems. We describe
an object-oriented domain analysis for hyper-heuristics that orthogo-
nally decomposes the domain into generative policy components. The
framework facilitates the recursive instantiation of hyper-heuristics over
hyper-heuristics, allowing further exploration of the possibilities implied
by the hyper-heuristic concept. We describe Hyperion, a JavaTM class
library implementation of this domain analysis.

1 Introduction

The idea of combining the strength of multiple (meta-)heuristics goes back to the
1960s ([1], [2]) with the term hyper-heuristics being introduced by Denzinger et
al. [3]. There has been recent interest in using hyper-heuristics to tackle combi-
natorial problems. One approach is to employ heuristics as primitive operators,
guided to (and hopefully beyond) local optima by a portfolio of meta-heuristics,
with the choice of meta-heuristic to apply at each decision-point being deter-
mined by a hyper-heuristic. The underlying idea is that hyper-heuristic activity
tends to explore the space of local (and hence hopefully global) optima by using a
set of lower-level (meta-)heuristics. There are two main types of hyper-heuristics,
categorised by whether they are used for selecting or generating heuristics (see
[4] for the former and [5] for the latter). For further detail on hyper-heuristics
the reader is referred to [6], [7], [8] and [9].

We describe an object-oriented domain analysis for hyper-heuristics that or-
thogonally decomposes the domain into generative policy components [10]. This
decomposition yields a generative algorithm framework that facilitates rapid pro-
totyping and allows the components that contribute to an algorithm's success
to be identi�ed in a procedural fashion. In addition, we add facilities for recur-
sively aggregating hyper-heuristics via the hierarchical nesting of local search
neighborhoods. To the knowledge of the authors, there has been no explicit in-
vestigation of the e�ect of instantiating hyper-heuristics to a depth greater than
2, i.e. instantiating hyper-heuristics over hyper-heuristics (perhaps recursively)
rather than simply over meta-heuristics. The facility for nesting algorithms to an
arbitrary (and possibly dynamically-determined) depth therefore allows further
exploration of the possibilities implied by the hyper-heuristic concept.

2 Hyperion - A Recursive Hyper-heuristic Framework

2 Domain Analysis

The widespread adoption of design patterns as reusable elements of domain
vocabulary has lead to the development of a number of popular local search
frameworks (e.g. [11], [12],[13]). Although these o�er a diversity of approaches
for high-level control, the essential nature of local search is present in some
elemental domain concepts (albeit appearing under di�erent names). We present
them here in the vocabulary used by Fink and Voÿ [11] in their generic C++
class library, HotFrame:

State This type parameter represents an element of the solution-space.

ObjectiveFunction A measure of the quality of a State.

Heuristic This interface abstracts the mechanism for transforming an initial
State into some other State of (hopefully) superior quality.

Neighborhood This de�nes some �nite neighborhood of a State.

HotFrame also makes use of a NeighborhoodSelectionPolicy, layered
upon Neighbourhood and having instances that include random neighbor,
best neighbor, and best improving neighbor. Metaheuristics directly supported
by HotFrame include iterated local search (from which random search and
varieties of hillclimbing can be con�gured), together with varieties of simulated
annealing and tabu search (the latter being con�gurable with a number of tabu
strategies, including static and reactive tabu).

In addition to the identi�cation of ubiquitous domain vocabulary, we were
also strongly in�uenced in our domain decomposition by the approach of Özcan
et al. [9], which achieves a highly-modular decomposition of hyper-heuristics as
applied to the domain of �xed-length vectors of bits. Özcan et al. describe four
separate hyper-heuristic frameworks in which primitive operations and meta-
heuristics (in their case a variety of hillclimbers) are conditionally applied in
turn. These four frameworks are conceptually parameterized by the choice of
primitive operators, meta-heuristics and heuristic selection mechanisms. They
also introduce an acceptance policy mechanism with instances that include un-
conditional acceptance; improving operations only; Metropolis-Hastings proba-
balistic acceptance of unimproving moves, and a variant of Great-Deluge.

To the knowledge of the authors, the only other hyper-heuristic framework is
Hy-flex [14]. In contrast to the solution-domain frameworks above, Hy-flex
is concerned with building reusable elements for common problem domains, and
currently supports modules for SAT; one-dimensional bin-packing; permutation
�ow-shop and personnel scheduling. In the following sections, we describe Hype-
rion, a JavaTM class library for the hyperheuristic solution-domain that respects
the entity relationships that hold between the key domain concepts, generalizes
the framework of Özcan et al. and facilitates the hierarchical nesting of meta-
heuristics.

Hyperion - A Recursive Hyper-heuristic Framework 3

3 The Hyperion Hyper-heuristic Framework

We employ object-oriented and generative programming methods [10] to de-
compose the problem domain, resulting in the key concepts (implemented either
directly as classes or generatively via parameterized types) illustrated in Fig. 1-3.

ObjectiveFn
:State

Heuristic
:State

Metaheuristic
:State

ChoiceFunction
:State

RPHC
:State

NAHC
:State

SAHC
:State

RMHC
:State

IteratedLocalSearch
:State

ReinforcementLearning
:State

TabuSearch
:State

11

AntCycleSystem

:State

:Node

:Link

EvolutionStrategy
:State

GDHC
:State

Fig. 1. Main interfaces and concrete meta-heuristics

Figure 1 depicts the heirarchy for Heuristic and some of its concrete spe-
cialisations. The polymorphic update method in the Heuristic class represents
a single iteration of the algorithm. Formally, the method signature is:

update : Transition⟨State⟩ → Transition⟨State⟩

where State is a generic type, as denoted by the bracket conventions) and Tran-
sition is the generically-typed 5-tuple

(from : State, fromV alue : R, operator : Operator, to : State, toV alue : R)

with operator being a descriptor for the operation instance applied. The seman-
tics are that the heuristic should return a result in which the to State represents
the perturbation of the from State of its argument via a single application of
the subclass algorithm. In [11], the existence of many-to-one relationships be-
tween state-space and objective function and state-space and neighborhood are
acknowledged, but for e�ciency purposes in the implementation, the State con-
cept is actually in one-to-one correspondence with its objective function. Our

4 Hyperion - A Recursive Hyper-heuristic Framework

formulation using explicit �pass-though� of tuples representing transitions in the
implied search graph (with their caching of objective values of states) allows us
to achieve the desired decoupling of states, objective values and neighborhoods
without loss of e�ciency. Note that, in the domain of hyper-heuristics, the decou-
pling of states and neighborhoods is essential, since we need to interoperably con-
sider multiple neighborhoods (perhaps operating at di�erent hierarchical levels)
over the same state representation. Figure 2 depicts the heirarchy for Locality,

IterableLocality

+neighbours()

:State

RandomAccessLocality

+getNeighbour ()

:State

GenerativeLocality

+randomNeighbour()

:State

IterableGenerativeLocality
:State

BitFlipLocalityPermutationSwapLocality
Hyperlocality

:State

Heuristic
:State

1*

Fig. 2. Abstract and concrete localities

the Hyperion term for the ubiquitous concept of local search neighbourhood. In
contrast to the singular HotFrame neighborhood concept, the Hyperion con-
cept is factored into three - IterableLocality, GenerativeLocality and
RandomAccessLocality. IterableLocality de�nes some neighborhood of
a state, successive elements of which are accessed via the Iterator design pattern
[15], GenerativeLocality provides for the creation of randomly-generated
neighbors and RandomAccessLocality allows a neighbor to be accessed via
an integer index in O(1) time. The rationale for factoring out these concepts is to
reduce the implementation burden for custom neighborhoods. There is explicit
support within Hyperion for bit-�ip and permutation-swap neighborhoods. By
way of example, the interface for BitFlipLocality is given in Listing 1. Hyperion
adopts a similar neighborhood selection policy approach to HotFrame, addi-
tionally providing stochastic tie-breaking and proportional, rank and tournament

Hyperion - A Recursive Hyper-heuristic Framework 5

public f ina l class Bi tF l i pLo ca l i t y
extends RandomAccessLocality< BitVector >
{

public Bi tF l i pLo ca l i t y (int b i tVec to rS i z e)
{

/∗ . . . ∗/
}

@Override
public int neighbourhoodSize (Trans i t ion< BitVector > t)
{

/∗ . . . ∗/
}

@Override
public Trans i t ion< BitVector >
getNeighbour (Trans i t ion< BitVector > t , int i)
{

/∗ . . . ∗/
}

}

Listing 1. Methods for class BitFlipLocality (implementation details omitted)

selection. We incorporate the acceptance policies of [9] as a generic parameter,
and provide the following policies (depicted in Fig. 3):

All Moves (AM) Unconditionally accepts all generated states.
Only Improving (OI) Accepts only states that improve on the objective value

of the previously generated state.
Improving and Equal (IE) As OI, but states of equal objective value are also

accepted.
Exponential Monte Carlo (EMC) A worsening move is accepted by this

policy with the probability of pt = e−
∆fu
C , where ∆f is the change in objec-

tive value in the t-th iteration, C is a counter for successive worsening moves
and u is the unit time (e.g., in minutes) that measures the duration of the
heuristic execution [16].

Simulated Annealing (SA) This policy accepts unimproving states with prob-

ability pt = e−
∆f/N
1−t/D , where ∆f is the change in objective value in the t-th

iteration, D is the maximum number of iterations and N is the maximum
possible �tness change [17], [18], [19].

Great Deluge (GD) A variant of the algorithm given in [20], this policy ac-
cepts states that are improving or equal relative to a dynamically-determined
value that is linearly interpolated from initial to optimal (or best-known)
values via the iteration count.

6 Hyperion - A Recursive Hyper-heuristic Framework

HyperheuristicFramework
:State

FrameworkA
:State

FrameworkB
:State

AcceptancePolicy
:State

 1

 1

OnlyImproving
:State

AllMoves
:State

ExponentialMonteCarlo
:State

GreatDeluge
:State

ImprovingAndEqual
:State

FrameworkC
:State

FrameworkD
:State

Metaheuristic
:State

Fig. 3. Frameworks and acceptance policies

The hillclimbing meta-heuristics implemented in Hyperion are combinato-
rial generalizations of the bitwise hillclimbing variants described in [21]. Each
hillclimber iteratively replaces the current solution (conditional upon the accep-
tance policy) with a solution chosen from the current neighborhood according
to a neighbor selection policy. Steepest Ascent Hillcimbing (SAHC) evaluates all
neighbors and chooses the one with the best objective value. In Random Muta-
tion Hill Climbing (RMHC), the selection policy is to choose a random neighbor.
Generalized Davis Hill Climbing (GDHC) is a generalization of Davis's random

bit climber, in which successive neighbour selections are determined by succes-
sive indices of a permutation function. Next Ascent Hillclimbing (NAHC) is
then given by instantiating GDHC with the identity permutation and RPHC is
GDHC with a random permutation function.

Other heuristic selection strategies implemented in [21] include Choice Func-
tion (CF) [4], Simple Random (SR) and Greedy (GR). CF is directly imple-
mented in Hyperion, SR is equivalent to RMHC and GR may be achieved by
instantiating IteratedLocalSearch with a BestNeighbour selection pol-
icy (optionally with stochastic tie-breaking). Other meta-heuristics implemented
within Hyperion include Reinforcement Learning [22] [23], Evolutionstrategië
[24], Tabu Search [25] and Ant-Cycle System [26]:

ReinforcementLearning (RL) Heuristics are ranked (ranking scores are con-
strained to a �xed range) with scores increasing or decreasing as a function
of the heuristic's performance.

Hyperion - A Recursive Hyper-heuristic Framework 7

Evolutionstrategië (ES) This is a population-based approach in which the
number of mutations applied to o�spring is an typically a function of some
aspect of parent state.

Tabu Search (TS) This restricts the local search neighbourhood by maintain-
ing a (potentially adaptive) mechanism for identifying prohibited transitions.

Ant Cycle System (ACS) This maintains a graph of solution components

which is repeatedly traversed by a collection of agents. Components from
each traversal are assembled into a complete solution in a problem-speci�c
manner.

Since ES is population-based, there is no entirely satisfactory way for it im-
plement the single-solution-based update method. We have elected to achieve
this by returning the best population member encountered so far and treating
the input from state as a hint for conditionally reseeding the population. TS is
parameterized by a TabuPolicy in a similar manner to HotFrame, since de-
sign investigation of a variety of alternative tabu policy signatures revealed that
the HotFrame approach was the most loosely-coupled of all the alternatives
considered. For each of these meta-heuristics, except ACS, the neighborhood is
speci�ed via a Locality parameter. In [9], hillclimbers feature as both meta-
heuristics and hyper-heuristics, but are implemented separately in each case.
By contrast, Hyperion facilitates the creation of hyper-heuristics from existing
meta-heuristics via the Hyperlocality specialization of RandomAccessLo-
cality. By adapting a sequence of heuristics into a locality, a Hyperlocality
(listing 2) allows the same algorithm implementation to be used in either case.
Listing 3 shows the use of Hyperlocality to recursively instantiate a collection
of hillclimbers.

The four frameworks described by Özcan et al. are shown in Fig. 3 in the
context of hyperion and the detail of their internal operation is given in Fig. 4.
In these frameworks, primitive heuristics and hillclimbers (or more generally in
Hyperion, meta- or hyper- heuristics) can be partitioned into separate groups.
If we denote the application of a framework-selected primitive heuristic by h,
a framework-selected higher-order (i.e. meta- or hyper-) heuristic by H and a
predetermined higher-order heuristic by P , then the operation of a single invo-
cation of the update method on these these frameworks can be described by the
following grammar:

FA ::= h|H
FB ::= hP |H
FC ::= hP

FD ::= hH

The underlying idea is that this pattern of interaction between primitive and
higher-order heuristics will promote solution diversity [9].

8 Hyperion - A Recursive Hyper-heuristic Framework

public f ina l class Hyper loca l i ty< State >
extends RandomAccessLocality< State >
{

private List< Metaheur i s t i c< State > > meta−h e u r i s t i c s ;

public Hype r l o ca l i t y (Li s t< Metaheur i s t i c< State > > mh)
{

this . meta−h e u r i s t i c s = mh;
}

@Override
public Trans i t ion< State >
getNeighbour (Trans i t ion< State > t , int index)
{

return meta−h e u r i s t i c s . get (index) . update (t) ;
}

@Override
public int neighbourhoodSize (Trans i t ion< State > s)
{

return meta−h e u r i s t i c s . s i z e () ;
}

}

Listing 2. Methods for class Hyperlocality

Hyperion - A Recursive Hyper-heuristic Framework 9

public f ina l class HyperHi l l c l imber s
{

public stat ic < State >
List< Metaheur i s t i c< State > >
i n s t a n t i a t e (RandomAccessLocality< State > l o c a l i t y ,

int recurs ionDepth)
{

i f (recurs ionDepth < 0)
throw new I l l ega lArgumentExcept ion () ;

else i f (recurs ionDepth == 0)
return g e tH i l l c l imb e r s (l o c a l i t y) ;

else

{
List< Metaheur i s t i c< State > > lm = i n s t a n t i a t e (

l o c a l i t y , recurs ionDepth − 1) ;
return g e tH i l l c l imb e r s (new Hyper loca l i ty< State >(lm)

) ;
}

}

///////////////////////////////

private stat ic < State >
List< Metaheur i s t i c< State > >
ge tH i l l c l imb e r s (RandomAccessLocality< State > l o c a l i t y)
{

Lis t< Metaheur i s t i c< State >
> r e s u l t = new ArrayList< Metaheur i s t i c< State > >() ;

r e s u l t . add (new SAHC< State >(l o c a l i t y)) ;
r e s u l t . add (new RMHC< State >(l o c a l i t y)) ;
r e s u l t . add (new NAHC< State >(l o c a l i t y)) ;
r e s u l t . add (new RPHC< State >(l o c a l i t y)) ;
return r e s u l t ;

}
}

Listing 3. Recursive instantiation of hyper-hillclimbers

10 Hyperion - A Recursive Hyper-heuristic Framework

Hyper-heuristic

Problem Domain

Mutational

heuristics

Hill-climbing

heuristics

Low level

heuristics

Hyper-heuristic

Problem Domain

Mutational

heuristics

Hill-climbing

heuristics

Low level

heuristics

select select

If a mutational

heuristic is

selected

Apply HC

Hyper-heuristic

Problem Domain

Mutational

heuristics

Low level

heuristics

select

Apply HC

Hyper-heuristic1

Problem Domain

Mutational

low level

heuristics

Hill-climbing

low level

heuristics

select

and apply

Hyper-heuristic2

select

and apply

FRAMEWORKA FRAMEWORKB FRAMEWORKC FRAMEWORKD

Fig. 4. Internal operation of top-level frameworks

3.1 Design-space of Hyper-heuristics

In [8], Burke et al. describe a design space for hyper-heuristics that has two or-
thogonal dimensions. The �rst dimension represents selection versus generation
and the second the source of feedback during learning (online,o�ine or none).
Both dimensions are further partitioned by the nature of the search space (con-
structive or pertubative). If we instantiate Hyperion with State taken to be
some representation of solution state S, then this corresponds to selective hyper-
heuristics. If instead we take State to be some type representing the mapping
S → S, then this corresponds to generative hyper-heuristics. The only explicitly
constructive heuristic implemented in Hyperion is ACS, which is additionally
parameterized by Node and Link types, representing the vertices and edges of
the graph of partial solutions traversed by the agents of the ACS. If we employ
ACS as a hyperheuristic over some complete solution state, then a path in the
graph of partial solutions corresponds to a sequence of lower-level heuristics and
an adaptor function is used to yield the resulting complete solution state via
by the sequential application of these heuristics to the from state. In general
therefore, heuristics may be considered as constructive or perturbative as re-
quired, employing adaptors as necessary for interoperability with other solution
representations. By virtue of this modularity of decomposition, Hyperion facil-
itates a wide variety of hyperheuristic strategies. In particular, the approaches
adopted in [27], [28] and [29] may all be considered as speci�c con�gurations of
Hyperion components.

Hyperion - A Recursive Hyper-heuristic Framework 11

3.2 Application to SAT

We illustrate the use of the framework classes via application to the well-known
boolean satis�ability problem (SAT). The palette of meta-heuristics is obtained
from some class MyMetaheuristics, which is identical to code for the hyperhill-
climbers described in listing 3, together with an instantiation of simulated an-
nealing that has a geometric annealing schedule in which the parameters are
dynamically determined by sampling the state-space [30]. The client-code for
applying `Framework A' to the SAT domain using a simple heuristic measure of
the number of unsatis�ed clauses is given in listing 4. Table 1 gives the average
heuristic values obtained from 100 applications of this framework to the �rst 20
instances of the 3-SAT uf20-91 SATLIB problem set (http://www.cs.ubc.ca/
~hoos/SATLIB/benchm.html) [31]. All instances have 20 variables and 91 clauses
and are known to be satis�able. RPHC can be seen to give better average per-
formance in all cases, but if we consider the percentage of cases that are actually
solved (as given in the bottom row of Table 1), we see that SAHC converges in
the highest number of cases and RPHC gives the second worst performance.

Problem instance RPHC RMHC SAHC SA NAHC

uf20-01.cnf 2.96 4.36 6.85 8.42 11.54
uf20-02.cnf 3.14 4.16 6.08 7.09 9.84
uf20-03.cnf 3.37 4.99 7.56 9.24 12.35
uf20-04.cnf 3.23 5.27 8.11 10.0 13.67
uf20-05.cnf 3.84 5.75 9.13 10.97 15.32
uf20-06.cnf 3.29 5.0 7.35 9.02 12.37
uf20-07.cnf 2.91 3.93 5.55 6.78 9.07
uf20-08.cnf 3.07 4.7 6.89 8.32 11.2
uf20-09.cnf 3.07 4.71 6.84 8.41 11.88
uf20-010.cnf 2.76 4.19 6.16 7.49 10.23
uf20-011.cnf 2.9 3.76 5.84 6.81 9.88
uf20-012.cnf 2.2 2.82 4.38 4.96 7.33
uf20-013.cnf 3.42 5.24 7.82 9.79 13.17
uf20-014.cnf 2.92 4.4 6.68 8.2 11.29
uf20-015.cnf 2.67 3.71 5.49 6.49 9.2
uf20-016.cnf 2.82 4.12 6.26 7.53 10.34
uf20-017.cnf 2.55 3.94 5.75 7.2 9.76
uf20-018.cnf 3.56 5.65 8.64 10.69 14.6
uf20-019.cnf 3.28 5.26 7.85 9.67 13.17
uf20-020.cnf 3.21 4.66 7.06 8.54 12.0

percentage solved 3.7% 8.55% 10.35% 8.25% 2.9%
Table 1. Average heuristic values obtained over 100 runs of 3-SAT instances

12 Hyperion - A Recursive Hyper-heuristic Framework

package hyper ion . benchmarks . sa t ;

public f ina l class RunSAT
{

stat ic f ina l int NUM_ITERATIONS = 100000;
stat ic f ina l int HYPERHEURISTIC_NESTING_LEVEL = 0 ;
// ^ ne s t i n g l e v e l 0 i n s t a n t i a t e s _meta_ h e u r i s t i c s

public stat ic void main (St r ing [] a rgs) throws IOException
{

St r ing f i leName = " r e s ou r c e s /uf20−91/uf20 −0102. cn f " ;
CNF cnf = ReadCNF. readDIMACS(f i leName) ;
ObjectiveFn<BitVector> heur i s t i cFn = new

NumUnsatis f iedClauses (cn f) ;
L i s t< Metaheur i s t i c<BitVector> > hype rh eu r i s t i c s =

MyMetaheurist ics . i n s t a n t i a t e (
new Bi tF l i pLo ca l i t y (cn f . getNumVariables ()) ,

HYPERHEURISTIC_NESTING_LEVEL) ;

BitVector i n i t i a l = new BitVector (cn f . getNumVariables ()) ;
AcceptancePol icy<BitVector> acceptance = new AllMoves<

BitVector >() ;
for (Metaheur i s t i c<BitVector> a lg : h yp e r h eu r i s t i c s)
{

FrameworkA<BitVector> framework = new FrameworkA<
BitVector >(
alg ,
acceptance ,
NUM_ITERATIONS) ;

BitVector r e s u l t= framework . apply (i n i t i a l , h eu r i s t i cFn) ;
int value = heur i s t i cFn . valueOf (r e s u l t) ;
System . out . p r i n t l n (" a lg : " + a lg + " , va lue : " + value) ;

}
}

}

Listing 4. Client code for SAT solver

Hyperion - A Recursive Hyper-heuristic Framework 13

4 Conclusion and Future Work

We have presented an object-oriented analysis of the hyper-heuristic domain,
incorporating generic versions of the decomposition given in [9] to produce a
JavaTM implementation (available from http://hyperion-java.sourceforge.

net) that recursively aggregates local search neighborhoods to generate hyper-
heuristics from meta-heuristics without the necessity for source-code duplication.
In addition, it is possible to combinatorially instantiate hyper-heuristics from
collections of policy components, with the additional possibility that instantia-
tion can recurse over available meta-heuristics to some dynamically-determined
depth.

Recursion is thus of value as a facility for source code re-use. In addition, by
altering the given examples of recursive instantiation to make a stochastic choice
of lower-level (hyper-)heuristics, Hyperion can also be considered as a gener-
ation mechanism for strongly-typed genetic programming [32] in the domain of
hyper-heuristics. Future work includes an investigation of the e�ect of recursion
depth in the context of building-blocks in `hierarchical i�' functions [33]. There
are also a number of aspects of the current framework implementation that we
believe could be improved upon. As discussed above, single-state and population-
based meta-heuristics do not interoperate in an entirely satisfactory manner. A
more loosely-coupled scheme for mediating interactions between heuristics is cur-
rently under development. Another signi�cant improvement would be a change
in the level of abstraction from that of local search neighborhoods to local search
frames, the analogy being with stack frames in a conventional programming lan-
guage. A frame encapsulates an algorithm instantiated over a locality and comes
equipped with a parameter schema detailing not only the set of permissible pa-
rameter values but also other information pertinent to searching the parameter
space (e.g. whether �rst or second derivatives exist for a parameter).

References

1. H. Fisher, G. L. Thompson, Probabilistic learning combinations of local job-shop
scheduling rules, in: J. F. Muth, G. L. Thompson (Eds.), Industrial Scheduling,
Prentice-Hall, Inc, New Jersey, 1963, pp. 225�251.

2. W. Crowston, F. Glover, G. Thompson, J. Trawick, Probabilistic and parameter
learning combinations of local job shop scheduling rules, ONR Research Memoran-
dum, GSIA, Carnegie Mellon University, Pittsburgh, 117 (1963).

3. J. Denzinger, M. Fuchs, M. Fuchs, High Performance ATP Systems by combining
several AI Methods, in: Proceedings of the 4th Asia-Paci�c Conference on SEAL,
IJCAI, 1997, pp. 102�107.

4. P. I. Cowling, G. Kendall, E. Soubeiga, A Hyperheuristic approach to Scheduling a
Sales Summit, in: PATAT '00: Selected papers from the Third International Con-
ference on Practice and Theory of Automated Timetabling III, Springer-Verlag,
London, UK, 2001, pp. 176�190.

5. E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. R. Wood-
ward, Exploring Hyper-heuristic Methodologies with Genetic Programming, in:

14 Hyperion - A Recursive Hyper-heuristic Framework

J. Kacprzyk, L. C. Jain, C. L. Mumford, L. C. Jain (Eds.), Computational Intelli-
gence, Vol. 1 of Intelligent Systems Reference Library, Springer Berlin Heidelberg,
2009, pp. 177�201.

6. P. Ross, Hyper-heuristics, in: E. K. Burke, G. Kendall (Eds.), Search Method-
ologies: Introductory Tutorials in Optimization and Decision Support Techniques,
Springer, 2005, Ch. 17, pp. 529�556.

7. E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-
heuristics: An emerging direction in modern search technology, in: F. Glover,
G. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer, 2003, pp. 457�474.

8. E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. R. Woodward, A
classi�cation of hyper-heuristic approaches, in: M. Gendreau, J.-Y. Potvin (Eds.),
Handbook of Metaheuristics, Vol. 146 of International Series in Operations Re-
search and Management Science, Springer US, 2010, pp. 449�468.

9. E. Özcan, B. Bilgin, E. E. Korkmaz, A comprehensive analysis of hyper-heuristics,
Intell. Data Anal. 12 (1) (2008) 3�23.

10. K. Czarnecki, U. Eisenecker, Generative Programming: Methods, Tools, and Ap-
plications, Addison-Wesley Professional, 2000.

11. A. Fink, S. Voÿ, Hotframe: A heuristic optimization framework, in: S. Voÿ,
D. Woodru� (Eds.), Optimization Software Class Libraries, OR/CS Interfaces Se-
ries, Kluwer Academic Publishers, Boston, 2002, pp. 81�154.

12. L. D. Gaspero, A. Schaerf, Easylocal++: An Object-oriented Framework for the
�exible design of Local-Search Algorithms, Softw., Pract. Exper. 33 (8) (2003)
733�765.

13. C. Voudouris, R. Dorne, D. Lesaint, A. Liret, iOpt: A Software Toolkit for Heuris-
tic Search Methods, in: T. Walsh (Ed.), Principles and Practice of Constraint
Programming CP 2001, Vol. 2239 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2001, pp. 716�729.

14. E. K. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S. Petrovic, J. A.
Vazquez-Rodriguez, HyFlex: A Flexible Framework for the Design and Analy-
sis of Hyper-heuristics, in: Multidisciplinary International Scheduling Conference
(MISTA 2009), Dublin, Ireland, Dublin, Ireland, 2009, pp. 790�797.
URL http://www.asap.cs.nott.ac.uk/publications/pdf/MISTA09HyFlex.pdf

15. E. Gamma, R. Helm, R. E. Johnson, J. M. Vlissides, Design patterns: Abstraction
and reuse of object-oriented design, in: ECOOP '93: Proceedings of the 7th Euro-
pean Conference on Object-Oriented Programming, Springer-Verlag, London, UK,
1993, pp. 406�431.

16. M. Ayob, G. Kendall, A monte carlo hyper-heuristic to optimise component place-
ment sequencing for multi head placement machine, in: Proceedings of the Interna-
tional Conference on Intelligent Technologies (InTech'03), Chiang Mai, Thailand,
2003, pp. 132�141.

17. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing,
Science 220 (1983) 671�680.

18. R. Bai, G. Kendall, An investigation of automated planograms using a simulated
annealing based hyper-heuristics, in: T. Ibaraki, K. Nonobe, M. Yagiura (Eds.),
Metaheuristics: Progress as Real Problem Solver, Springer, 2005, pp. 87�108.

19. E. Burke, G. Kendall, M. Misir, E. Özcan, Monte carlo hyper-heuristics for exam-
ination timetabling, Annals of Operations Research (2010) 1�1810.1007/s10479-
010-0782-2.

20. G. Dueck, New optimization heuristics: The great deluge algorithm and the record-
to record travel, Journal of Computational Physics 104 (1993) 86�92.

Hyperion - A Recursive Hyper-heuristic Framework 15

21. M. Mitchell, J. H. Holland, When will a genetic algorithm outperform hill climb-
ing?, in: Proceedings of the 5th International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993, p. 647.

22. L. P. Kaelbling, M. L. Littman, A. P. Moore, Reinforcement learning: A survey, J.
Artif. Intell. Res. (JAIR) 4 (1996) 237�285.

23. E. Özcan, M. Misir, G. Ochoa, E. Burke, A reinforcement learning - great-
deluge hyper-heuristic for examination timetabling, International Journal of Ap-
plied Metaheuristic Computing (2010) 39�59.

24. M. Herdy, Application of the evolutionsstrategie to discrete optimization problems,
in: H.-P. Schwefel, R. Männer (Eds.), Parallel Problem Solving from Nature I, Vol.
496 of Lecture Notes in Computer Science, Springer-Verlag, 1991, pp. 188�192.

25. F. Glover, Tabu Search - Part I, INFORMS Journal on Computing 1 (3) (1989)
190�206.

26. M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press, 2004.
27. J. C. Ortiz-Bayliss, E. Özcan, A. J. Parkes, H. Terashima-Marin, Mapping the

performance of heuristics for constraint satisfaction, 2010, pp. 1�8.
28. M. Hyde, E. Özcan, E. K. Burke, Multilevel search for evolving the acceptance

criteria of a hyper-heuristic, in: Proceedings of the 4th Multidisciplinary Int. conf.
on Scheduling: Theory and Applications, 2009, pp. 798�801.

29. E. Ersoy, E. Özcan, c. Uyar, Memetic algorithms and hyperhill-climbers, in: P. Bap-
tiste, G. Kendall, A. M. Kordon, F. Sourd (Eds.), 3rd Multidisciplinary Int. Conf.
On Scheduling: Theory and Applications, 2007, pp. 159�166.

30. S. White, Concepts of scale in simulated annealing, in: Proc. Int'l Conf. on Com-
puter Design, 1984, pp. 646�651.

31. H. H. Hoos, T. Stützle, SATLIB: An online resource for research on SAT, In:
I.P.Gent, H.v.Maaren, T.Walsh, editors, SAT 2000, SATLIB is available online at
www.satlib.org (2000).

32. D. J. Montana, Strongly typed genetic programming, Evolutionary Computation
3 (2) (1995) 199�230.

33. D. Iclanzan, D. Dumitrescu, Overcoming hierarchical di�culty by hill-climbing the
building block structure, in: GECCO '07: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, ACM, New York, NY, USA, 2007, pp.
1256�1263.

