
 
 

 

  

Abstract — A hyperheuristic is a high level problem solving 
methodology that performs a search over the space generated 
by a set of low level heuristics. One of the hyperheuristic 
frameworks is based on a single point search containing two 
main stages: heuristic selection and move acceptance. Most of 
the existing move acceptance methods compare a new solution, 
generated after applying a heuristic, against a current solution 
in order to decide whether to reject it or replace the current 
one. Late Acceptance Strategy is presented as a promising local 
search methodology based on a novel move acceptance 
mechanism. This method performs a comparison between the 
new candidate solution and a previous solution that is generated 
L steps earlier. In this study, the performance of a set of hyper-
heuristics utilising different heuristic selection methods 
combined with the Late Acceptance Strategy are investigated 
over an examination timetabling problem. The results illustrate 
the potential of this approach as a hyper-heuristic component. 
The hyper-heuristic formed by combining a random heuristic 
selection with Late Acceptance Strategy improves on the best 
results obtained in a previous study.  

I. INTRODUCTION 

YPER-HEURISTICS represent a class of techniques for 
solving difficult optimisation problems [1, 2]. A high 

level (meta-)heuristic that performs a search over a set of low 
level (meta-)heuristics rather than the solutions can be 
referred to as a hyper-heuristic. An increasing interest in 
hyper-heuristics is observed as illustrated in Table I, since 
they provide a simple to implement, yet a powerful 
framework to deal with the complexities of the real-world 
problems.  

The low level heuristics can be constructive that are used 
to build solutions, or perturbative that are used to modify a 
given candidate solution (or solutions). For example, Burke 
et al. [3] uses constructive graph colouring heuristics for 
solving exam timetabling. On the other hand, Kendall and 
Mohamad [11] employ Great Deluge based hyper-heuristic 
that manages perturbative heuristics for solving a channel 
assignment problem.  

A research interest to the examination timetabling problem 
is motivated by two reasons. First, this problem is practically 
important, and second, it appears as a challenging direction 
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for theoretical studies. In fact, a tight competition between 
high educational institutions (e.g., universities) forces the 
administration to seek for additional ways of attraction new 
students, and of course, they are keen on increasing the 
variety of course modules. However, having quite restricted 
resources the first priority task is the effectiveness of their 
management where an efficient timetabling plays a major 
role. 

On the other hand, different instances of examination 
timetabling problem can be considered as good benchmarks 
for testing, investigating and comparing a variety of 
optimisation techniques. These problems are usually large-
scale, highly constrained and extremely difficult to solve 
ones. They belong to the class of NP-complete constraint 
optimisation problems [28], hence there is no existent 
method, which can produce an optimal solution in a 
polynomial time. As an alternative, different heuristic 
(including meta-heuristic and hyper-heuristic) techniques 
might be used here to search for an attainable minimum 
(near-optimum solution). 

There is empirical evidence that the choice of heuristic 
selection and move acceptance might affect the performance 
of a hyper-heuristic [6]. In this study we propose to combine 
a novel move acceptance strategy referred to as Late 
Acceptance Strategy by Burke and Bykov [29] with different 
heuristic selection methods generating different hyper-
heuristics. Their performances are compared to identify the 
best heuristic selection choice for this move acceptance 
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TABLE I 
SOME PREVIOUS APPLICATIONS OF HYPER-HEURISTICS 

Application (s) Reference (s) 
Benchmark function optimisation [4-6] 

Bin packing [7-10] 

Channel assignment  [11] 

Chicken catching and transportation  [12] 

Component placement sequencing [13] 

Course timetabling [14, 15] 

Examination timetabling [4, 15, 16] 

Nurse rostering [14] 

Open shop scheduling [17] 

Orc quest, logistics domain [18] 

Presentation scheduling  [19] 

Sales summit scheduling  [20] 

Space allocation  [21, 22] 

Trainer scheduling problem [23-26] 

Vehicle routing [27] 

 



 
 

 

strategy for solving an examination timetabling problem as 
formulated by Ozcan and Ersoy [30]. 

In Section II, a broad overview of literature on 
perturbative hyper-heuristics and examination timetabling is 
provided. Some selected hyper-heuristic components used 
during the experiments will be discussed in detail. In Section 
III, the Late Acceptance Strategy is explained. In Section IV, 
the examination timetabling problem at Yeditepe University 
is described and the details of hyper-heuristics for solving 
the problem are provided. Section V discusses the 
experimental settings and computational results. Finally, 
conclusions are presented in Section VI.   

II. BACKGROUND 

A. Perturbative Hyper-heuristics 

Hyper-heuristics are the emerging class of optimisation 
tools [1, 2]. There are a number of different hyper-heuristic 
frameworks that allow a high level heuristic to perform 
search over a space of low level heuristics. A bilevel 
perturbative hyper-heuristic framework is illustrated in 
Figure 1. Here, a high level heuristic manages a set of low 
level perturbative (improvement, variation) heuristics. This 
framework is used in our study. In a single point search, an 
initial solution (s0) passes through two main stages 
iteratively. In the first stage, a heuristic selection is 
performed. Next, the chosen heuristic (Hi) applied to the 
current solution (s) and a new candidate solution is generated 
(s'¬Hi(s)). After that a decision is made whether to accept or 
reject the new move. If it is accepted, the new candidate 
solution replaces the current solution (s¬ s'). This process 
continues until a certain set of termination criteria is 
satisfied. Hence, a hyper-heuristic will be denoted as a pair 
form this point onward: “heuristic selection method”-“move 
acceptance mechanism”.  

Cowling, Kendall and Soubeiga [20] explored a set of 
hyperheuristics combining Simple Random (SR), Random 
Descent, Random Permutation, Random Permutation 
Descent, Greedy (GR) and Choice Function (CF) heuristic 
selection methods with two simple move acceptance 
strategies: accept All Moves (AM) and Only Improving 
moves (OI). Simple Random selects a heuristic randomly 
from k given low level heuristics. The Greedy (GR) method 
invokes k heuristics successively using the same candidate 
solution and compares the quality of k new solutions and 
selects the heuristic that generates the solution with highest 
quality. Choice Function (CF) is based on a scoring 
mechanism that statistically evaluates individual and pair-
wise performances of the low level heuristics. The time 
passed since the last invocation of the selected heuristic is 
also weighed in the scoring function. The heuristic with the 
maximal score is selected for employment.  Cowling, 
Kendall and Soubeiga observed that the Choice 
Function-All Moves hyperheuristic performed better than 
the rest.  

 
Nareyek [18] explored Reinforcement Learning (RL) for 

choosing heuristics during the search process. A utility value 
(score) is assigned to each heuristic. If a selected heuristic 
improves the current solution, its utility is increased by a 
given rate (positive adaptation). Otherwise, it is decreased 
using another rate (negative adaptation). The utility values 
are allowed to change within an interval of [0, number-of-
heuristics]. At each step, a heuristic is selected based on the 
utility values. Different strategies can be used for this 
purpose. For instance, the max strategy chooses the heuristic 
with the maximal utility value, whereas fair random (roulette 
wheel strategy) arranges the probability of a heuristic being 
selected proportional to its utility value over the sum of 
utility values. Nareyek combined this strategy with All 
Moves acceptance and investigated combinations of different 
adaptation schemes and heuristic selection strategies for 
solving Orc quest and logistics domain problems.  The 
results show that the additive reward (+1) and subtractive 
punishment (-1) and using the maximal utility (max) are 
viable choices for the Reinforcement Learning heuristic 
selection method.  

Burke, Kendall and Soubeiga [14] proposed a 
hyperheuristic that combined reinforcement learning 
mechanism with tabu-search (TABU) as a heuristic selection 
method. Each heuristic is associated with a rank and 
manipulated in a similar manner as the utility values in [18]. 
All Moves was used as a move acceptance strategy. A 
variable length tabu list holds the heuristics that should be 
avoided. At each step, the heuristic with the maximum rank, 
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Fig. 1. A bilevel hyper-heuristic framework 



 
 

 

which is not in the tabu list is selected and applied to the 
candidate solution. Whenever there is an improvement or an 
equal quality solution is generated, the heuristics in the tabu 
list are released. If the move is a worsening move, then the 
selected heuristic is queued into the tabu list.  The 
experimental results show that this hyper-heuristic delivers a 
similar or even better performance as compared to the 
custom-made meta-heuristics for solving nurse rostering and 
course timetabling problem instances. 

B. Examination Timetabling Problem 

The goal of examination timetabling is to allocate a given 
set of events (exams) to available resources (timeslots, 
rooms, etc.) subject to a set of constraints. Two different 
types of constraints can be identified: hard and soft 
constraints. Hard constraints are required to be satisfied, and 
only a timetable without violations of hard constraints can be 
considered as feasible. Soft constraints represent the 
preferences that should be satisfied as many as possible 
(usually a timetable without violations of soft constraints 
does not exist). 

The real-world timetabling requirements are unique for 
each particular university and usually reflect the conflicting 
priorities of the different participants of the educational 
process [31]. However, the most significant requirements 
were consolidated into a certain common scheme. It was 
observed that the most general hard constraint is that no 
student has to sit two exams at the same time. This goal is 
equivalent to the classical graph colouring problem [32], 
which causes a major hardship of Examination Timetabling. 
The most common soft constraint is the spreading exams 
over the examination session. However, different versions of 
this problem use different ways of calculation the spreading 
as well as other soft constraints. 

During the years virtually every optimisation technique 
was applied to Exam Timetabling Problems. In a way, the 
timeline of Exam Timetabling studies traces the progress of 
optimisation algorithms and computer hardware. Thus, the 
earlier studies were mostly focused on various constructive 
methods, from the simplest heuristics as in [33] and [34], up 
to quite advanced ones (see [35, 36]). 

The era of meta-heuristic studies was started with a 
particular attention to Genetic Algorithms. This technique 
was applied to Exam Timetabling in pioneering publications 
of Corne et al. [37] and Burke et al. [38]. These studies were 
expanded by the application of Memetic Algorithm [39, 40] 
and a multi-objective evolutionary algorithm (MOEA) by 
Paquete and Fonseca [41]. The examples of further 
applications of these methods can be found in [42] and [43]. 
Ozcan and Ersoy [30] generalized their previous study in 
Alkan and Ozcan [44] and proposed an extended framework 
for designing violation directed adaptive operators, which 
perform a search over the constraint oriented 
neighbourhoods. A memetic algorithm utilizing such a hill-
climber is implemented as a problem solver in a tool called 

FES. FES is the first tool that supports timetabling markup 
language (TTML) [45] and accepts input in that format.   

In parallel with the evolutionary methods the performance 
of different iterative search meta-heuristics was widely 
studied for examination timetabling, such as simulated 
annealing [46] and tabu search [47]. The investigations of 
this family of techniques are still continued involving 
innovative search methodologies such as GRASP (Greedy 
Randomized Adaptive Search Procedure) [48], trajectory-
based multi-objective search [49], Ahuja-Orlin’s very large 
neighbourhood search [50], the generalization of the great 
deluge algorithm called as Flex-Deluge Algorithm [16]. The 
most recent example is the Late Acceptance Strategy by 
Burke and Bykov [29]. Additionally, a variety of other 
optimisation methods were applied to examination 
timetabling including constraint satisfaction techniques [51], 
case based reasoning [15, 52], fuzzy methods [53], ant 
colony [53] as well as different hybrid methods [55, 56]. 

A special attention in the recent years is paid to the 
application of different hyperheuristic approaches to 
examination timetabling. In Bilgin, Ozcan and Korkmaz [4] 
tested a set of hyperheuristics that combine heuristic 
selection and move acceptance mechanisms. Burke et al. [3] 
investigated a hyperheuristic based on a tabu search 
mechanism that assigns proper graph colouring heuristics for 
constructing an examination timetable. 

The significantly larger list of publications as well as more 
detailed information about examination timetabling studies 
can be found in a number surveys starting from Carter [57] 
and continued by Burke et al. [58], Shaerf [59], Burke and 
Petrovic [60]. The most recent survey is provided by Qu et 
al. [61]. 

III. LATE ACCEPTANCE STRATEGY 

Late Acceptance Strategy (LAS) is a new and original 
general purpose meta-heuristic technique. It was proposed by 
Burke and Bykov [29] who studied it over a set of 
examination timetabling problems. Although nowadays the 
investigations of the properties of LAS are still in their 
earlier stages, this method has already showed quite 
promising performance. The presented research has been 
done in course of the current investigations of the properties 
of this new method.  

Late Acceptance Strategy belongs to the family of iterative 
search techniques but it employs an advanced acceptance 
mechanism. It is atypical to the most of the existing search 
meta-heuristics (such as Hill-Climbing, Simulated 
Annealing, etc.) where at each iteration; a new generated 
candidate solution is compared with a current one. In 
contrast, the main idea of LAS is to compare the candidate 
solution with the one which was “current” several iterations 
earlier. Correspondingly, each current solution is used for 
comparison not at the immediate, but at some later iteration. 
The “delay” in the comparison inspires the name of this new 
meta-heuristic and also enables the use the simplest greedy 



 
 

 

acceptance rule. The current version of Late Acceptance 
Strategy compares the cost functions of the candidate and its 
“late” competitor and only candidates with better (or equal) 
cost are accepted. 

The implementation of the above idea appears as a list 
(fitness array), which contains cost functions of current 
solutions during a number of recent iterations. In order to 
maintain the list of an invariable length L, at each iteration, 
the algorithm inserts the value of the current cost into the 
beginning of the list and simultaneously removes the last 
element from the end. An example of the execution of 3 
consecutive iterations of LAS is shown in Fig. 2. 

 

   
In this example the candidate solutions at ith and (i+2)th 
iterations are accepted as their cost is less than the value 
from the end of the list. Correspondingly, the (i+1)th 
candidate is rejected (its cost is higher than the Lth element of 
the list). Here the main rule of LAS is highlighted that the 
current (not the candidate) cost is inserted into the list. When 
the candidate is rejected, the current cost remains equal to 
the previous one and therefore the list contains a series of 
same values. 

In practical implementation the insertion/removing 
procedure can be simplified by just exchanging the value of 
the fitness array element, which is calculated as a virtual 
beginning/end (see more details in [29]). The authors also 
give recommendations regarding the initialization of the 
array and termination criteria. At the beginning of the search 
all array elements are the same and are equal to the initial 
cost. Similar to other search methods, the execution of the 

algorithm can be run until convergence (no improvement for 
a high number of iterations). However, this algorithm tends 
to make an extremely slow improvement at the last stage of 
the search, so it could be reasonable to employ some other 
termination criteria, such as fixing the total execution time. 
The convergence issues of this algorithm are currently under 
investigation and could be considered as a subject of future 
work. 

The existence of the fitness array indicates that LAS 
follows the idea of Laguna and Glover [62] of the 
“intelligent” use of the information collected during the 
search. The most popular interpretation of this idea is the 
Tabu Search, which operates with the list of recent moves. 
However, the nature of the lists and the ways of operation are 
different in Late Acceptance Strategy and Tabu Search and 
they can be seen as absolutely different methods. 

The main advantage of Late Acceptance Strategy is its 
simplicity: it is easy for implementation and quite 
straightforward in tuning. De-facto, the performance of this 
algorithm depends on a single genuine parameter: length of 
the list L. This indicates the overall robustness of the method 
and high immunity against possible mistakes in 
parameterization (which can appear when, for example, 
defining a cooling schedule.). The dependence of the 
performance of the method on the length L was investigated 
in [29]. It was argued that with L=1, the Late Acceptance 
Strategy degenerates into a pure Hill-Climbing. This method 
is known to be very fast, but hardly able to produce a good 
quality results. The further experiments showed that with the 
increasing of L the performance of the method is changing. 
The search becomes slower, but the quality of result 
increases. This is quite logical, as with longer L, more 
worsening moves are accepted, so the search has less chance 
to be stuck in local minima. With relatively long L (several 
thousands) this algorithm becomes powerful enough to be 
competitive with the best existing meta-heuristics. It was 
able to produce very strong results during a relatively short 
running time (several minutes).  

IV. SOLVING AN EXAMINATION TIMETABLING 

PROBLEM 

A. Examination Timetabling Problem at Yeditepe 
University 

The set of constraints for an examination timetabling 
problem differs from institution to institution. There are 
many variants as discussed in [61]. In this study, a 
capacitated examination timetabling problem variant at 
Yeditepe University as introduced in [30] is used. The 
problem requires arrangement of a set of exams for a given 
number of days. Only three consecutive exams are allowed 
to be arranged in a day. A list of students and the exams that 
they take are provided as input. This unique problem 
imposes the following constraints: 
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Fig. 2. An illustration of how LAS executes for a 
minimization problem. 



 
 

 

i) The exams that each student takes must be assigned 
to different timeslots.  

ii) The total number of students taking an exam at a 
timeslot is not allowed to exceed a predetermined 
capacity.  

iii) If a student is scheduled to take two exams in the 
same day, the exams must not be assigned to 
successive timeslots. 

A direct representation is used to represent a candidate 
solution encoding all events and their mappings onto a given 
timetable of size 3´days. The following fitness function is 
used to evaluate a given solution S: 

 
fitness(S) = -1/ ("iåwi Vi(S)+1),         (1) 
 

where i is the constraint type, V measure the number of 
violations in S due to the ith constraint type and wi is the 
weight of the given constraint type. 

B. Low Level Heuristics 

Both heuristic selection and move acceptance are equally 
important while designing a hyper-heuristic. In this study, 
Simple Random, Greedy, Reinforcement Learning, 
Reinforcement Learning with Tabu Search and Choice 
Function heuristic selection methods are combined with Late 
Acceptance Strategy under a perturbative hyper-heuristic 
framework for solving the examination timetabling problem 
at Yeditepe University. These heuristic selection 
mechanisms are chosen since they are reported to have 
potential in [4]. 

Four perturbative low level heuristics are implemented 
under the hyper-heuristics for solving the exam timetabling 
problem. The first one is a random perturbation operator 
commonly referred to as mutation in Genetic Algorithms, 
while three remaining ones search constraint based 
neighbourhoods. The mutation makes a pass over each exam 
in the list sequentially and randomly reschedules it with a 
probability of (1/number-of-exams).   

The constraint based perturbative heuristic aims to resolve 
the conflicts for a corresponding constraint type. During this 
process two decisions have to be made. The first decision is 
to choose an exam to reschedule and the second is to choose 
a timeslot to be assigned for ir. For both tasks, a tournament 
strategy that chooses an item based on the number of 
conflicts with a tour size of 2 is used. The heuristics for 
resolving the constraints (i) and (iii) execute in a similar 
way. The tournament strategy selects an exam with the 
maximal number of conflicts among two randomly drawn 
exams for rescheduling.  Then, the same strategy is 
employed selecting a timeslot that minimizes the number of 
conflicts between two randomly chosen exams. The heuristic 
for resolving the constraint (ii) selects a timeslot with the 
largest number of capacity conflicts using tournament. An 
exam with the maximum number of attendants is chosen for 
rescheduling using a tournament over the set of exams 
scheduled for the selected timeslot. After a tournament, a 

timeslot that minimizes the number of attendants is assigned 
to the selected exam. 

V. EXPERIMENTS 

A. Experimental Setup and Data 

Toronto benchmark collection, provided by Carter et al. 
[64], is a well known data set in the exam timetabling 
community. This set contains 13 real world problems. As the 
problem formulation presented in this study is unique, 
Toronto benchmark data are extended with new 

characteristics as illustrated in Table II. This version of the 
data set is initially used by Bilgin et al. [4].  

Pentium IV 3 GHz LINUX machines having 2 Gb 
memories are used during the experiments. Each hyper-
heuristic experiment with a problem instance is repeated fifty 
times. The value of L is fixed as 500 in all experiments. The 
search is terminated whenever the execution time exceeds 
600 CPU seconds or there is no violation, in order to achieve 
a fair comparison between all algorithms.  

B. Computational Results 

The performances of five late acceptance hyper-heuristics, 
namely; Simple Random-LAS, Greedy-LAS, 
Reinforcement Learning-LAS, Choice Function-LAS and 
Reinforcement Learning with Tabu Search-LAS are 
compared and the results are summarised in Table III and 
Figure 3. Each hyper-heuristic is ranked  from 1 to 5 for each 
problem instance with respect to the best candidate solution 
achieved in fifty runs, where 1 indicates the best performing 
approach, while 5 is the worst performing one. The ties in 
case of similar performance are taken into consideration 
during ranking. For example, if the 2nd and 3rd ranking items 
have similar performance, their ranks are provided as 2.5 for 
both. The Simple Random-LAS hyper-heuristic performs the 
best with an average ranking of 2.35 over all problems 

 
TABLE II 

CHARACTERISTICS OF THE EXPERIMENTAL DATA 
 

Instance Exams Density Days Capacity 

car92 I 543 0.14 12 2000 

car91 I 682 0.13 17 1550 

ear83 I  190 0.27 8 350 

hecs92 I 81 0.42 6 650 

kfu93  481 0.06 7 1955 

lse91  381 0.06 6 635 

pur93 I  2419 0.03 10 5000 

rye92 486 0.07 8 2055 

sta83 I  139 0.14 4 3024 

tre92  261 0.06 10 655 

uta92 I  622 0.13 12 2800 

ute92  184 0.08 3 1240 

yor83 I  181 0.29 7 300 

 



 
 

 

(Figure 3), whereas the Greedy-LAS hyper-heuristic 
performs the worst. Moreover, Simple Random-LAS 
generates the best results in 5 out of 13 problem instances. 

As another evaluation criterion, the student’s t-test is also 
performed. The results indicate that the performance 
differences between Simple Random-LAS versus 
Reinforcement Learning-LAS, Reinforcement Learning with 
Tabu Search-LAS and Choice Function-LAS are 
statistically significant for {tre92}, {pur93 I} and {car92 I, 
tre92}, respectively, within a confidence interval of 95%.  
Simple Random-LAS performs significantly better than 
Greedy-LAS almost for all problem instances, except sta83 I 
and ute92. For these problem instances, Simple 
Random-LAS delivers a slightly better performance. The 
Greedy heuristic selection method selects the most 
improving heuristic to be invoked at each step. The overall 
hyper-heuristic framework turns into a hill climbing 

approach.  It seems that the Greedy method can not 
compensate the time it looses while invoking all heuristics 
and gets stuck at local optima.  

The experimental results in [4] show that Choice Function 
and a generic Simulated Annealing move acceptance yields 
the best results over the same examination timetabling 
problem. A final comparison is performed between this 
hyper-heuristic and the Simple Random-LAS as illustrated 
in Table IV. Simple Random-LAS generates the best 
performance that is statistically significant almost for all 
problem instances, except hecs92 I, sta83 I and ute92. Both 
hyper-heuristics have a similar performance for sta83 I and 
ute92. On the other hand, Choice Function–Simulated 
Annealing performs significantly better only for solving 
hecs92 I. 

VI. CONCLUSION 

It has been observed in the previous studies that different 
combinations of heuristic selection and move acceptance 
methods in a perturbative hyper-heuristics framework might 
generate different performances. In this study, the best 
heuristic selection match is investigated for a recently 
proposed move acceptance strategy, referred to as Late 
Acceptance Strategy over a set of examination timetabling 
problems. The results indicate the success of hyper-heuristic 
combination of Simple Random heuristic selection and Late 
Acceptance Strategy. Learning mechanisms based on 
reinforcement learning or statistical analyses do not function 
well in combination with the late acceptance strategy. 
Reinforcement Learning, Reinforcement Learning with Tabu 
Search and Choice Function heuristic selection mechanisms 

 
TABLE IV 

PERFORMANCE COMPARISON OF SIMPLE RANDOM-LAS AND CHOICE 

FUNCTION-SIMULATED ANNEALING [4] HYPER-HEURISTICS BASED ON T-
TEST OVER EACH PROBLEM INSTANCE.  

 

Instance Performance Confidence Interval 

car-f-92 SR-LAS > CF-SA 0.99 

car-s-91 SR-LAS > CF-SA 0.99 
ear83 I  SR-LAS > CF-SA 0.99 
hecs92 I CF-SA > SR-LAS 0.99 
kfu93  SR-LAS > CF-SA 0.99 
lse91  SR-LAS > CF-SA 0.99 
pur93 I  SR-LAS > CF-SA 0.99 
rye92 SR-LAS > CF-SA 0.99 

sta83 I  SR-LAS » CF-SA 0.82 

tre92  SR-LAS > CF-SA 0.99 

uta92 I  SR-LAS > CF-SA 0.99 

ute92  SR-LAS » CF-SA 0.22 

yor83 I  SR-LAS > CF-SA 0.99 

 
“>” indicates “is better than” and the performance difference for the 

given approach is statistically significant within the given confidence 
interval. “»” indicates “is slightly better than” and the performance 
difference is not significant. 

 
TABLE III 

PERFORMANCE COMPARISON OF LAS BASED HYPER-HEURISTICS EACH 

USING A DIFFERENT HEURISTIC SELECTION METHOD BASED ON RANKINGS. 
THE BEST APPROACHES ARE MARKED IN BOLD. 

 

Instance CF GR RL SR TABU 

car-f-92 4 5 3 2 1 

car-s-91 4 5 1 2.5 2.5 

ear83 I  4 1 2 5 3 

hecs92 I 2 1 3 5 4 

kfu93  4 5 3 2 1 

lse91  2 5 4 1 3 

pur93 I  1 5 4 2 3 

rye92 3 5 2 1 4 

sta83 I  2 4.5 2 2 4.5 

tre92  3 5 2 1 4 

uta92 I  3 5 2 4 1 

ute92  4.5 3 4.5 1 2 

yor83 I  5 1 4 2 3 
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Fig. 3. Average ranking and the standard deviation of each 
LAS based hyper-heuristic 



 
 

 

make use of a short term memory. These elaborate schemes 
score each heuristic based on their previous and current 
performances. The delay within the acceptance mechanism 
seems to cause the learning mechanisms to respond to the 
changes in the search environment less rigorously than 
expected. The experimental results show that Reinforcement 
Learning-LAS, Reinforcement Learning with Tabu 
Search-LAS and Choice Function-LAS hyper-heuristics still 
have potential. As a future work, different learning rates and 
memory lengths for these heuristic selection methods can be 
investigated. The Simple Random–Late Acceptance Strategy 
hyper-heuristic outperforms the previous best hyper-heuristic 
for solving the examination timetabling problem.  
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