A Hyper-heuristic based on Random Gradient,
Greedy and Dominance

Ender Ozcan and Ahmed Kheiri

University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
exo, axk@cs.nott.ac.uk

Abstract. Hyper-heuristics have emerged as effective general method-
ologies that are motivated by the goal of building or selecting heuristics
automatically to solve a range of hard computational search problems
with less development cost. HyFlex is a publicly available hyper-heuristic
tool for rapid development and research which provides an interface to
four problem domains along with relevant low level heuristics. A multi-
stage hyper-heuristic based on random gradient and greedy with domi-
nance heuristic selection methods is introduced in this study. This hyper-
heuristic is implemented as an extension to HyFlex. The empirical results
show that our approach performs better than some previously proposed
hyper-heuristics over the given problem domains.

1 Introduction

Hyper-heuristics represent a class of search methodologies which explore the
space of heuristics rather than the space of solutions, directly. There are two
main types of hyper-heuristic methodologies in literature: methodologies to se-
lect or generate heuristics [1]. The main goal in this line of research is to raise
the level of generality by providing hyper-heuristic solution methodologies that
are applicable to different problem domains without requiring any additional
development cost. A selection hyper-heuristic is a high level problem solving
framework that can select and apply an appropriate low-level heuristic at each
decision point, given a particular problem instance and a number of low-level
heuristics. This study focusses on the selection hyper-heuristics.

Cowling et al. [2] presented a variety of selection hyper-heuristics embed-
ding simple heuristic selection methods, such as Random Descent (Gradient),
Greedy and a sophisticated one, namely Choice Function. Random Descent se-
lects a low level heuristic randomly and applies it as long as the solution is
improved. If the solution worsens, then another low level heuristic is selected
and the same process is repeated. Greedy applies all low level heuristics to the
candidate solution and selects a heuristic, hence a solution which provides the
best quality. The new solution could be still worse than the current solution. The
authors reported the success of a learning hyper-heuristic; namely, Choice Func-
tion. Greedy also showed some potential. The peckish heuristic selection methods



2 Ender Ozcan and Ahmed Kheiri

attempt to reduce the number of low level heuristics either using an online or
an offline mechanism. Cowling et al. [3] suggested a Tabu Search based hyper-
heuristic that utilised a list to disallow the use of low level heuristics generating
worsening results. More on hyper-heuristics can be found in [1].

To the best knowledge of authors, there are two publically available hyper-
heuristic tools: Hyperion [4] and Hyflex [5]. Hyperion provides a general recursive
framework for the development of hyper-heuristics (or metaheuristics), support-
ing the selection hyper-heuristic frameworks provided in [6]. Hyflex provides
reusable hyper-heuristic (meta-heuristic) components, having a support for the
problem domains of Boolean Satisfiability (MAX-SAT), One Dimensional Bin
Packing, Permutation Flow Shop (PFS) and Personnel Scheduling (PS) each
with ten different instances and a set of low-level heuristics. Burke et al. [7] in-
vestigated the performance of a range of selection hyper-heuristics implemented
as part of HyFlex. This was a proof of concept study for CHeSC: Cross-Domain
Heuristic Search Competition !. The best selection hyper-heuristic will be de-
termined among CHeSC competitors which generalises the best across a set of
problem instances from different problem domains. Burke et al. [7] reported that
the best performing hyper-heuristic was an iterated local search approach.

This study describes a multistage selection hyper-heuristic. The proposed
hyper-heuristic is implemented based on HyFlex. Either Greedy or Random
Gradient heuristic selection method is used as a heuristic selection method at any
stage. Therefore, each stage will be referred to as Greedy or Random Gradient
stage depending on the heuristic selection method used. Heuristic selection is
followed by a Naive move acceptance (NV) strategy [7] to decide whether to
accept or reject the new solution considering its quality. The performance of the
proposed hyper-heuristic is tested over these problem domains and compared
against some previous approaches.

2 Methodology

Figure 1 provides the pseudocode of the proposed hyper-heuristic. The mul-
tistage selection hyper-heuristic mechanism starts with a Greedy stage. The
Greedy heuristic selection method allows all the low level heuristics to process
a given candidate solution successively for a number of steps to build a List
of Active Heuristics (LAH) in the Greedy stage. LAH is a list of the low level
heuristics that are expected to perform relatively well. This is an opposite strat-
egy employed by the Tabu Search based hyper-heuristic [3] which utilises a list
to disallow the use of low level heuristics generating worsening results. In the
first step of the Greedy stage, LAH contains all low level heuristics. The Greedy
heuristic selection method combined with a dominance based strategy is used
to reduce the number of active heuristics for the next stage. The Greedy stage
is always followed by a Random Gradient stage. The best solution found during
the Greedy stage is used as the current solution to be processed by the Ran-
dom Gradient stage. In this stage, Random Gradient heuristic selection method

! http://www.asap.cs.nott.ac.uk/chesc2011/



A Hyper-heuristic based on Random Gradient, Greedy and Dominance 3

picks a low level heuristic from LAH randomly and applies it to the solution
in hand repeatedly until there is no improvement. In the case of obtaining a
non-improving solution, the hyper-heuristic will go into the Random Gradient
stage again without accepting the new solution with a probability of Pj; or it
will go into the Greedy stage for updating the list of active heuristics with a
probability of P,; or it will accept the non-improving solution with a probabil-
ity of (1—P;—P,) and continue with the Random Gradient stage. The following
parts explain how the stages interact in more details.

Framework(Parameter: S;,;tq1; Ps and P, € [0, 1])

S = Sinitiat; f = Evaluate(S); L = BuildLAH(); LLH = Select RandomlyFrom(L)
while (TtmeLimitN ot Reached)
S’ = ApplyHeuristic(LLH, S)
f' = Evaluate(S")
if (f' does not improve f) then
r = generateUni formRandomNumberIn(0,1)
if (r < Py)
LLH = SelectRandomlyFrom(L); P, =0
else if (r < Ps + P,)
L = UpdateLAH(); LLH = SelectRandomlyFrom(L); P, =0

else P,=1
S = NaiveMoveAcceptance(P,, S, S")
return {S}

Fig. 1. Pseudocode of the dominance based selection hyper-heuristic.

In the Greedy stage, the Greedy heuristic selection method is employed for n
successive steps. The best performing heuristics are determined using a strategy
inspired from the concept of Pareto Front [8] in multi-objective optimisation.
Given a set of k low level heuristic points LLH={LLH, LLH>, ..., LLH}} in 2-
dimensional space, each represented by its z (Step) and y (Fitness) coordinates.
At each step, the fitness of each solution generated by the corresponding low
level heuristic is calculated. Well performing low level heuristics that have the
potential to improve within the n steps are those points that are not dominated
by any other point. A low level heuristic may make a small improvement in the
solution taking a short time and performance-wise this is as good as a heuristic
which improves a solution more taking a longer time. Assuming a minimisation
problem where we are seeking for the low level heuristics that generate minimum
fitness, a point LLH; is considered to be dominated by point LLHj; if and only
if (LLH,; , > LLH;,) and (LLH;, > LLH; ).

Figure 2 shows an example on how to build the list of active heuristics for
(k=5) low level heuristics. Note that in the Figure, LLH5 has been added three
times to the list and that makes this heuristic to be selected with higher prob-



4 Ender Ozcan and Ahmed Kheiri

ability. Note also that in Stepl, LLH> and LLH3 have been both added to the
list, since they have the same fitness value and they are not dominated by any
other point.

’ Applying Greedy n times ‘

R

>

Fitness
@
‘ @
-
=
=
\
\
\
\
\
\
\
\
T
\ \
o
o
Vo
\
|
T
|
|
1
! /’
’
/ /
/
/
-

Fitness(LLH2&3)

-
-
-
-
Mo, P / /
|y tumy -7 L/ LLH2
&3 e ’ s
TN -
X |- % =
| N , [ LLH2 |
N 7/ , S
—— = —=-=A BN ’ . ‘
N , 1/
- ~ /

Fitness(LLH2) -

|

1

| ~ T

| <] | / " LLH2

[z, i ‘

} } N ’Dp ’ &

| ! ~~Log, ’

| | J

! ! e LAH

| ! S N

! -

| | e -
Step(LLH2&3)| < | Step(LLH2) i

Stepl Step2 Step3 Step4 StepN

Fig. 2. An illustration showing how the list of active heuristics is built.

As there is a limited time to find the best fitness, the value of n depends
on the time of applying Greedy method in one step. n decreases when the time
needed to apply the Greedy method was high. An exponential function has been
considered to find n, where zero is a possible value. However, in case of n equals
zero, then the list of active heuristics will contain the whole k low level heuristics.
The value of n will be calculated before starting the main loop and it should be
an integer value. n = Ae~/®) where A is the maximum possible value of n. f(t)
is the total time of applying Greedy method for one step divided by the limited
time that required to complete the whole process; the total time of applying
Greedy method for one step equals the summation of the time required to apply
each low level heuristic on a given candidate solution: The goal of this stage
is to improve the solution at hand as much as possible turning the framework
into a hill climber. A low level heuristic is selected randomly from the list of
active heuristics, created during the Greedy stage, and applied repeatedly until
no improvement is achieved. The Naive move acceptance [7] is used as the move
acceptance strategy which accepts all improving moves. In case of non-improving
move (P, = 1), the solution accepted with a probability of (1—Ps—P,); other-
wise, the solution remains unchanged (P, = 0).



A Hyper-heuristic based on Random Gradient, Greedy and Dominance 5

3 Empirical Results

The proposed hyper-heuristic performance is compared to the performances of
eight different hyper-heuristics (HH1-HHS) as provided at the competition web-
site and in [7]. It is put into a mock competition against these eight hyper-
heuristics based on the Formulal scoring system. The best hyper-heuristic gets
10 points, the second gets 8, and then 6,5,4,3,2,1 and then all the remaining get
no point. These points are accumulated as a score for a hyper-heuristic over all
instances from four problem domains each with ten instances.

The parameter values are chosen as A=9, P;=0.50 and P,=0.25. These values
are decided after a set of exhaustive experiments using different combinations of
values which is not reported in this paper due to space requirements. A single
run is performed using each problem instance. The experiments were performed
on an i3 CPU M330 at 2.13GHz with a memory of 4.00GB. A run terminates
after 946 seconds as the competition requires. This value is obtained using the
benchmarking tool provided at the competition website

In the MAX-SAT problem domain, our hyper-heuristic produces the best
result in 3 out of 10 instances and there is a tie in 2 instances. It is the best
hyper-heuristic in this domain. In the bin packing problem domain, our hyper-
heuristic performs still well, but in the personnel scheduling and permutation
flow shop problems, its performance is not as good as expected. It is observed
that mostly, hill climbing heuristics are chosen. Table 1 summarises the results
for each problem domain. The proposed hyper-heuristic performs better than
the previously proposed hyper-heuristics in the Max SAT and 1D Bin Packing
problem domains and worse in the rest of the domains. In the overall, our hyper-
heuristic ranks the first with a score of 249.0.

Table 1. Comparisons of the different hyper-heuristics over each domain based on
Formulal scores. The best values are highlighted in bold.

Domain HH1|HH2 |HH3 | HH4 |HH5 HH6 | HH7 | HHS8 | PHH
MAX-SAT 37.0|67.5]47.0|35.5| 0.0 | 64.0|42.0| 2.0 | 85.0
1D Bin Packing 37.0]38.0]80.0|63.0|0.0(59.0|21.0| 0.0 | 82.0

Personnel Scheduling [63.0]61.0 | 14.0 | 54.0 {36.5| 0.0 | 61.0 | 33.5| 57.0
Permutation Flow Shop| 33.5|28.0 | 24.5|74.0 | 7.0 {84.0| 30.0 | 74.0 | 25.0
Overall 170.5{194.5{165.5(226.543.5 {207.0{154.0({109.5|249.0

4 Conclusion

In this study, a multistage selection hyper-heuristic combining two heuristic se-
lection methods and a Naive move acceptance method is described. Greedy with
dominance and Random Gradient are used as the heuristic selection methods in



6 Ender Ozcan and Ahmed Kheiri

an alternating manner at successive stages. Greedy aims to detect the low level
heuristics with good performance and maintains a list of active heuristics consid-
ering the trade-off between the change (improvement) in the solution quality and
the number of steps taken. If a heuristic takes a large number of successive steps
and generating a large improvement in the solution quality, the performance of
this heuristic is considered to be similar to the one which takes less number of
successive steps and improves the solution quality less as well. Random Gradient
selects from the (possibly) reduced set of low level heuristics to improve the solu-
tion in hand at each step. Whenever the search by Random Gradient stagnates,
then the Greedy stage may restart for detecting new list of active heuristics.
This is a viable strategy considering that at different points during the search,
different heuristics may be performing well. The experimental results show that
our hyper-heuristic is a general methodology and performs better than eight
previously proposed hyper-heuristics based on their overall rankings considering
all problem instances from four different domains.

References

1. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-heuristics:
A survey of the state of the art. School of Computer Science and Information
Technology, University of Nottingham, Computer Science Technical Report No.
NOTTCS-TR-SUB-0906241418-2747 (2010)

2. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a
sales summit. In: Selected papers from the Third International Conference on Prac-
tice and Theory of Automated Timetabling, London, UK, Springer-Verlag (2001)
176-190

3. Cowling, P., Chakhlevitch, K.: Hyperheuristics for managing a large collection of
low level heuristics to schedule personnel. In: Proceedings of the 2003 Congress on
Evolutionary Computation. (2003) 1214-1221

4. Swan, J., Ozcan, E., Kendall, G.: Hyperion - a recursive hyper-heuristic framework.
In Coello, C.A.C., ed.: Learning and Intelligent Optimization, 5th International
Conference, LION 5. LNCS (2011)

5. Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-
Rodriguez, J.: Hyflex: A flexible framework for the design and analysis of hyper-
heuristics. In: Proceedings of the Multidisciplinary International Scheduling Con-
ference (MISTAO09). (2009) 790-797

6. ézcan, E., Bilgin, B., Korkmaz, E.: A comprehensive analysis of hyper-heuristics.
Intelligent Data Analysis (2008) 3-23

7. Burke, E.K., Curtois, T., Hyde, M.R., Kendall, G., Ochoa, G., Petrovic, S.,
Rodriguez, J.A.V., Gendreau, M.: Iterated local search vs. hyper-heuristics: To-
wards general-purpose search algorithms. In: IEEE Congress on Evolutionary Com-
putation. (2010) 1-8

8. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction
of test problems. Evolutionary Computation 7 (1999) 205-230



