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Abstract Determining the best initial parameter values for an algorithm, called pa-
rameter tuning, is crucial to obtaining better algorithm performance; however, it is
often a time-consuming task and needs to be performed under a restricted computa-
tional budget. In this study, the results from our previous work on using the Taguchi
method to tune the parameters of a memetic algorithm for cross-domain search are
further analysed and extended. Although the Taguchi method reduces the time spent
finding a good parameter value combination by running a smaller size of experi-
ments on the training instances from different domains as opposed to evaluating all
combinations, the time budget is still larger than desired. This work investigates the
degree to which it is possible to predict the same good parameter setting faster by
using a reduced time budget. The results in this paper show that it was possible to
predict good combinations of parameter settings with a much reduced time budget.
The good final parameter values are predicted for three of the parameters, while for
the fourth parameter there is no clear best value, so one of three similarly performing
values is identified at each time instant.

1 Introduction

Many real-world optimisation problems are too large for their search spaces to be
exhaustively explored. In this research we consider cross-domain search where the
problem structure will not necessarily be known in advance, thus cannot be lever-
aged to produce fast exact solution methods. Heuristic approaches provide poten-
tial solutions for such complex problems, intending to find near optimal solutions
in a significantly reduced amount of time. Metaheuristics are problem-independent
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methodologies that provide a set of guidelines for heuristic optimization algorithms
[19]. Among these, memetic algorithms are highly effective population-based meta-
heuristics which have been successfully applied to a range of combinatorial optimi-
sation problems [2, 9, 11, 12, 15]. Memetic algorithms, introduced by Moscato [13],
hybridise a genetic algorithm with a local search method to improve the intensifi-
cation ability of the algorithm. Recent developments in memetic algorithms and
memetic computing, which broadens the concept of memes in problem solving, can
be found in [14]. Both the algorithm components and the parameter values need to
be specified in advance [18], however determining the appropriate components and
initial parameter settings (i.e., parameter tuning) to obtain high quality solutions can
take a large computational time.

Hyper-heuristics are high-level methodologies which operate on the search space
of low-level heuristics rather than solutions directly [4], allowing a degree of do-
main independence where needed. This study uses the Hyper-heuristics Flexible
Framework (HyFlex) [16], which is an interface to enable the development, testing
and comparison of meta/hyper-heuristics. This was used in the first Cross-domain
Heuristic Search Challenge (CHeSC2011) [3] to detect the selection hyper-heuristic
which achieved the best median objective values across instances from multiple
problem domains.

In our previous work [7], the parameters of a memetic algorithm were tuned via
Taguchi method under restricted computational budget using limited number of in-
stances from several problem domains. The best parameter setting obtained through
the tuning process was observed to generalise well to unseen instances. A drawback
of the previous study was that even testing only the 25 parameter combinations in-
dicated by the L25 Taguchi orthogonal array, still takes a long time. In this study, we
further analyse and extend our previous work with an aim to assess whether we can
generalise the best setting sooner with a reduced computational time budget.

The structure of the rest of this paper is as follows: In Section 2, the HyFlex
framework is described. Our methodology is discussed in Section 3. The experi-
mental results and analysis are presented in Section 4. Finally, some concluding
remarks and our potential future work are given in Section 5.

2 Hyper-Heuristics Flexible Framework (HyFlex)

Hyper-heuristics Flexible Framework (HyFlex) is an interface proposed for the rapid
development, testing and comparison of both single point and population-based
meta/hyper-heuristics across different combinatorial optimisation problems [16].
There is a logical barrier in HyFlex between the high-level method and the prob-
lem domain layers, which prevents hyper-heuristics from accessing problem spe-
cific information [5]. Only problem independent information, such as the objective
function value of a solution, can pass to the high-level method [3].

HyFlex was used in the first Cross-domain Heuristic Search Challenge (CHeSC2011)
for the implementation of the competing hyper-heuristics. Twenty selection hyper-
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heuristics competed at CHeSC2011. Details about the competition, the competing
hyper-heuristics and the tools used can be found at the CHeSC website 1. The per-
formance comparison of some previously proposed selection hyper-heuristics in-
cluding one of the best performing ones can be found in [10].

Six problem domains were implemented in the initial version of HyFlex: Maxi-
mum Satisfiability (MAX-SAT), One Dimensional Bin Packing (BP), Permutation
Flow Shop (PFS), Personnel Scheduling (PS), Traveling Salesman (TSP) and Vehi-
cle Routing (VRP). Three additional problem domains were added by Adriaensen et
al. [1] after the competition: 0-1 Knapsack (0-1 KP), Max-Cut, and Quadratic As-
signment (QAP). Each domain contains a number of instances and problem specific
components.

Low-level heuristics (operators) are categorised in HyFlex as mutational, ruin
and re-create, crossover and local search [16]. Mutational heuristics make small
changes to the current solutions. Ruin and re-create heuristics partially destroy and
then recreate a complete solution. These are considered as mutation operators in this
study. Crossover heuristics take two solutions and combine them, producing a sin-
gle (offspring) solution. Local search (hill climbing) heuristics iteratively perform
a search within a certain neighbourhood to find an improved solution. Local search
and mutation/ruin and re-create heuristics all need parameter tuning. The intensity
of mutation parameter determines the extent of changes that the mutation or ruin
and re-create operators will make to the input solution. The depth of search parame-
ter controls the number of steps that the local search heuristic will complete. These
parameters take values in the interval [0,1].

3 Methodology

In evolutionary algorithms, an initial population of solutions is updated iteratively
using operators that mimic natural selection, such as mutation, recombination and
survival of the fittest [6]. The genetic algorithm, introduced by Holland [8], is the
most widely known evolutionary algorithm. Memetic algorithms hybridise genetic
algorithms with local search [13, 14]. In this study, a steady state memetic algorithm
(SSMA) is used to solve a range of problems supported by HyFlex, utilising the
mutation, crossover and local search heuristics already available in HyFlex.

Firstly, a population with the desired number of individuals specified by the value
of population size parameter is created using the HyFlex initialisation routine pro-
vided for each domain. As a part of the initialisation process, each generated in-
dividual is improved by applying a randomly selected local search operator. Two
parents are then selected from the population using tournament selection, select-
ing each by taking the best fitness individual from a randomly selected number of
individuals equal to the tournament size (tour size). A randomly chosen crossover
operator is then applied to those parents in order to create an offspring at each itera-

1 http://www.asap.cs.nott.ac.uk/external/chesc2011/
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tion. Although there are many crossover operators which create two offspring in the
scientific literature, the crossover operators in Hyflex always return only one off-
spring. This offspring then undergoes mutation and local search (hill climbing) pro-
cesses, successively. Again each operator is chosen at random. Finally, the resultant
solution replaces the worst individual in the current population. This evolutionary
process continues until the termination criterion is satisfied.

The Taguchi orthogonal arrays method [17] is employed to decide the most ap-
propriate parameter value combination for the steady state memetic algorithm for
the experiments. Firstly, control parameters and their potential values (levels) are de-
termined. Four algorithm parameters are selected for tuning: population size (Pop-
Size), tournament size (TourSize), intensity of mutation (IoM) and depth of search
(DoS). Five discrete settings of 0.2, 0.4, 0.6, 0.8, 1.0 are used as parameter levels
for the intensity of mutation and depth of search parameters. Five different popula-
tion sizes of 5, 10, 20, 40 and 80 are used. Finally, values of 2, 3, 4 and 5 are used
for the tour size. HyFlex ensures that these are problem independent parameters,
common across all of the problem domains. Based on the number of parameters and
levels, a suitable orthogonal array is selected to create a design table. Experiments
are conducted based on the design table using a number of ‘training’ instances from
selected domains and then the results are analysed to determine the optimum level
for each individual control parameter. The combination of the best values of each
parameter is predicted to be the best overall setting.

4 Experimentation and Results

In [7], experiments were performed with a number of configurations for SSMA us-
ing 2 training instances from 4 HyFlex problem domains. An execution time of 415
seconds was used as a termination criterion for those experiments, equivalent to 600
nominal seconds (10 nominal minutes) on the CHeSC2011 computer, making the
results comparable with those from the competition, as determined by the evalua-
tion program which was made available for the competition. Each configuration was
tested 31 times, the median values were compared and the top 8 algorithms were as-
signed scores using the (2003-2009) Formula 1 scoring system, awarding 10, 8, 6,
5, 4, 3, 2 and 1 point(s) for the best to the 8th best, respectively. The best configu-
ration was predicted to be IoM=0.2, DoS=1.0, TourSize=5 and PopSize=5, and this
was then applied to unseen instances from 9 domains and found to perform well for
those as well. A similar process was then applied to predict a good parameter con-
figuration across 5 instances from each of the 9 extended HyFlex problem domains,
and the same parameter combination was found, indicating some degree of cross-
domain value to the parameter setting. With 31 repetitions of 25 configurations, this
was a time-consuming process.

The aim of this study is to investigate whether a less time consuming analy-
sis could yield similar information. All 25 parameter settings indicated by the L25
Taguchi orthogonal array were executed with different time budgets, from 1 to



Tuning a Memetic Algorithm with Reduced Computational Time 5

10 minutes of nominal time (matching the CHeSC2011 termination criterion), the
Taguchi method was used to predict the best parameter configuration for each dura-
tion and the results were analysed. 2 arbitrarily chosen instances from each of the 6
original HyFlex problem domains were employed during the first parameter tuning
experiments.

Figure 1 shows the main effect values for each parameter level, defined as the
mean total Formula 1 score across all of the settings where the parameter took that
specific value. It can be seen that a population size of 5 has the highest effect in each
case during the 10 nominal minutes run time. Similarly, the intensity of mutation
parameter value of 0.2 performs well at each time. For the tour size parameter, 5 has
the highest effect throughout the search except at one point: at 10 nominal minutes,
the tour size of 4 had a score of 19.58 while tour size 5 had a score of 19.48, giving
very similar results. The best value for the depth of search parameter changes during
the execution; however, it is always one of the values 0.6, 0.8 or 1.0. 0.6 for depth
of search is predicted to be the best parameter value for a shorter run time.

Fig. 1 Main effects of parameter values at different times using 2 training instances from 6 problem
domains

Table 1 The percentage contribution of each parameter obtained from the Anova test for 6 problem
domains

par. \n.t.b. (min.) 1 2 3 4 5 6 7 8 9 10
IoM 37.6% 22.6% 28.8% 24.6% 28.2% 29.9% 32.4% 32.6% 34.1% 36.3%
DoS 14.8% 13.2% 9.3% 11.0% 9.5% 6.6% 6.3% 6.4% 5.4% 4.0%
PopSize 20.5% 34.0% 35.6% 38.2% 38.5% 38.3% 37.7% 39.4% 39.4% 35.1%
TourSize 10.7% 3.7% 3.2% 5.0% 2.8% 3.0% 2.0% 0.8% 0.8% 0.5%
Residual 16.3% 26.5% 23.0% 21.1% 21.0% 22.2% 21.5% 20.8% 20.2% 24.1%
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The analysis of variance (ANOVA) is commonly applied to the results in Taguchi
method to determine the percentage contribution of each factor [17]. This analysis
helps the decision makers to identify which of the factors need more control. Ta-
ble 1 shows the percentage contribution of each factor. It can be seen that intensity
of mutation and population size parameters have highest percentage contribution to
the scores. P-values lower than 0.05 means that the parameter is found to contribute
significantly to the performance with a confidence level of 95%. Table 2 shows the
p-values of the parameters at each time. The contribution of the PopSize parameter
is found to be significant in 6 out of 10 time periods, whereas the intensity of mu-
tation parameter contributes significantly in only 2 out of 10 time periods and the
contribution of the other parameters was not found to be significant.

In order to investigate the effect of Depth of Search (DoS) further, we increased
the number of domains considered to 9 (and thus used 18 training instances). The
main effects of the parameter values are shown in Figure 2 and Tables 3 and 4 show
the percentage contributions and p-values for each parameter. It can be observed
from Figure 2 that the best parameter value does not change over time for the Pop-
Size, TourSize and IoM parameters. The best parameter setting could be predicted
for these three parameters after only 1 nominal minute of run time. However, for
the depth of search parameter, the best setting indicated in [7] is found only when
the entire run time has been used. The best setting for DoS at different times still
changes between 0.6, 0.8 and 1.0. When all 9 domains are used, the number of times
that the parameters settings contribute significantly is increased. Again it seems that
the best setting for DoS depends upon the runtime, but the effect of the parameter is
much greater at the longer execution times with the addition of the new domains.

These three values combining with the best values of other parameters were then
tested separately on all 45 instances from 9 domains, with the aim of finding the
best DoS value on all instances. According to the result of experiments, each of
these three configurations found the best values for 18 instances (including ties),
considering their median performances over 31 runs. This indicates that these three
configurations actually perform similarly even though there are small differences
overall. Hence, using only one nominal minute and 2 instances from 6 domains was
sufficient to obtain the desired information about the best configuration, reducing
the time needed for parameter tuning significantly.

Table 2 The p-values of each parameter obtained from the Anova test for 6 domains. The param-
eters which contribute significantly are marked in bold.

par. \n.t.b. (min.) 1 2 3 4 5 6 7 8 9 10
IoM 0.019 0.191 0.090 0.105 0.078 0.077 0.060 0.054 0.045 0.060
DoS 0.171 0.406 0.497 0.384 0.450 0.633 0.635 0.614 0.669 0.825
PopSize 0.090 0.086 0.056 0.037 0.036 0.042 0.041 0.033 0.031 0.065
TourSize 0.188 0.746 0.741 0.568 0.757 0.749 0.836 0.945 0.947 0.977
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Fig. 2 Main effects of parameter values at different time using 2 training instances from 9 problem
domains

Table 3 The percentage contribution of each parameter obtained from the Anova test for 9 domains

par. \n.t.b. (min.) 1 2 3 4 5 6 7 8 9 10
IoM 27.7% 23.6% 24.0% 20.3% 26.3% 30.0% 39.1% 37.3% 43.4% 46.0%
DoS 7.1% 12.3% 9.6% 11.7% 12.4% 10.4% 10.1% 12.3% 12.5% 10.8%
PopSize 47.3% 44.5% 40.8% 38.2% 35.3% 35.6% 30.9% 28.3% 25.0% 25.5%
TourSize 8.5% 7.3% 9.9% 14.0% 8.9% 7.2% 4.8% 4.1% 3.2% 2.6%
Residual 9.4% 12.3% 15.7% 15.8% 17.1% 16.7% 15.1% 18.1% 15.9% 15%

Table 4 The p-values of each parameter obtained from the Anova test for 9 problem domains. The
parameters which contribute significantly are marked in bold.

par. \n.t.b. (min.) 1 2 3 4 5 6 7 8 9 10
IoM 0.009 0.032 0.057 0.086 0.056 0.038 0.013 0.026 0.011 0.008
DoS 0.232 0.144 0.317 0.241 0.248 0.310 0.278 0.274 0.217 0.251
PopSize 0.002 0.005 0.013 0.017 0.026 0.024 0.027 0.054 0.053 0.044
TourSize 0.109 0.219 0.201 0.112 0.263 0.336 0.453 0.587 0.628 0.677

5 Conclusion

This study extended and analysed the previous study in [7], applying the Taguchi
experimental design method to obtain the best parameter settings with different run-
time budgets. We trained the system using 2 instances from 6 and 9 domains sepa-
rately and tracked the effects of each parameter level over time. The experimental
results show that good values for three of the parameters are relatively easy to pre-
dict, but the performance is less sensitive to the value of the fourth (DoS), with
different values doing well for different instances and very similar, “good”, overall
performances for three settings, making it hard to identify a single “good” value.
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In summary, these results show that it was possible to predict a good parameter
combination by using a much reduced time budget for cross domain search.
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