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Abstract Selection hyper-heuristics perform search over the space of heuristics by
mixing and controlling a predefined set of low level heuristics for solving compu-
tationally hard combinatorial optimisation problems. Being reusable methods, they
are expected to be applicable to multiple problem domains, hence performing well
in cross-domain search. HyFlex is a general purpose heuristic search API which
separates the high level search control from the domain details enabling rapid de-
velopment and performance comparison of heuristic search methods, particularly
hyper-heuristics. In this study, the performance of six previously proposed selec-
tion hyper-heuristics are evaluated on three recently introduced extended HyFlex
problem domains, namely 0-1 Knapsack, Quadratic Assignment and Max-Cut. The
empirical results indicate the strong generalising capability of two adaptive selec-
tion hyper-heuristics which perform well across the ‘unseen’ problems in addition
to the six standard HyFlex problem domains.

1 Introduction

Many combinatorial optimisation problems are computationally difficult to solve
and require methods that use sufficient knowledge of the problem domain. Such
methods cannot however be reused for solving problems from other domains. On
the other hand, researchers have been working on designing more general solution
methods that aim to work well across different problem domains. Hyper-heuristics
have emerged as such methodologies and can be broadly categorised into two cate-
gories; generation hyper-heuristics to generate heuristics from existing components,
and selection hyper-heuristics to select the most appropriate heuristic from a set of
low level heuristics [1]. This study focuses on selection hyper-heuristics.

A selection hyper-heuristic framework operates on a single solution and itera-
tively selects a heuristic from a set of low level heuristics and applies it to the can-
didate solution.Then a move acceptance method decides whether to accept or reject
the newly generated solution. This process is iteratively repeated until a termina-
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tion criterion is satisfied. In [2], a range of simple selection methods are introduced,
including Simple Random (SR) that randomly selects a heuristic at each step, and
Random Descent which works similarly to SR, but the selected low level heuristic
is applied repeatedly until no additional improvement in the solution is observed.
Most of the simple non-stochastic basic move acceptance methods are tested in [2];
including All Moves (AM), which accepts all moves, Only Improving (OI), which
accepts only improving moves and Improving or Equal (IE), which accepts all non-
worsening moves. Late acceptance [3] accepts an incumbent solution if its quality
is better than a solution that was obtained a specific number of steps earlier. More
on selection hyper-heuristics can be found in [1].

HyFlex [4] (Hyper-heuristics Flexible framework) is a cross-domain heuristic
search API and HyFlex v1.0 is a software framework written in Java, providing an
easy-to-use interface for the development of selection hyper-heuristic search algo-
rithms along with the implementation of several problem domains, each of which
encapsulates problem-specific components, such as solution representation and low
level heuristics. We will refer to HyFlex v1.0 as HyFlex from this point onward.
HyFlex was initially developed to support the first Cross-domain Heuristic Search
Challenge (CHeSC) in 20111. Initially, there were six minimisation problem do-
mains implemented within HyFlex [4]. The HyFlex problem domains have been
extended to include three more of them, including 0-1 Knapsack Problem (KP),
Quadratic Assignment Problem (QAP) and Max-Cut (MAC) [5]. In this study, we
only consider the ’unseen’ extended HyFlex problem domains to investigate the per-
formance and the generality of some previously proposed well performing selection
hyper-heuristics.

2 Selection Hyper-heuristics for the Extended HyFlex Problem
Domains

In this section, we provide a description of the selection hyper-heuristic methods
which are investigated in this study. These hyper-heuristics use different combina-
tions of heuristic selection and move acceptance methods.

Sequence-based selection hyper-heuristic (SSHH) [6] is a relatively new method
which aims to discover the best performing sequences of heuristics for improv-
ing upon an initially generated solution. The hidden Markov model (HMM) is em-
ployed to learn the optimum sequence lengths of heuristics. The hidden states in
HMM are replaced by the low level heuristics and the observations in HMM are
replaced by the sequence-based acceptance strategies (AS). A transition probabil-
ities matrix is utilised to determine the movement between the hidden states; and
an emission probabilities matrix is employed to determine whether a particular se-
quence of heuristics will be applied to the candidate solution or will be coupled
with another LLH. The move acceptance method used in [6] accepts all improving

1 http://www.asap.cs.nott.ac.uk/external/chesc2011/
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moves and non-improving moves with an adaptive threshold. The SSHH showed ex-
cellent performance across CHeSC 2011 problem domains achieving better overall
performance than Adap-HH which was the winner of the challenge.

Dominance-based and random descent hyper-heuristic (DRD) [7] is an iterated
multi-stage hyper-heuristic that hybridises a dominance-based and random descent
heuristic selection strategies, and uses a naı̈ve move acceptance method which ac-
cepts improving moves and non-improving moves with a given probability. The
dominance-based stage uses a greedy-like method aiming to identify a set of ‘ac-
tive’ low level heuristics considering the trade-off between the delta change in the
fitness and the number of iterations required to achieve that change. The random
descent stage considers only the subset of low level heuristics recommended by
the dominance-based stage. If the search stagnates, then the dominance-based stage
may kick in again aiming to detect a new subset of active heuristics. The method
has proven to perform relatively well in the MAX-SAT and 1D bin-packing prob-
lem domains as reported in [7].

Robinhood (round-robin neighbourhood) hyper-heuristic [8] is an iterated multi-
stage hyper-heuristic. Robinhood contains three selection hyper-heuristics. They all
share the same heuristic selection method but differ in the move acceptance. The
Robinhood heuristic selection allocates equal time for each low level heuristic and
applies them one at a time to the incumbent solution in a cyclic manner during
that time. The three move acceptance criteria employed by Robinhood are only im-
proving, improving or equal, and an adaptive move acceptance method. The latter
method accepts all improving moves and non-improving moves are accepted with
a probability that changes adaptively throughout the search process. This selection
hyper-heuristic outperformed eight ‘standard’ hyper-heuristics across a set of in-
stances from HyFlex problem domains. A detailed description of the Robinhood
hyper-heuristic can be found in [8].

Modified choice function (MCF) [9] uses an improved version of the traditional
choice function (CF) heuristic selection method used in [2] and has a better average
performance than CF when compared across the CHeSC 2011 competition prob-
lems. The basic idea of a choice function hyper-heuristic is to choose the best low
level heuristic at each iteration. Hence, move acceptance is not needed and all moves
are accepted. In the traditional CF method, each low level heuristic is assigned a
score based on three factors; the recent effectiveness of the given heuristic ( f1), the
recent effectiveness of consecutive pairs of heuristics ( f2), and the amount of time
since the given heuristic was used ( f3) where each factor within CF is associated
with a weight; α , β , and δ respectively [2]. It was also stated in the CF study that
the hyper-heuristic was insensitive to the parameter settings for solving Sales Sum-
mit Scheduling problems and are consequently fixed throughout the search. MCF
extends upon CF by controlling the weights of each factor for improving its cross-
domain performance [9]. In MCF, the weights for f1 and f2 are equal as defined by
the parameter φt , and the weight for f3 is set to 1−φt . φt is controlled using a sim-
ple mechanism. If an improving move is made, then φt = 0.99. If a non-improving
move is made, then φt = max{φt−1−0.01,0.01}.
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Fuzzy late acceptance-based hyper-heuristic (F-LAHH) [10] was implemented
for solving MAX-SAT problems and showed promising results. F-LAHH utilises
a fitness proportionate selection mechanism (RUA1-F1FPS) [11] for the heuristic
selection method and uses late acceptance, whose list length is adaptively controlled
using a fuzzy control system, for its move acceptance method. In RUA1-F1FPS, the
low level heuristics are assigned scores which are updated based on acceptance of
the candidate solution as defined by the RUA1 scheme. A heuristic is chosen using a
fitness proportionate (roulette wheel) selection mechanism utilising Formula 1 (F1)
ranking scores (F1FPS). Each low level heuristic is ranked based on their current
scores using F1 ranking and are assigned probabilities to be selected proportional to
their F1 rank. The fuzzy control system, as defined in [10], adapts the list length of a
late acceptance move acceptance method at the start of each phase each to promote
intensification or diversification within the subsequent phase of the search based on
the amount of improvement over the current phase. The F1FPS scoring mechanism
used in this study is the RUA1 method as used in [10, 11]. The parameters of the
fuzzy system are the same as those used in [10] with the universe of discourse of the
list length fuzzy sets U = [10000,30000], the initial list length of late acceptance
L0 = 10000, and the number of phases equal to 50.

Simple Random-Great Deluge (SR-GD) is a single-parameter selection hyper-
heuristic method. At each step, a random heuristic will be selected and applied to
the current solution. Great deluge move acceptance method [12] accepts improving
solutions by default. A non-improving solution is only accepted if its quality is
better than a threshold level at each iteration. Initially, the threshold level is set to
the cost of the initially constructed solution. The threshold level is then updated at
each iteration with a linear rate given by the following formula:

Tt = c+∆C× (1− t
N
) (1)

where Tt is the value of the threshold level at time t, N is the time limit, ∆C is the
expected range for the maximum change in the cost, and c is the final cost.

3 Empirical Results

The methods presented in Section 2 are applied to 10 instances from each of the
recently introduced HyFlex problem domains. The experiments are conducted on an
i7-3820 CPU at 3.60GHz with a memory of 16.00GB. Each run is repeated 31 times
with a termination criteria of 415 seconds corresponding to 600 nominal seconds of
the CHeSC 2011 challenge test machine2. The following performance indicators are
used for ranking hyper-heuristics across all three domains:
- rank: rank of a hyper-heuristic with respect to µnorm.

2 http://www.asap.cs.nott.ac.uk/external/chesc2011/benchmarking.html
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- µrank: each algorithm is ranked based on the median objective values that they pro-
duce over 31 runs for each instance. The top algorithm is assigned to rank 1, while
the worst algorithm’s rank equals to the number of algorithms being considered in
ranking. In case of a tie, the ranks are shared by taking the average. The ranks are
then accumulated and averaged over all instances producing µrank.
- µnorm: the objective function values are normalised to values in the range [0,1]
based on the following formula:

norm(o, i) =
o(i)−obest(i)

oworst(i)−obest(i)
(2)

where o(i) is the objective function value on instance i, obest(i) is the best objective
function value obtained by all methods on instance i, and oworst(i) is the worst ob-
jective function value obtained by all methods on instance i. µnorm is the average
normalised objective function value.
- best: is the number of instances for which the hyper-heuristic achieves the best
median objective function value.
- worst: the number of instances for which the hyper-heuristic delivers the worst
median objective function value.

As a performance indicator, µrank focusses on median values and does not con-
sider how far those values are from each other for the algorithms in consideration,
while µnorm considers the mean performance of algorithms by taking into account
the relative performance of all algorithms over all runs across each problem instance.

Table 1 summarises the results. On KP, SSHH delivers the best median values
for 8 instances including 4 ties. Robinhood achieves the best median results in 5 in-
stances including a tie. SR-GD, F-LAHH and DRD show comparable performance.
On the QAP problem domain, SR-GD performs the best in 6 instances and F-LAHH
shows promising results in this particular problem domain. This gives an indication
that simple selection methods are potentially the best for solving QAP problems.
SSHH ranked as the third best based on the average rank on QAP problem. On
MAC, SSHH clearly outperforms all other methods, followed by SR-GD and then
Robinhood. The remaining hyper-heuristics have relatively poor performance, with
MCF being the worst of the 6 hyper-heuristics. Overall, SSHH turns out to be the
best with µnorm = 0.16 and µrank = 2.28. SR-GD also shows promising performance,
scoring the second best. MCF consistently delivers weak performance in all the in-
stances of the three problem domains. Table 1 also provides the pairwise average
performance comparison of SSHH versus (DRD, Robinhood, MCF, F-LAHH and
SR-GD) based on the Mann-Whitney-Wilcoxon statistical test. SSHH performs sig-
nificantly better than any hyper-heuristic on all MAC instances, except Robinhood
which performs better than SSHH on four out of ten instances. On the majority
of the KP instances, SSHH is the best performing hyper-heuristic. SSHH performs
poorly on QAP when compared to F-LAHH and SR-GD and both hyper-heuristics
produce significantly better results than SSHH on almost all instances. SSHH per-
forms statistically significantly better than the remaining hyper-heuristics on QAP.
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The performance of the best hyper-heuristic from Table 1, SSHH is compared to
the methods whose performances are reported in [5], including Adap-HH, which
is the winner of the CHeSC 2011 competition [13], an Evolutionary Program-
ming Hyper-heuristic (EPH) [14], Fair-Share Iterated Local Search with (FS-ILS)
and without restart (NS-FS-ILS), Simple Random-All Moves (SR-AM) (denoted
as AA-HH previously) and Simple Random-Improving or Equal (SR-IE) (denoted
as ANW-HH previously). Table 2 summarises the results based on µrank, µnorm,
best and worst counts. Adap-HH performs better than SSHH in KP and QAP while
SSHH performs the best on MAC. Overall, SSHH is the best method based on µnorm
with a value of 0.113, however Adap-HH is the top ranking algorithm based on µrank
with a value of 2.53 and SSHH is the second best with a value of 3.20.

Table 2 The performance comparison of SSHH, Adap-HH, FS-ILS, NR-FS-ILS, EPH, SR-AM
and SR-IE

KP Problem Domain

rank method µrank µnorm best worst

1 Adap-HH 1.95 0.027 8 0
2 EPH 2.35 0.053 4 0
3 SSHH 2.45 0.059 5 0
4 SR-AM 4.40 0.148 2 0
5 SR-IE 5.55 0.328 0 4
6 NR-FS-ILS 5.60 0.361 1 6
7 FS-ILS 5.70 0.395 1 2

QAP Problem Domain

rank method µrank µnorm best worst

1 NR-FS-ILS 1.95 0.100 5 0
2 Adap-HH 2.50 0.103 2 0
3 FS-ILS 2.85 0.103 3 0
4 EPH 3.80 0.133 0 0
5 SR-AM 4.10 0.146 1 0
6 SSHH 5.80 0.189 0 0
7 SR-IE 7.00 0.634 0 10

MAC Problem Domain

rank method µrank µnorm best worst

1 SSHH 1.35 0.092 9 0
2 SR-AM 2.45 0.252 1 0
3 Adap-HH 3.15 0.275 0 0
4 NR-FS-ILS 4.00 0.374 0 0
5 FS-ILS 4.85 0.392 1 2
6 EPH 5.60 0.519 0 1
7 SR-IE 6.60 0.732 0 7

Overall

rank method µrank µnorm best worst

1 SSHH 3.20 0.113 14 0
2 Adap-HH 2.53 0.135 10 0
3 SR-AM 3.65 0.182 4 0
4 EPH 3.92 0.235 4 1
5 NR-FS-ILS 3.85 0.278 6 6
6 FS-ILS 4.47 0.297 5 4
7 SR-IE 6.38 0.565 0 21

4 Conclusion

A hyper-heuristic is a search methodology, designed with the aim of reducing the
human effort in developing a solution method for multiple computationally difficult
optimisation problems via automating the mixing and generation of heuristics. The
goal of this study was to assess the level of generality of a set of selection hyper-
heuristics across three recently introduced HyFlex problem domains. The empiri-
cal results show that both Adap-HH and SSHH perform better than the previously
proposed algorithms across the problem domains included in the HyFlex extension
set. Both adaptive algorithms embed different online learning mechanisms and in-
deed generalise well on the ‘unseen’ problems. It has also been observed that the
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choice of heuristic selection and move acceptance combination could lead to major
performance differences across a diverse set of problem domains. This particular
observation is aligned with previous findings in [15, 16].
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9. Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for
cross domain heuristic search. In Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia,
G., Pavone, M., eds.: Parallel Problem Solving From Nature (PPSN XII). Volume 7492 of
Lecture Notes in Computer Science., Springer Berlin Heidelberg (2012) 307–316
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