
An Ant-based Selection Hyper-heuristic for
Dynamic Environments

Berna Kiraz1, A. Şima Etaner-Uyar2, and Ender Özcan3

1 Institute of Science and Technology, Istanbul Technical University, Turkey
Berna.Kiraz@marmara.edu.tr

2 Department of Computer Engineering, Istanbul Technical University, Turkey
etaner@itu.edu.tr

3 School of Computer Science, University of Nottingham, UK
Ender.Ozcan@nottingham.ac.uk

Abstract. Dynamic environment problems require adaptive solution
methodologies which can deal with the changes in the environment dur-
ing the solution process for a given problem. A selection hyper-heuristic
manages a set of low level heuristics (operators) and decides which one
to apply at each iterative step. Recent studies show that selection hyper-
heuristic methodologies are indeed suitable for solving dynamic environ-
ment problems with their ability of tracking the change dynamics in a
given environment. The choice function based selection hyper-heuristic
is reported to be the best hyper-heuristic on a set of benchmark prob-
lems. In this study, we investigate the performance of a new learning
hyper-heuristic and its variants which are inspired from the ant colony
optimisation algorithm components. The proposed hyper-heuristic main-
tains a matrix of pheromone intensities (utility values) between all pairs
of low level heuristics. A heuristic is selected based on the utility val-
ues between the previously invoked heuristic and each heuristic from the
set of low level heuristics. The ant-based hyper-heuristic performs better
than the choice function and even its improved version across a vari-
ety of dynamic environments produced by the Moving Peaks Benchmark
generator.

1 Introduction

Many real world constraint optimisation problems contain a set of components
which might change in time separately or concurrently. Some of these compo-
nents include the problem instance, the objectives and the constraints. A good
solution method needs to be adaptive and intelligent to be able to deal with the
complexities introduced by such a dynamic environment and track the changes.
Branke [2] categorized these changes based on (i) frequency, (ii) severity, (iii)
predictability of a change, and (iv) cycle length/cycle accuracy which is a prop-
erty defining somewhat periodicity and precision of changes. There is a variety
of approaches dealing with different types of changes in literature. Most of the



approaches handling dynamic environment problems are modified from the exist-
ing approaches designed for solving static problems based on different strategies.
More details on dynamic environments can be found in [2,5,11,16].

In this study, we use an emerging search methodology, namely selection
hyper-heuristics for solving dynamic environment problems. A selection hyper-
heuristic controls a set of low level heuristics, choosing the most appropriate one
to apply to a solution in hand and deciding to accept or reject the newly cre-
ated solution at each step [3]. There are learning hyper-heuristic methodologies
as well as the ones which do not utilise any learning at all. An online learn-
ing selection hyper-heuristic can incorporate learning either into the heuristic
selection, or move acceptance methods. These components attempt to improve
performance during the search process. If learning takes place during heuristic
selection, frequently, a mechanism is used to score the performance of each low
level heuristic. Then a heuristic is chosen based on these scores. Nareyek [12]
tested Reinforcement Learning (RL) heuristic selection on Orc Quest and mod-
ified logistics domain. Initially, scores are initialised to the same value for all
heuristics, e.g., 0. After a chosen heuristic is applied to a solution, if there is
improvement, then its score is increased; otherwise it is decreased, e.g. by one.
A heuristic is chosen using different mechanisms and the best strategy appears
to be selecting the heuristic with maximum score. Cowling et al. [4] investigated
the performance of different heuristic selection methods on a real world schedul-
ing problem. One of them is a learning method referred to as Choice Function
(CF) which maintains a score for each low level heuristic taking a weighted av-
erage of three values; how well it performs individually and as a successor of the
previously invoked heuristic and the elapsed time since its last call. Then the
heuristic with the maximum score is selected and applied to the current solution
at a given step. Drake and Özcan [7] proposed a modified version of CF improv-
ing its performance (ICF) in which weights dynamically change, enforcing the
search process to go into diversification faster than usual, when the successive
moves are non-improving.

There is strong empirical evidence that selection hyper-heuristics work for
not only discrete combinatorial problems [3] but also discrete and continuous dy-
namic environment problems [9,10,15,14], being able to respond to the changes
in such an environment rapidly. In this study, we describe a new learning hyper-
heuristic for dynamic environments, which is designed based on the ant colony
optimisation algorithm components. The proposed hyper-heuristic maintains a
matrix of pheromone intensities (utility values) between all pairs of low level
heuristics. A heuristic is selected based on the utility values between the previ-
ously invoked heuristic and each heuristic from the set of low level heuristics.
We investigate the performance of the proposed hyper-heuristic controlling a
set of parameterised mutation operators for solving the dynamic environment
problems produced by the Moving Peaks Benchmark (MPB) generator.



2 Proposed Method

In this study, we propose a selection hyper-heuristic incorporating a novel heuris-
tic selection method, called the Ant based Selection (AbS), which is based on a
simple ant colony optimization (ACO) algorithm [6]. Most of the mechanisms
used in ACO are adapted within AbS. A distinct feature of AbS is that unlike
ACO, AbS is based on a single point based search framework. In most of the
selection hyper-heuristics, there is a heuristic selection step followed by an ac-
ceptance step. After the heuristic selection step using AbS, we employ the generic
Improving-and-Equal acceptance scheme, which accepts a new solution of better
or equal quality as compared to the previous solution.

Similar to the Choice Function and Reinforcement Learning heuristic selec-
tion schemes, AbS also incorporates an online learning mechanism using a matrix
of utility values. In AbS, each heuristic pair is associated with a pheromone trail
value (τhi,hj ) which shows the desirability of selecting the jth heuristic after the
application of the ith heuristic. All pheromone trails are initialized with a small
value τ0. AbS selects a random low-level heuristic at the first step. In the follow-
ing steps, the most appropriate low-level heuristic is selected and applied to a
solution in hand based on the pheromone trail information.

AbS consists of heuristic selection and pheromone update stages. For the
first stage, we consider two variants of heuristic selection schemes. In both vari-
ants, the heuristic hs with the highest pheromone trail (hs = maxi=1..k τhc,hj )
is selected with a probability of q0 where hc is the previously selected heuris-
tic. Otherwise, methods inspired by two of the mate selection techniques most
commonly used in Evolutionary Algorithms [8] are employed to determine the
next heuristic to select. In the first variant, like in ACO, the next heuristic is
determined based on probabilities proportional to the pheromone levels of each
heuristic pair. This is similar to the roulette wheel mate selection in Evolutionary
Algorithms. In this method, AbSrw selects the next heuristic hs with a probabil-
ity which is proportional to the pheromone trail value of τhc,hs . However, in the
second variant (AbSts), the choice of the next heuristic is based on tournament
selection. AbSts chooses the next heuristic hs with the highest pheromone trail
(hs = maxi=1..k τhc,hj ).

After selecting a heuristic, pheromone trails are modified. Firstly, pheromone
values on the pheromone matrix are decreased by a constant factor (evaporation)
for all pairs of heuristics as given in Equation 1.

τhi,hj = (1− ρ)τhi,hj (1)

where 0 < ρ ≤ 1 is the pheromone evaporation rate.
After evaporation, the pheromone value between only hc and hs (τhc,hs) is

increased using Equation 2.

τhc,hs = τhc,hs +∆τ (2)

where hc is the previously selected heuristic and hs is the last selected heuristic.
∆τ is the amount of pheromone added and is defined as in Equation 3.

∆τ = 1/fc (3)



where fc is the fitness value of the new solution generated by applying the
selected heuristic hs.

3 Experimental Design

In this study, we perform experiments with our new hyper-heuristic for dynamic
environments, combining the Ant-based selection scheme and the Improving-
and-Equal acceptance technique. For comparison, we also experiment with previ-
ously used selection mechanisms which incorporate some form of online learning
and are shown to be successful in dynamic environments [10], namely the Choice
Function and Reinforcement Learning. In this paper, we also include an improved
version of the Choice Function proposed in [7]. These selection mechanisms are
also used together with the Improving-and-Equal acceptance technique.

In the experiments, we used the Moving Peaks Benchmark (MPB) generator
[1] to generate the various dynamic environments. In MPB, the height, width
and location of the peaks forming the multimodal and multidimensional land-
scape are changed every ∆e iterations by adding a normally distributed random
variable to the heights and the widths of the peaks and by shifting their loca-
tions with a vector of fixed length in a random direction. In some applications,
a time-invariant basis function is also included in the generated landscapes.
The height severity, the width severity and vlength parameters determine the
severity of the changes in the heights, the widths and the locations of the peaks
respectively. For the fixed parameters of the MPB in all the experiments, we
used the settings taken from [1,2] as follows: cone peak function, 5 peaks, 5 di-
mensions, range of peak heights ∈ [30, 70], range of peak widths ∈ [0.8, 7.0] and
range of values in each dimension ∈ [0.0, 100.0]. We did not use a basis function
and allowed the peak shifts to be uncorrelated. For the ∆e, height severity, the
width severity and vlength settings we used the ones given in [10] and labeled
as EXPSET2. Based on these settings, ∆e is taken as 6006 fitness evaluations
for low frequency (LF), 1001 for medium frequency (MF) and 126 for high fre-
quency (HF); the height severity, the width severity and vlength parameters
are taken as given in Table 1 which correspond to low severity (LS), medium
severity (MS) and high severity (HS) changes.

Table 1. MPB parameter settings for high, medium and low severity changes

Setting LS MS HS

vlength 1.0 5.0 10.0
height severity 1.0 5.0 10.0
width severity 0.1 0.5 1.0

A real-valued vector corresponds to the coordinates of a point in the search
space generated by the MPB. The fitness of a candidate solution at a given time
t is given by its error, which is calculated as its distance to the optimum in



terms of the objective function value at time t. Therefore, the goal turns into
minimising the error values for a given problem.

The search algorithm moves through the landscape by perturbing a candi-
date solution at each step to obtain a new one using a parameterized Gaussian
mutation, N(0, σ2), where σ denotes the standard deviation. We used the same
settings for the mutation operators as in [10], which are implemented as seven
different standard deviations; {0.5, 2, 7, 15, 20, 25, 30}. These mutation opera-
tors are used as the low-level heuristics in the hyper-heuristic framework.

The parameters of the proposed Ant-based selection scheme are chosen as
follows: ρ is set to 0.1. Each entry in the pheromone matrix is initialized to τ0 =
1/fs where fs is the fitness value of initial solution. For AbSrw, we experiment
with seven q0 values: {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. For AbSts, we consider five
tournament size values: {2, 3, 4, 5, 6} as well as the above given seven q0 values.
We also included variants of the approaches in which ∆τ is updated with a value
changing at a slower rate during the pheromone evaporation process. In this case,
∆τ is calculated as ∆τ = 0.1∗ (1/fc). AbSrw and AbSts with the slower decrease
rates are denoted as sAbSrw and sAbSts, respectively.

The parameter settings of the other heuristic selection methods are done
using the same settings proposed in previous studies from the literature. In Re-
inforcement Learning, the scores of all heuristics are initialized to 15 with lower
and upper bounds as 0 and 30 respectively as given in [13]. At each step, the
score of a heuristic that improves performance is increased by 1 and otherwise it
is decreased by 1. In Choice Function, α, β, and δ are initialized to 0.5 with up-
dates of ±0.01 at each iteration as given in [7]. In the Improved Choice Function,
ϕ, which refers α and β, and δ are initialized to 0.5. If the heuristic improves
performance, the values of ϕ are set to 0.99. Otherwise, the values of ϕt at time
t are calculated as ϕt = max{ϕt−1 − 0.01, 0.01}. In addition, δ is calculated as
δt = 1− ϕt

We assume that all programs are made aware when a change in the envi-
ronment occurs. For the Reinforcement Learning, Choice Function and the Im-
proved Choice Function heuristic selection methods, when a change occurs, the
current solution is re-evaluated. For the proposed Ant-based selection scheme,
this is not required. The parameters of none of the heuristic selection methods
are reset when the environment changes. Due to the nature of the acceptance
mechanism, Improving-and-Equal, the first solution candidate generated after
each environment change is accepted regardless of its solution quality.

For evaluating the performance of the approaches, we used the offline error
metric [2]. The error of a candidate solution at a given time is calculated as its
distance to the optimum in terms of the objective function value at that time.
The offline error is calculated as a cumulative average of the errors of the best
candidate solutions found so far since the last change. At the end of a run, a
lower overall offline error value is desired indicating a good performance.

Each run is repeated 100 times for each setting where 20 changes occur,
i.e. there are 21 consecutive stationary periods. This means that there are
maxIterations = (NoOfChanges + 1) ∗ ChangePeriod number of iterations



per run. For analysis of statistical significance of the differences obtained be-
tween the results of various approaches, we performed ANOVA tests together
with Tukey’s HSD at a confidence level of 95%.

4 Results and Discussion

In this section we provide the results of the experiments and their discussions.
Table 2 summarizes the results of the parameter tuning tests for q0 in AbSrw
and sAbSrw. In the table, q0 = 0.0 means that the next heuristic is chosen using
only the roulette-wheel selection. However, q0 = 1.0 means that roulette wheel
selection is not used and always the heuristic with the best score (pheromone
value) is chosen to be applied. The results show that there are no statistically
significant differences between most cases, however, the best values are provided
by different q0 values for different frequency-severity pairs. Therefore, to avoid
overtuning, we decided to choose a setting which provided an acceptable perfor-
mance in most of the cases for both approaches. For the rest of the experiments
we continued with a setting of q0 = 0.5 for both AbSrw and sAbSrw.

Table 2. Final offline error results of various q0 settings for AbSrw and sAbSrw under
the tested change frequency-severity pairs

Algorithm q0
LF MF HF

LS MS HS LS MS HS LS MS HS

AbSrw

0.0 3.577 7.664 9.875 4.647 8.860 12.321 9.886 17.031 24.041
0.1 3.463 7.641 10.276 4.376 9.340 11.754 10.138 17.138 25.243
0.3 3.929 8.026 10.244 4.608 8.774 12.354 9.286 16.453 24.612
0.5 3.720 8.114 10.580 4.640 9.601 13.051 9.404 15.461 24.260
0.7 4.186 8.434 10.562 4.975 10.838 13.178 10.434 17.419 25.493
0.9 3.931 10.420 10.849 4.775 10.459 13.648 12.504 19.807 28.935
1.0 3.956 10.368 12.332 5.533 10.849 13.997 15.898 23.064 31.920

sAbSrw

0.0 3.734 7.454 9.730 4.388 8.531 11.935 10.350 17.105 25.586
0.1 3.723 7.090 9.882 4.490 8.510 12.330 9.948 17.183 24.368
0.3 3.978 7.598 10.189 4.394 8.245 12.467 8.875 15.444 24.027
0.5 3.644 7.402 10.990 4.180 8.698 12.421 7.932 14.935 22.904
0.7 3.879 8.578 10.945 4.483 9.490 12.531 8.914 16.004 24.131
0.9 4.278 8.827 11.936 4.399 10.095 13.334 8.691 15.432 23.713
1.0 4.878 9.959 12.563 6.528 12.620 14.802 13.535 19.350 25.191

Then we performed parameter tuning experiments to set q0 and tournament
size values for the AbSts and sAbSts variants. Our experiments revealed that
for this hyper-heuristic variant, the best settings highly depend on the dynamics
of the environment, i.e. the change frequency and severity values. To be able to
choose a value which would give a good performance across different types of



chnages, we calculated the average and standard deviation values for the final
offline error results for each change frequency-severity setting over all q0 and
tournament size combinations, i.e. over 35 combinations each for AbSts and
sAbSts. Table 3 lists these results.

Table 3. Average and standard deviation of final offline error values over all q0 and
tournament size combinations under all tests frequency-severity pairs

AbSts sAbSts

LF
LS 4.061∓ 0.238 4.121∓ 0.525
MS 8.911∓ 0.510 8.997∓ 0.644
HS 11.291∓ 0.505 11.577∓ 0.795

MF
LS 5.361∓ 0.343 5.106∓ 0.736
MS 10.514∓ 0.649 10.530∓ 0.867
HS 13.345∓ 0.536 13.318∓ 0.717

HF
LS 14.720∓ 2.050 11.051∓ 3.083
MS 20.542∓ 1.408 17.474∓ 2.134
HS 27.701∓ 1.839 24.435∓ 1.492

Considering that the best setting for the q0 and tournament size combination
is sensitive to the change dynamics, we plan to develop an adaptive mechanism
as future work. In this study, we chose a simpler approach. For those cases where
tournament selection is to be applied, each time we let the tournament size be
determined randomly with equal probability from among the five pre-determined
tournament size levels. We performed the q0 analysis for AbSts and sAbSts based
on this scheme. Table 4 shows the final offline error results for various q0 settings
for AbSts and sAbSts when the tournament sizes are determined randomly. From
the table, we selected q0 = 0.1 for AbSts and q0 = 0.9 for sAbSts. For the rest
of the experiments, these settings are used. Comparing the final offline error
values for these settings with the average and standard deviation values given in
Table 3, we observe that the chosen settings provide either better results than
these or the results fall within the intervals defined by these.

Finally, we compare our approaches with those obtained using the heuristic
selection methods taken from literature, namely RL, CF and ICF. Table 5 shows
the results of these comparisons. The better results are marked in bold in the
table. As can be seen, RL and ICF are worse than the others for all cases and
these differences are statistically significant, with ICF being the worst of all.

ICF aims to emphasize the intensification component of the generic CF by
automatically increasing the weight of relevant components as soon as there is
improvement. Diversification, on the other hand, is introduced at a gradually
increasing rate. This property works in solving stationary combinatorial optimi-
sation problems as shown in [7], but not in dynamic environments. The changes
in the environment mislead ICF and it gets worse than CF in all cases. It was
shown in [9,10] that CF outperforms RL for all tested change dynamics using



Table 4. Final offline error results of various q0 settings for AbSts and sAbSts with
random tournament sizes under the tested change frequency-severity pairs

Algorithm q0
LF MF HF

LS MS HS LS MS HS LS MS HS

AbSts

0.0 3.844 8.516 10.901 5.236 10.231 13.033 13.434 18.360 25.459
0.1 4.063 8.019 10.940 5.069 9.566 12.853 13.486 19.035 25.256
0.3 3.744 8.287 11.107 5.172 9.974 13.192 13.120 19.325 25.327
0.5 3.932 8.086 11.877 5.012 10.201 13.360 12.843 18.345 25.949
0.7 3.916 8.322 11.777 5.150 9.689 13.176 12.872 18.833 26.593
0.9 4.030 8.778 12.011 4.924 11.963 12.958 13.861 21.461 30.139
1.0 3.987 9.977 11.735 5.460 10.791 14.618 14.640 22.261 30.589

sAbSts

0.0 4.150 8.194 10.369 5.051 10.111 12.995 12.236 17.250 24.222
0.1 4.235 8.487 10.715 5.215 10.104 13.045 12.804 18.561 24.716
0.3 3.675 8.367 11.948 4.923 10.454 12.438 11.381 17.892 24.151
0.5 3.906 8.425 11.009 4.660 9.836 13.037 10.098 16.743 24.883
0.7 4.077 8.632 11.509 4.643 10.308 13.190 9.678 16.929 23.911
0.9 4.030 8.996 11.735 4.635 10.025 12.387 9.117 16.760 23.416
1.0 4.746 10.567 12.595 7.699 12.250 14.559 13.404 18.133 24.266

the MPB. Therefore, the poor performance of RL in the current experiments is
also to be expected.

The results show that all versions of the proposed heuristic selection scheme
provide better results than CF, except for the LF-LS and MF-LS cases, however,
the results are close. Among the versions of the proposed heuristic selection
scheme, sAbSrw provides the better results in most cases.

Table 5. Final offline error results for the proposed heuristic selection schemes and
RL, CF and ICF. Here, for both AbSrw and sAbSrw q0 = 0.5, for AbSts q0 = 0.1 and
for sAbSts q0 = 0.9 with random tournament size settings

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

AbSrw 3.720 8.114 10.580 4.640 9.601 13.051 9.404 15.461 24.260
sAbSrw 3.644 7.402 10.990 4.180 8.698 12.421 7.932 14.935 22.904
AbSts 4.063 8.019 10.940 5.069 9.566 12.853 13.486 19.035 25.256
sAbSts 4.030 8.996 11.735 4.635 10.025 12.387 9.117 16.760 23.416

CF 3.518 9.801 11.881 4.094 10.948 13.601 7.976 15.670 24.390
ICF 10.065 15.290 18.141 11.043 19.688 20.762 19.119 27.285 32.785
RL 4.427 9.046 12.179 5.968 12.440 14.540 10.285 15.685 24.569



0 2 4 6 8 10 12

x 10
4

0

5

10

15

20

25

30

35

40

45

50

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

 

 
LF−LS
LF−MS
LF−HS

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5

10

15

20

25

30

35

40

45

50

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

 

 
MF−LS
MF−MS
MF−HS

(b)

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

Fitness Evaluations

E
rr

or
 o

f t
he

 B
es

t S
ol

ut
io

n

 

 
HF−LS
HF−MS
HF−HS

(c)

Fig. 1. Illustration of the tracking ability of sAbSrw for (a) low, (b) medium, and (c)
high frequency of change

Due to lack of space, we cannot provide all the statistical comparison tables.
Table 6 provides a summary which shows that sAbSrw performs the best with
a high level of tracking ability (Figure 4) in the overall based on the number
of cases in which this performance difference is either statistically significant or
better than the other approaches. sAbSrw is better than CF in many cases, but
in several others, their performance is comparable. However, the most impor-
tant issue is the fact that sAbSrw (and also all the other proposed variants) are
more suitable to be used in dynamic environments than RL, CF and ICF be-
cause the proposed heuristic selection schemes do not require any special actions
to be performed when the environment changes, whereas for the others, right
after an environment change, the last solution candidate in the previous envi-
ronment needs to be re-evaluated. This is a drawback for two reasons: it makes
change detection necessary and it also wastes fitness evaluations, especially in
environments where the change frequencies are very high.

Table 6. Summary of statistical significance comparisons, where s+ (≥ ) is the total
number of times for which an algorithm was statistically significantly (slightly) better
than the others (with no statistical significance), s− (≤) is the vice versa.

Algorithm s+ s− ≥ ≤ Algorithm s+ s− ≥ ≤
sAbSrw 15 0 34 5 CF 13 1 18 22
AbSrw 12 0 24 18 ICF 0 54 0 0
AbSts 10 9 16 19 RL 11 7 3 33
sAbSts 10 0 23 21

5 Conclusion

In this paper, we proposed a new heuristic selection scheme for selection hyper-
heuristics, especially for use in dynamic environments. In previous studies [9,10,15],



existing heuristic selection mechanisms were tested in various types of dynamic
environments and those that incorporated some form of online learning were
shown to be successful. One drawback of these approaches for dynamic envi-
ronments is that they require the re-evaluation of the last candidate solution in
the previous environment for score calculation. As well as wasting computing
resources for the re-evaluation, this also means that the algorithm needs to de-
tect when the environment changes. The proposed heuristic selection does not
require any special actions when the environment changes. On top of this ad-
vantage, the test results also show that the proposed heuristic selection scheme
provides slightly better results than the best of the tested heuristic selection
schemes found previously to be successful in dynamic environments. The results
are very promising and they promote further study. A drawback of the proposed
variants of the method is that a couple of parameters is introduced and in some
cases, performance is sensitive to their setting. Our future work will focus on
enhancing the proposed approach by developing adaptive mechanisms to allevi-
ate the need for parameter tuning and better acceptance schemes for dynamic
environment problems.

References

1. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Congress on Evolutionary Computation CEC 99. vol. 3, pp. 1875–
1882. IEEE (1999)

2. Branke, J.: Evolutionary optimization in dynamic environments. Kluwer (2002)
3. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Rong, Q.: A survey of

hyper-heuristics. Tech. rep. (2009)
4. Cowling, P., Kendall, G., Soubeiga, E.: A hyper-heuristic approach to scheduling

a sales summit. In: Practice and Theory of Automated Timetabling III : Third
International Conference, PATAT 2000. LNCS, vol. 2079. Springer (2000)

5. Cruz, C., Gonzalez, J., Pelta, D.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Computing - A Fusion of Foundations,
Methodologies and Applications 15, 1427–1448 (2011)

6. Dorigo, M., Stützle, T.: Ant Colony Optimizations. MIT Press (2004)
7. Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selec-

tion for cross domain heuristic search. In: Parallel Problem Solving from Nature -
PPSN XII. Springer Berlin Heidelberg (2012)

8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Spring (2003)
9. Kiraz, B., Uyar, A.S., Özcan, E.: An investigation of selection hyper-heuristics in

dynamic environments. In: Proc. of the int. conf. on Applications of EC - Vol. I.
EvoApplications’11, vol. 6624, pp. 314–323 (2011)

10. Kiraz, B., Uyar, A.S., Özcan, E.: Selection hyper-heuristics in dynamic environ-
ments. Journal of the Operational Research Society (to appear)

11. Morrison, R.W.: Designing evolutionary algorithms for dynamic environments.
Springer (2004)

12. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning.
In: Metaheuristics: Computer Decision-Making. pp. 523–544. Kluwer Academic
Publishers (2001)



13. Özcan, E., Misir, M., Ochoa, G., Burke, E.K.: A reinforcement learning - great-
deluge hyper-heuristic for examination timetabling. International Journal of Ap-
plied Metaheuristic Computing 1(1), 39–59 (2010)

14. Özcan, E., Ş. Uyar, A., Burke, E.: A greedy hyper-heuristic in dynamic environ-
ments. In: GECCO 2009 Workshop on Automated Heuristic Design: Crossing the
Chasm for Search Methods. pp. 2201–2204 (2009)

15. Uludag, G., Kiraz, B., Etaner-Uyar, A.S., Özcan, E.: A framework to hybridize
pbil and a hyper-heuristic for dynamic environments. In: PPSN (2). LNCS, vol.
7492, pp. 358–367. Springer-Verlag, Berlin, Heidelberg (2012)

16. Yang, S., Ong, Y.S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and
Uncertain Environments, Studies in Computational Int., vol. 51. Springer (2007)


