

Abstract — A hyperheuristic is a high level problem solving
methodology that performs a search over the space generated
by a set of low level heuristics. One of the hyperheuristic
frameworks is based on a single point search containing two
main stages: heuristic selection and move acceptance. Most of
the existing move acceptance methods compare a new solution,
generated after applying a heuristic, against a current solution
in order to decide whether to reject it or replace the current
one. Late Acceptance Strategy is presented as a promising local
search methodology based on a novel move acceptance
mechanism. This method performs a comparison between the
new candidate solution and a previous solution that is generated
L steps earlier. In this study, the performance of a set of hyper-
heuristics utilising different heuristic selection methods
combined with the Late Acceptance Strategy are investigated
over an examination timetabling problem. The results illustrate
the potential of this approach as a hyper-heuristic component.
The hyper-heuristic formed by combining a random heuristic
selection with Late Acceptance Strategy improves on the best
results obtained in a previous study.

I. INTRODUCTION

YPER-HEURISTICS represent a class of techniques for
solving difficult optimisation problems [1, 2]. A high

level (meta-)heuristic that performs a search over a set of low
level (meta-)heuristics rather than the solutions can be
referred to as a hyper-heuristic. An increasing interest in
hyper-heuristics is observed as illustrated in Table I, since
they provide a simple to implement, yet a powerful
framework to deal with the complexities of the real-world
problems.

The low level heuristics can be constructive that are used
to build solutions, or perturbative that are used to modify a
given candidate solution (or solutions). For example, Burke
et al. [3] uses constructive graph colouring heuristics for
solving exam timetabling. On the other hand, Kendall and
Mohamad [11] employ Great Deluge based hyper-heuristic
that manages perturbative heuristics for solving a channel
assignment problem.

A research interest to the examination timetabling problem
is motivated by two reasons. First, this problem is practically
important, and second, it appears as a challenging direction

Ender Özcan, Yuri Bykov and Edmund K Burke are with the Automated

Scheduling, Optimisation and Planning Research Group, School of
Computer Science, University of Nottingham, Jubilee Campus, Wollaton
Road, Nottingham NG8 1BB, United Kingdom (phone: 115-846-6569; fax:
115-846-7877; e-mail: {exo, yxb and ekb}@cs.nott.ac.uk).

Murat Birben is with Yeditepe University, Department of Computer
Engineering, Inonu Mahallesi, Kayisdagi Caddesi, Kadikoy, Istanbul
34755, Turkey (e-mail: mbirben@cse.yeditepe.edu.tr).

for theoretical studies. In fact, a tight competition between
high educational institutions (e.g., universities) forces the
administration to seek for additional ways of attraction new
students, and of course, they are keen on increasing the
variety of course modules. However, having quite restricted
resources the first priority task is the effectiveness of their
management where an efficient timetabling plays a major
role.

On the other hand, different instances of examination
timetabling problem can be considered as good benchmarks
for testing, investigating and comparing a variety of
optimisation techniques. These problems are usually large-
scale, highly constrained and extremely difficult to solve
ones. They belong to the class of NP-complete constraint
optimisation problems [28], hence there is no existent
method, which can produce an optimal solution in a
polynomial time. As an alternative, different heuristic
(including meta-heuristic and hyper-heuristic) techniques
might be used here to search for an attainable minimum
(near-optimum solution).

There is empirical evidence that the choice of heuristic
selection and move acceptance might affect the performance
of a hyper-heuristic [6]. In this study we propose to combine
a novel move acceptance strategy referred to as Late
Acceptance Strategy by Burke and Bykov [29] with different
heuristic selection methods generating different hyper-
heuristics. Their performances are compared to identify the
best heuristic selection choice for this move acceptance

Examination Timetabling Using Late Acceptance Hyper-heuristics

Ender Özcan, Yuri Bykov, Murat Birben and Edmund K Burke

H

TABLE I
SOME PREVIOUS APPLICATIONS OF HYPER-HEURISTICS

Application (s) Reference (s)
Benchmark function optimisation [4-6]

Bin packing [7-10]

Channel assignment [11]

Chicken catching and transportation [12]

Component placement sequencing [13]

Course timetabling [14, 15]

Examination timetabling [4, 15, 16]

Nurse rostering [14]

Open shop scheduling [17]

Orc quest, logistics domain [18]

Presentation scheduling [19]

Sales summit scheduling [20]

Space allocation [21, 22]

Trainer scheduling problem [23-26]

Vehicle routing [27]

strategy for solving an examination timetabling problem as
formulated by Ozcan and Ersoy [30].

In Section II, a broad overview of literature on
perturbative hyper-heuristics and examination timetabling is
provided. Some selected hyper-heuristic components used
during the experiments will be discussed in detail. In Section
III, the Late Acceptance Strategy is explained. In Section IV,
the examination timetabling problem at Yeditepe University
is described and the details of hyper-heuristics for solving
the problem are provided. Section V discusses the
experimental settings and computational results. Finally,
conclusions are presented in Section VI.

II. BACKGROUND

A. Perturbative Hyper-heuristics

Hyper-heuristics are the emerging class of optimisation
tools [1, 2]. There are a number of different hyper-heuristic
frameworks that allow a high level heuristic to perform
search over a space of low level heuristics. A bilevel
perturbative hyper-heuristic framework is illustrated in
Figure 1. Here, a high level heuristic manages a set of low
level perturbative (improvement, variation) heuristics. This
framework is used in our study. In a single point search, an
initial solution (s0) passes through two main stages
iteratively. In the first stage, a heuristic selection is
performed. Next, the chosen heuristic (Hi) applied to the
current solution (s) and a new candidate solution is generated
(s'¬Hi(s)). After that a decision is made whether to accept or
reject the new move. If it is accepted, the new candidate
solution replaces the current solution (s¬ s'). This process
continues until a certain set of termination criteria is
satisfied. Hence, a hyper-heuristic will be denoted as a pair
form this point onward: “heuristic selection method”-“move
acceptance mechanism”.

Cowling, Kendall and Soubeiga [20] explored a set of
hyperheuristics combining Simple Random (SR), Random
Descent, Random Permutation, Random Permutation
Descent, Greedy (GR) and Choice Function (CF) heuristic
selection methods with two simple move acceptance
strategies: accept All Moves (AM) and Only Improving
moves (OI). Simple Random selects a heuristic randomly
from k given low level heuristics. The Greedy (GR) method
invokes k heuristics successively using the same candidate
solution and compares the quality of k new solutions and
selects the heuristic that generates the solution with highest
quality. Choice Function (CF) is based on a scoring
mechanism that statistically evaluates individual and pair-
wise performances of the low level heuristics. The time
passed since the last invocation of the selected heuristic is
also weighed in the scoring function. The heuristic with the
maximal score is selected for employment. Cowling,
Kendall and Soubeiga observed that the Choice
Function-All Moves hyperheuristic performed better than
the rest.

Nareyek [18] explored Reinforcement Learning (RL) for

choosing heuristics during the search process. A utility value
(score) is assigned to each heuristic. If a selected heuristic
improves the current solution, its utility is increased by a
given rate (positive adaptation). Otherwise, it is decreased
using another rate (negative adaptation). The utility values
are allowed to change within an interval of [0, number-of-
heuristics]. At each step, a heuristic is selected based on the
utility values. Different strategies can be used for this
purpose. For instance, the max strategy chooses the heuristic
with the maximal utility value, whereas fair random (roulette
wheel strategy) arranges the probability of a heuristic being
selected proportional to its utility value over the sum of
utility values. Nareyek combined this strategy with All
Moves acceptance and investigated combinations of different
adaptation schemes and heuristic selection strategies for
solving Orc quest and logistics domain problems. The
results show that the additive reward (+1) and subtractive
punishment (-1) and using the maximal utility (max) are
viable choices for the Reinforcement Learning heuristic
selection method.

Burke, Kendall and Soubeiga [14] proposed a
hyperheuristic that combined reinforcement learning
mechanism with tabu-search (TABU) as a heuristic selection
method. Each heuristic is associated with a rank and
manipulated in a similar manner as the utility values in [18].
All Moves was used as a move acceptance strategy. A
variable length tabu list holds the heuristics that should be
avoided. At each step, the heuristic with the maximum rank,

H1

H2

H3

Hk

Low level
heuristics

no

Move
acceptance

High level hyper-heuristic

s ← s0

Heuristic
selection

Select Heuristic Hi

Apply s'← Hi(s)

Accept

Terminate

s← s'
s ← s

Stop

yes

yes

no

Fig. 1. A bilevel hyper-heuristic framework

which is not in the tabu list is selected and applied to the
candidate solution. Whenever there is an improvement or an
equal quality solution is generated, the heuristics in the tabu
list are released. If the move is a worsening move, then the
selected heuristic is queued into the tabu list. The
experimental results show that this hyper-heuristic delivers a
similar or even better performance as compared to the
custom-made meta-heuristics for solving nurse rostering and
course timetabling problem instances.

B. Examination Timetabling Problem

The goal of examination timetabling is to allocate a given
set of events (exams) to available resources (timeslots,
rooms, etc.) subject to a set of constraints. Two different
types of constraints can be identified: hard and soft
constraints. Hard constraints are required to be satisfied, and
only a timetable without violations of hard constraints can be
considered as feasible. Soft constraints represent the
preferences that should be satisfied as many as possible
(usually a timetable without violations of soft constraints
does not exist).

The real-world timetabling requirements are unique for
each particular university and usually reflect the conflicting
priorities of the different participants of the educational
process [31]. However, the most significant requirements
were consolidated into a certain common scheme. It was
observed that the most general hard constraint is that no
student has to sit two exams at the same time. This goal is
equivalent to the classical graph colouring problem [32],
which causes a major hardship of Examination Timetabling.
The most common soft constraint is the spreading exams
over the examination session. However, different versions of
this problem use different ways of calculation the spreading
as well as other soft constraints.

During the years virtually every optimisation technique
was applied to Exam Timetabling Problems. In a way, the
timeline of Exam Timetabling studies traces the progress of
optimisation algorithms and computer hardware. Thus, the
earlier studies were mostly focused on various constructive
methods, from the simplest heuristics as in [33] and [34], up
to quite advanced ones (see [35, 36]).

The era of meta-heuristic studies was started with a
particular attention to Genetic Algorithms. This technique
was applied to Exam Timetabling in pioneering publications
of Corne et al. [37] and Burke et al. [38]. These studies were
expanded by the application of Memetic Algorithm [39, 40]
and a multi-objective evolutionary algorithm (MOEA) by
Paquete and Fonseca [41]. The examples of further
applications of these methods can be found in [42] and [43].
Ozcan and Ersoy [30] generalized their previous study in
Alkan and Ozcan [44] and proposed an extended framework
for designing violation directed adaptive operators, which
perform a search over the constraint oriented
neighbourhoods. A memetic algorithm utilizing such a hill-
climber is implemented as a problem solver in a tool called

FES. FES is the first tool that supports timetabling markup
language (TTML) [45] and accepts input in that format.

In parallel with the evolutionary methods the performance
of different iterative search meta-heuristics was widely
studied for examination timetabling, such as simulated
annealing [46] and tabu search [47]. The investigations of
this family of techniques are still continued involving
innovative search methodologies such as GRASP (Greedy
Randomized Adaptive Search Procedure) [48], trajectory-
based multi-objective search [49], Ahuja-Orlin’s very large
neighbourhood search [50], the generalization of the great
deluge algorithm called as Flex-Deluge Algorithm [16]. The
most recent example is the Late Acceptance Strategy by
Burke and Bykov [29]. Additionally, a variety of other
optimisation methods were applied to examination
timetabling including constraint satisfaction techniques [51],
case based reasoning [15, 52], fuzzy methods [53], ant
colony [53] as well as different hybrid methods [55, 56].

A special attention in the recent years is paid to the
application of different hyperheuristic approaches to
examination timetabling. In Bilgin, Ozcan and Korkmaz [4]
tested a set of hyperheuristics that combine heuristic
selection and move acceptance mechanisms. Burke et al. [3]
investigated a hyperheuristic based on a tabu search
mechanism that assigns proper graph colouring heuristics for
constructing an examination timetable.

The significantly larger list of publications as well as more
detailed information about examination timetabling studies
can be found in a number surveys starting from Carter [57]
and continued by Burke et al. [58], Shaerf [59], Burke and
Petrovic [60]. The most recent survey is provided by Qu et
al. [61].

III. LATE ACCEPTANCE STRATEGY

Late Acceptance Strategy (LAS) is a new and original
general purpose meta-heuristic technique. It was proposed by
Burke and Bykov [29] who studied it over a set of
examination timetabling problems. Although nowadays the
investigations of the properties of LAS are still in their
earlier stages, this method has already showed quite
promising performance. The presented research has been
done in course of the current investigations of the properties
of this new method.

Late Acceptance Strategy belongs to the family of iterative
search techniques but it employs an advanced acceptance
mechanism. It is atypical to the most of the existing search
meta-heuristics (such as Hill-Climbing, Simulated
Annealing, etc.) where at each iteration; a new generated
candidate solution is compared with a current one. In
contrast, the main idea of LAS is to compare the candidate
solution with the one which was “current” several iterations
earlier. Correspondingly, each current solution is used for
comparison not at the immediate, but at some later iteration.
The “delay” in the comparison inspires the name of this new
meta-heuristic and also enables the use the simplest greedy

acceptance rule. The current version of Late Acceptance
Strategy compares the cost functions of the candidate and its
“late” competitor and only candidates with better (or equal)
cost are accepted.

The implementation of the above idea appears as a list
(fitness array), which contains cost functions of current
solutions during a number of recent iterations. In order to
maintain the list of an invariable length L, at each iteration,
the algorithm inserts the value of the current cost into the
beginning of the list and simultaneously removes the last
element from the end. An example of the execution of 3
consecutive iterations of LAS is shown in Fig. 2.

In this example the candidate solutions at ith and (i+2)th
iterations are accepted as their cost is less than the value
from the end of the list. Correspondingly, the (i+1)th
candidate is rejected (its cost is higher than the Lth element of
the list). Here the main rule of LAS is highlighted that the
current (not the candidate) cost is inserted into the list. When
the candidate is rejected, the current cost remains equal to
the previous one and therefore the list contains a series of
same values.

In practical implementation the insertion/removing
procedure can be simplified by just exchanging the value of
the fitness array element, which is calculated as a virtual
beginning/end (see more details in [29]). The authors also
give recommendations regarding the initialization of the
array and termination criteria. At the beginning of the search
all array elements are the same and are equal to the initial
cost. Similar to other search methods, the execution of the

algorithm can be run until convergence (no improvement for
a high number of iterations). However, this algorithm tends
to make an extremely slow improvement at the last stage of
the search, so it could be reasonable to employ some other
termination criteria, such as fixing the total execution time.
The convergence issues of this algorithm are currently under
investigation and could be considered as a subject of future
work.

The existence of the fitness array indicates that LAS
follows the idea of Laguna and Glover [62] of the
“intelligent” use of the information collected during the
search. The most popular interpretation of this idea is the
Tabu Search, which operates with the list of recent moves.
However, the nature of the lists and the ways of operation are
different in Late Acceptance Strategy and Tabu Search and
they can be seen as absolutely different methods.

The main advantage of Late Acceptance Strategy is its
simplicity: it is easy for implementation and quite
straightforward in tuning. De-facto, the performance of this
algorithm depends on a single genuine parameter: length of
the list L. This indicates the overall robustness of the method
and high immunity against possible mistakes in
parameterization (which can appear when, for example,
defining a cooling schedule.). The dependence of the
performance of the method on the length L was investigated
in [29]. It was argued that with L=1, the Late Acceptance
Strategy degenerates into a pure Hill-Climbing. This method
is known to be very fast, but hardly able to produce a good
quality results. The further experiments showed that with the
increasing of L the performance of the method is changing.
The search becomes slower, but the quality of result
increases. This is quite logical, as with longer L, more
worsening moves are accepted, so the search has less chance
to be stuck in local minima. With relatively long L (several
thousands) this algorithm becomes powerful enough to be
competitive with the best existing meta-heuristics. It was
able to produce very strong results during a relatively short
running time (several minutes).

IV. SOLVING AN EXAMINATION TIMETABLING

PROBLEM

A. Examination Timetabling Problem at Yeditepe
University

The set of constraints for an examination timetabling
problem differs from institution to institution. There are
many variants as discussed in [61]. In this study, a
capacitated examination timetabling problem variant at
Yeditepe University as introduced in [30] is used. The
problem requires arrangement of a set of exams for a given
number of days. Only three consecutive exams are allowed
to be arranged in a day. A list of students and the exams that
they take are provided as input. This unique problem
imposes the following constraints:

Candidate
solution

List
(fitness
 array)

Iteration

f(s')= 9

f(s') < 12

accepted
(s ← s')

f(s)

7

10

8

16

15

12

f(s')= 17

f(s') > 15

rejected
(s ← s)

f(s)

9

7

10

21

16

15

f(s')= 14

f(s') < 16

accepted
(s ← s')

f(s)

9

9

7

18

21

16

1

2

3

L-2

L-1

L

i+1 i+2 i

Fig. 2. An illustration of how LAS executes for a
minimization problem.

i) The exams that each student takes must be assigned
to different timeslots.

ii) The total number of students taking an exam at a
timeslot is not allowed to exceed a predetermined
capacity.

iii) If a student is scheduled to take two exams in the
same day, the exams must not be assigned to
successive timeslots.

A direct representation is used to represent a candidate
solution encoding all events and their mappings onto a given
timetable of size 3´days. The following fitness function is
used to evaluate a given solution S:

fitness(S) = -1/ ("iåwi Vi(S)+1), (1)

where i is the constraint type, V measure the number of
violations in S due to the ith constraint type and wi is the
weight of the given constraint type.

B. Low Level Heuristics

Both heuristic selection and move acceptance are equally
important while designing a hyper-heuristic. In this study,
Simple Random, Greedy, Reinforcement Learning,
Reinforcement Learning with Tabu Search and Choice
Function heuristic selection methods are combined with Late
Acceptance Strategy under a perturbative hyper-heuristic
framework for solving the examination timetabling problem
at Yeditepe University. These heuristic selection
mechanisms are chosen since they are reported to have
potential in [4].

Four perturbative low level heuristics are implemented
under the hyper-heuristics for solving the exam timetabling
problem. The first one is a random perturbation operator
commonly referred to as mutation in Genetic Algorithms,
while three remaining ones search constraint based
neighbourhoods. The mutation makes a pass over each exam
in the list sequentially and randomly reschedules it with a
probability of (1/number-of-exams).

The constraint based perturbative heuristic aims to resolve
the conflicts for a corresponding constraint type. During this
process two decisions have to be made. The first decision is
to choose an exam to reschedule and the second is to choose
a timeslot to be assigned for ir. For both tasks, a tournament
strategy that chooses an item based on the number of
conflicts with a tour size of 2 is used. The heuristics for
resolving the constraints (i) and (iii) execute in a similar
way. The tournament strategy selects an exam with the
maximal number of conflicts among two randomly drawn
exams for rescheduling. Then, the same strategy is
employed selecting a timeslot that minimizes the number of
conflicts between two randomly chosen exams. The heuristic
for resolving the constraint (ii) selects a timeslot with the
largest number of capacity conflicts using tournament. An
exam with the maximum number of attendants is chosen for
rescheduling using a tournament over the set of exams
scheduled for the selected timeslot. After a tournament, a

timeslot that minimizes the number of attendants is assigned
to the selected exam.

V. EXPERIMENTS

A. Experimental Setup and Data

Toronto benchmark collection, provided by Carter et al.
[64], is a well known data set in the exam timetabling
community. This set contains 13 real world problems. As the
problem formulation presented in this study is unique,
Toronto benchmark data are extended with new

characteristics as illustrated in Table II. This version of the
data set is initially used by Bilgin et al. [4].

Pentium IV 3 GHz LINUX machines having 2 Gb
memories are used during the experiments. Each hyper-
heuristic experiment with a problem instance is repeated fifty
times. The value of L is fixed as 500 in all experiments. The
search is terminated whenever the execution time exceeds
600 CPU seconds or there is no violation, in order to achieve
a fair comparison between all algorithms.

B. Computational Results

The performances of five late acceptance hyper-heuristics,
namely; Simple Random-LAS, Greedy-LAS,
Reinforcement Learning-LAS, Choice Function-LAS and
Reinforcement Learning with Tabu Search-LAS are
compared and the results are summarised in Table III and
Figure 3. Each hyper-heuristic is ranked from 1 to 5 for each
problem instance with respect to the best candidate solution
achieved in fifty runs, where 1 indicates the best performing
approach, while 5 is the worst performing one. The ties in
case of similar performance are taken into consideration
during ranking. For example, if the 2nd and 3rd ranking items
have similar performance, their ranks are provided as 2.5 for
both. The Simple Random-LAS hyper-heuristic performs the
best with an average ranking of 2.35 over all problems

TABLE II

CHARACTERISTICS OF THE EXPERIMENTAL DATA

Instance Exams Density Days Capacity

car92 I 543 0.14 12 2000

car91 I 682 0.13 17 1550

ear83 I 190 0.27 8 350

hecs92 I 81 0.42 6 650

kfu93 481 0.06 7 1955

lse91 381 0.06 6 635

pur93 I 2419 0.03 10 5000

rye92 486 0.07 8 2055

sta83 I 139 0.14 4 3024

tre92 261 0.06 10 655

uta92 I 622 0.13 12 2800

ute92 184 0.08 3 1240

yor83 I 181 0.29 7 300

(Figure 3), whereas the Greedy-LAS hyper-heuristic
performs the worst. Moreover, Simple Random-LAS
generates the best results in 5 out of 13 problem instances.

As another evaluation criterion, the student’s t-test is also
performed. The results indicate that the performance
differences between Simple Random-LAS versus
Reinforcement Learning-LAS, Reinforcement Learning with
Tabu Search-LAS and Choice Function-LAS are
statistically significant for {tre92}, {pur93 I} and {car92 I,
tre92}, respectively, within a confidence interval of 95%.
Simple Random-LAS performs significantly better than
Greedy-LAS almost for all problem instances, except sta83 I
and ute92. For these problem instances, Simple
Random-LAS delivers a slightly better performance. The
Greedy heuristic selection method selects the most
improving heuristic to be invoked at each step. The overall
hyper-heuristic framework turns into a hill climbing

approach. It seems that the Greedy method can not
compensate the time it looses while invoking all heuristics
and gets stuck at local optima.

The experimental results in [4] show that Choice Function
and a generic Simulated Annealing move acceptance yields
the best results over the same examination timetabling
problem. A final comparison is performed between this
hyper-heuristic and the Simple Random-LAS as illustrated
in Table IV. Simple Random-LAS generates the best
performance that is statistically significant almost for all
problem instances, except hecs92 I, sta83 I and ute92. Both
hyper-heuristics have a similar performance for sta83 I and
ute92. On the other hand, Choice Function–Simulated
Annealing performs significantly better only for solving
hecs92 I.

VI. CONCLUSION

It has been observed in the previous studies that different
combinations of heuristic selection and move acceptance
methods in a perturbative hyper-heuristics framework might
generate different performances. In this study, the best
heuristic selection match is investigated for a recently
proposed move acceptance strategy, referred to as Late
Acceptance Strategy over a set of examination timetabling
problems. The results indicate the success of hyper-heuristic
combination of Simple Random heuristic selection and Late
Acceptance Strategy. Learning mechanisms based on
reinforcement learning or statistical analyses do not function
well in combination with the late acceptance strategy.
Reinforcement Learning, Reinforcement Learning with Tabu
Search and Choice Function heuristic selection mechanisms

TABLE IV

PERFORMANCE COMPARISON OF SIMPLE RANDOM-LAS AND CHOICE

FUNCTION-SIMULATED ANNEALING [4] HYPER-HEURISTICS BASED ON T-
TEST OVER EACH PROBLEM INSTANCE.

Instance Performance Confidence Interval

car-f-92 SR-LAS > CF-SA 0.99

car-s-91 SR-LAS > CF-SA 0.99
ear83 I SR-LAS > CF-SA 0.99
hecs92 I CF-SA > SR-LAS 0.99
kfu93 SR-LAS > CF-SA 0.99
lse91 SR-LAS > CF-SA 0.99
pur93 I SR-LAS > CF-SA 0.99
rye92 SR-LAS > CF-SA 0.99

sta83 I SR-LAS » CF-SA 0.82

tre92 SR-LAS > CF-SA 0.99

uta92 I SR-LAS > CF-SA 0.99

ute92 SR-LAS » CF-SA 0.22

yor83 I SR-LAS > CF-SA 0.99

“>” indicates “is better than” and the performance difference for the

given approach is statistically significant within the given confidence
interval. “»” indicates “is slightly better than” and the performance
difference is not significant.

TABLE III

PERFORMANCE COMPARISON OF LAS BASED HYPER-HEURISTICS EACH

USING A DIFFERENT HEURISTIC SELECTION METHOD BASED ON RANKINGS.
THE BEST APPROACHES ARE MARKED IN BOLD.

Instance CF GR RL SR TABU

car-f-92 4 5 3 2 1

car-s-91 4 5 1 2.5 2.5

ear83 I 4 1 2 5 3

hecs92 I 2 1 3 5 4

kfu93 4 5 3 2 1

lse91 2 5 4 1 3

pur93 I 1 5 4 2 3

rye92 3 5 2 1 4

sta83 I 2 4.5 2 2 4.5

tre92 3 5 2 1 4

uta92 I 3 5 2 4 1

ute92 4.5 3 4.5 1 2

yor83 I 5 1 4 2 3

0.00

1.00

2.00

3.00

4.00

5.00

6.00

CF-LAS GR-LAS RL-LAS SR-LAS TABU-LAS

Fig. 3. Average ranking and the standard deviation of each
LAS based hyper-heuristic

make use of a short term memory. These elaborate schemes
score each heuristic based on their previous and current
performances. The delay within the acceptance mechanism
seems to cause the learning mechanisms to respond to the
changes in the search environment less rigorously than
expected. The experimental results show that Reinforcement
Learning-LAS, Reinforcement Learning with Tabu
Search-LAS and Choice Function-LAS hyper-heuristics still
have potential. As a future work, different learning rates and
memory lengths for these heuristic selection methods can be
investigated. The Simple Random–Late Acceptance Strategy
hyper-heuristic outperforms the previous best hyper-heuristic
for solving the examination timetabling problem.

REFERENCES
[1] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg,

“Hyper-heuristics: An emerging direction in modern search
technology,” in: Glover F, Kochenberger G (eds) Handbook of
Metaheuristics, Kluwer, pp. 457-474, 2003.

[2] P. Cowling , G. Kendall, E. Soubeiga, “Hyperheuristics: A tool for
rapid prototyping in scheduling and optimisation,” in EvoWorkShops,
Springer, Lecture Notes in Computer Science, vol 4193, pp. 1-10,
2002.

[3] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, “A graph-
based hyper heuristic for educational timetabling problems,” Eur. J. of
Op. Res. 176: 177-192, 2007.

[4] B. Bilgin, E. Ozcan, E. E. Korkmaz, “An experimental study on
hyperheuristics and exam scheduling,” in Proc. of the 6th Int.l Conf.
on the Practice and Theory of Automated Timetabling, pp.123–140,
2006.

[5] E. Ozcan, B. Bilgin, E. E. Korkmaz , “Hill climbers and mutational
heuristics in hyperheuristics,” in Runarsson, T., Beyer, H.G., Burke,
E., J.Merelo-Guervos, J., Whitley, D., Yao, X. (eds.) The 9th Int.
Conf. on Parallel Problem Solving from Nature, Reykjavik, Iceland.
LNCS, vol. 4193. pp. 202–211, 2006.

[6] E. Ozcan, B. Bilgin, E. E. Korkmaz , “A comprehensive analysis of
hyper-heuristics,” Intelligent Data Analysis, 12:1, pp. 3-23, 2008.

[7] A. Cuesta-Canada, L. Garrido, H. Terashima-Marin, “Building hyper-
heuristics through ant colony optimisation for the 2d bin packing
problem,” KES'05, LNCS, vol. 3684, pp. 654–660, 2005.

[8] E. K. Burke, M. R. Hyde, G. Kendall, “Evolving bin packing
heuristics with genetic programming,” in Parallel Problem Solving
from Nature - PPSN IX, LNCS, vol. 4193, pp. 860–869, Springer-
Verlag, 2006.

[9] P. Ross, S. Schulenburg, J. G. Marin-Blázquez, E. Hart,
“Hyperheuristics: learning to combine simple heuristics in bin-
packing problems,” in: Proc. of the Genetic and Evo. Comp. Conf.,
New York, July 9-13, pp. 942–948, 2002.

[10] P. Ross, S. Schulenburg, J. G. Marin-Blázquez, E. Hart, “Learning a
procedure that can solve hard bin-packing problems: a new ga-based
approach to hyper-heuristics,” in Proc. Genetic and Evo. Comp.,
Springer, LNCS, vol. 2724, pp. 1295–1306, 2003.

[11] G. Kendall, M. Mohamad, “Channel assignment in cellular
communication using a great deluge hyper-heuristic,” in Proc. of the
12th IEEE Int. Conf. on Networks, vol. 2, pp. 769–773, 2004.

[12] W. Hart, , P. M. Ross, J. Nelson, “ Solving a real-world problem using
an evolving heuristically driven schedule builder,” Evolutionary
Computation, (6)1, 61–80 (1998)

[13] M. Ayob, G. Kendall, “A Monte Carlo hyper-heuristic to optimise
component placement sequencing for multi head placement machine,”
in Proc. of the Int. Conf. on Intelligent Technologies, Chiang Mai,
Thailand, pp.132–141, 2003.

[14] E. K. Burke, G. Kendall, E. Soubeiga, “A tabu-search hyper-heuristic
for timetabling and rostering,” J.l of Heuristics 9(6), 451–470, 2003.

[15] E. K. Burke, S. Petrovic, R. Qu, “Case Based Heuristic Selection for
Timetabling Problems,” J. of Scheduling 9(2), pp. 115-132, 2006.

[16] E. K. Burke, Y. Bykov. “An adaptive flex-deluge approach to
university exam timetabling,” INFORMS J. on Computing, submitted
for publication. 2008a

[17] H.-L. Fang, P. M. Ross, D. Corne, “A promising hybrid ga/heuristic
approach for open-shop scheduling problems,” in Cohn, A. (ed) Proc.
of the 11th Eur. Conf. on Artificial Intelligence, John Wiley and Sons
Ltd., pp. 590–594, 1994.

[18] A. Nareyek, “Choosing search heuristics by non-stationary
reinforcement learning,” in: Metaheuristics: Computer Decision
Making, pp. 523–544. Kluwer Academic Publishers, 2004.

[19] E. K. Burke, G. Kendall, D. L. Silva, R. O'Brien, E. Soubeiga, “An
ant algorithm hyperheuristic for the project presentation scheduling
problem,” in Proc. of the IEEE Congress on Evolutionary
Computation, Edinburgh, Scotland, pp. 2263–2270, 2005.

[20] P. Cowling, G. Kendall and E. Soubeiga, “A hyper-heuristic approach
to scheduling a sales summi,” in: E. K. Burke and W. Erben (eds.)
The 3rd Int. Conf. on the Practice and Theory of Automated
Timetabling, Konstanz, Germany, 16-18 August 2000, Lecture Notes
in Artificial Intelligence, vol. 2079, pp. 176–190, 2001.

[21] E. K. Burke, D. L. Silva, E. Soubeiga, “Multi-objective hyper-
heuristic approaches for space allocation and timetabling,” in T.
Ibaraki, K. Nonobe, M. Yagiura (eds.) Meta-heuristics: Progress as
Real Problem Solvers, selected papers from the 5th Metaheuristics
International Conference (MIC 2003), Springer, pp. 129-158, 2005.

[22] K. Dowsland, E. Soubeiga, E. K. Burke, “A simulated annealing
hyper-heuristic for determining shipper sizes,” Eur. J. of Op. Res.
(179)3, 759–774, 2005.

[23] P. Cowling, G. Kendall and L. Han, “An investigation of a
hyperheuristic genetic algorithm applied to a trainer scheduling
problem,” in Proc. of the 2002 Congress on Evolutionary
Computation, pp. 1185–1190, 2002.

[24] P. Cowling, G. Kendall and L. Han, “An adaptive length chromosome
hyperheuristic genetic algorithm for a trainer scheduling problem,” in
Proc. of the 4th Asia-Pacific Conference on Simulated Evolution And
Learning, Orchid Country Club, Singapore, pp. 267–271, 2002.

[25] G. Kendall and L. Han, “Investigation of a tabu assisted hyper-
heuristic genetic algorithm,” in Proc. of Congress on Evolutionary
Computation, vol. 3, pp. 2230–2237, 2003.

[26] G. Kendall and L. Han, “Guided operators for a hyper-heuristic
genetic algorithm,” in Tamás D Gedeon and Lance Chun Che Fung
(eds.) Proc. of AI-2003: Advances in Artificial Intelligence. The 16th
Australian Conference on Artificial Intelligence, Perth, Australia 3-5
Dec 2003, Lecture Notes in Artificial Intelligence, vol. 2903, pp. 807–
820. Springer (2003b)

[27] R. Bai, E. K. Burke, M. Gendreau and G. Kendall, “A simulated
annealing hyper-heuristic: adaptive heuristic selection for different
vehicle routing problems,” in Proc. of the 3rd Multidisciplinary Int.
Conf. on Scheduling: Theory and Applications, Paris, France, August
28-31, pp. 67-70, 2007.

[28] S. Even, A. Itai and A. Shamir, “On the complexity of timetable and
multi-commodity flow,” SIAM J. on Computing, vol. 5, pp. 691-703,
1976.

[29] E. K. Burke and Y. Bykov, “A late acceptance strategy in hill-
climbing for exam timetabling problems,” presented at PATAT 2008
Conference, Montreal, Canada, August 18-22, 2008b.

[30] E. Ozcan, E. Ersoy, “Final Exam Scheduler - FES,” in Proc. of 2005
IEEE Congress on Evolutionary Computation, vol. 2, pp 1356-1363,
2005.

[31] E. K. Burke, D. Elliman, P. Ford, R. Weare, “Examination
timetabling in British universities: a survey,” in Lecture Notes in
Computer Science, vol. 1153, E. K. Burke and P. Ross, Eds. Springer-
Verlag, Berlin, Heidelberg, New York, 1996, pp. 76-90.

[32] Leighton, F. T.: A graph coloring algorithm for large scheduling
problems. J. of Res. of the National Bureau of Standards, 84:489–506
(1979)

[33] A. J. Cole, “The preparation of examination timetables using a small-
store computer,” The Computer J. vol. 7, pp. 117-121, 1964.

[34] S. Broder, “Final examination scheduling,” Communications of the
ASM, vol. 7, pp.494-498, 1964.

[35] T. Arani, V. Lotfi, “A three-phased approach to final exam
scheduling,” IIE Trans., vol. 21, pp. 86-96, 1989.

[36] M. W. Carter, G. Laporte, J. W. Chinneck, “A general examination
scheduling system,” Interfaces, vol. 24, pp. 109-120, 1994.

[37] D. Corne, H. L. Fang, C. Melish, “Solving the module exam
scheduling problem with genetic algorithms,” in Proceedings of the
6th International Conference in Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, P. W./H.
Chung, G. Lovergrove, M. Ali, Eds. Gordon and Breach Science
Publishers, 1993, pp. 370-373.

[38] E. K. Burke, D. G. Elliman, R. F. Weare, “A genetic algorithm for
university timetabling,” presented at the AISB Workshop on
Evolutionary Computing, Leeds, UK, April 1994.

[39] E. K. Burke, J. P. Newall, R. Weare, “A memetic algorithm for
university exam timetabling,” in Lecture Notes in Computer Science,
vol. 1153, E. K. Burke and P. Ross, Eds. Springer-Verlag, Berlin,
Heidelberg, New York, 1996, pp. 241-250.

[40] E. K. Burke, J. P. Newall, “A multi-stage evolutionary algorithm for
the timetabling problem,” The IEEE Transactions on Evolutionary
Computation, vol. 3(1), pp. 63-74, 1999.

[41] L. F. Paquete, C.M. Fonseca, “A study of examination timetabling
with multiobjective evolutionary algorithms,” in Proc 4th
Metaheuristics International Conference, 2001, pp. 149-154.

[42] W. Erben, “A grouping genetic algorithm for graph colouring and
exam timetabling,” in Lecture Notes in Computer Science, vol. 2079,
E. K. Burke and W. Erben, Eds. Springer-Verlag, Berlin, Heidelberg,
New York, 2001, pp. 132-156.

[43] P. Cote, T. Wong, R. Sabouri, “Application of a hybrid multi-
objective evolutionary algorithm to the uncapacitated exam proximity
problem,” in Lecture Notes in Computer Science, vol. 3616, E. K.
Burke and M. Trick, Eds. Springer-Verlag, Berlin, Heidelberg, New
York, 2005, pp. 151-168.

[44] A. Alkan, E. Ozcan, “Memetic algorithms for timetabling,” in: Proc.
of IEEE Congress on Evolutionary Computation, pp. 1796–1802,
2003

[45] E. Ozcan, “Towards an xml based standard for timetabling problems:
TTML,” in: Multidisciplinary Scheduling: Theory and Applications,
Springer Verlag, 163–187, 2005.

[46] J. M. Thompson, K.A. Dowsland, “Variants of simulated annealing
for the examination timetabling problem,” Annals of Operations
Research, vol. 63, pp. 105-128, 1996.

[47] L. Di Gaspero, A. Schaerf, “Tabu search techniques for examination
timetabling,” .in Lecture Notes in Computer Science, vol. 2079, E. K.
Burke and W. Erben, Eds. Springer-Verlag, Berlin, Heidelberg, New
York, 2001, pp. 104-117.

[48] S. Casey, J. Thompson, “GRASPing the examination scheduling
problem,” in Lecture Notes in Computer Science, vol. 2740, E. K.
Burke and P. De Causmaecker, Eds. Springer-Verlag, Berlin,
Heidelberg, New York, 2003, pp. 232-246.

[49] S. Petrovic and Y. Bykov, “A multiobjective optimisation technique
for exam timetabling based on trajectories,” in Lecture Notes in
Computer Science, vol. 2740, E. K. Burke and P. De Causmaecker,
Eds. Springer-Verlag, Berlin, Heidelberg, New York, 2003, pp. 181-
194.

[50] S. Abdullah, S. Ahmadi, E.K.Burke, M. Dror, “Investigating Ahuja-
Orlin’s large neighbourhood search for examination timetabling,” OR
Spectrum, vol. 29, pp. 351-372, 2007.

[51] H. T. Marin, “Combinations of gas and csp strategies for solving
examination timetabling problems,” Ph. D. Thesis, Instituto
Tecnologico y de Estudios Superiores de Monterrey, 1998.

[52] S. Petrovic, Y. Yang, M. Dror, “Case-based selection of initialisation
heuristics for metaheuristic examination timetabling,” Exp. Sys. with
App. (33)3, 772–785, 2007.

[53] H. Asmuni, E.K. Burke, J. Garibaldi, “Fuzzy multiple ordering
criteria for examination timetabling,” .in Lecture Notes in Computer
Science, vol. 3616, E. K. Burke and M. Trick, Eds. Springer-Verlag,
Berlin, Heidelberg, New York, 2005, pp. 344-354.

[54] Eley, M.: Ant algorithms for the exam timetabling problem. In: The
6th International Conference on Practice and Theory of Automated
Timetabling, pp. 167–180. (2006)

[55] L. Merlot, N. Boland, B. Hughes, P. Stuckey, “A hybrid algorithm for
the examination timetabling problem,” in Lecture Notes in Computer
Science, vol. 2740, E. K. Burke and P. De Causmaecker, Eds.
Springer-Verlag, Berlin, Heidelberg, New York, 2003, pp. 207-231.

[56] M. Caramia, P. Dell’Olmo, G. Italiano, “Novel local-search based
approaches to university examination timetabling,” INFORMS J. on
Computing, vol. 20, pp. 86-99, 2008.

[57] M. W. Carter, “A survey of practical applications of examination
timetabling algorithms,” Operations Research, vol. 34(2), pp. 193-
201, 1986.

[58] E. K. Burke, J. Kingston, K. Jackson, R. Weare, “Automated
university timetabling: The state of the art,” The Computer J., vol.
40(9), pp. 565-571, 1997.

[59] A. Schaerf, “A survey of automated timetabling,” Artificial
Intelligence Review, vol. 13(2), pp. 187-127, 1999.

[60] E. K. Burke, S. Petrovic, “Recent research directions in automated
timetabling,” Europ. J. Oper. Res., vol. 140, pp. 266-280, 2002.

[61] R. Qu, E. K. Burke, B. McCollum, L. Merlot, S. Lee, “A survey of
search methodologies and automated system development for
examination timetabling,” Journal of Scheduling DOI:
10.1007/s10951-008-0077-5

[62] M. Laguna and F. Glover, “What is tabu search?” Colorado Business
Review, Vol. 6, pp. 5-12, 1996.

[63] M. W. Carter, G. Laporte, S. T. Lee, “Examination timetabling:
algorithmic strategies and applications,” J. of the Op. Res. Soc. 47,
373–383, 1996.

