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Abstract. Linear Linkage Encoding (LLE) is a recently proposed repnegtion
scheme for evolutionary algorithms. This representatias lbeen used only in
data clustering. However, it is also suitable for groupingbtems. In this paper,
we investigate LLE on two grouping problems; graph coloramgl final exam
timetabling. Two crossover operators suitable for LLE armeppsed and com-
pared to the existing ones. Initial results show that Lingéakage Encoding is a
viable candidate for grouping problems whenever apprtggdanetic operators
are used.

1 Introduction

In spite of the satisfactory performance of Evolutionarygdithms (EA) on many

NP Optimization problems, the same achievement is not lysabkerved on group-
ing problems where the task is to partition a set of objedis disjoint sets. This is

because the commonly used representations usually suff@rfedundancies due to
the ordering of groups. Moreover the genetic material mégtsily be disrupted by the
genetic operators and/or by the rectification process tfeeoperators are applied.

Timetabling problems are real world NP Hard [7] problemssdarding the rest
of the constraints, attempting to minimize the timetablgigts while satisfying the
clashing constraints turn out to be graph coloring probl&éj.[For this reason, new
representation schemes and operators used in graph gpéseralso of interest to the
researchers in timetabling community.

In the paper, we are investigating a recently proposed eng@theme for group-
ing problems, Linear Linkage Encoding (LLE) [6]. LLE has pleen tested on small
clustering problem instances, and authors claim that thHe pérformance is superior
to Number Encoding (NE), the most common encoding schenteinggouping prob-
lems. Unlike NE, LLE does not require an explicit bound onrthienber of groups that
can be represented in a fixed-length chromosome. The greatasgth of LLE is that
the search space is reduced considerably. There is a one tooespondence between
the chromosomes and the solutions when LLE is used. Cons#ytiee aim of this
paper is to present the potential of the LLE representatiogrouping problems. Previ-
ous studies denote that traditional crossover operator®tperform well. Therefore,



a set of new crossover operators suitable for LLE are aldedemn a set of problem
instances including Carter's Benchmark [5] and DIMACS @Girade Suite [18].

This paper is organized as follows: We first define the grogipimblems and com-
mon representations for them. The fundamentals of Lineakdde Encoding is fol-
lowed by the definition of the graph coloring problem. Thea tperators of the al-
gorithm with special crossovers are presented. Computtéxperiments and conclu-
sions are given at the end of the paper.

2 Grouping Problems

Grouping problems [8] are generally concerned with paritig a set” of items into
a collection of mutually disjoint subset$ of V' such that

V=ViUWUVs.. UVyandV;NV; = @ wherei # j.

Obviously, the aim of these problems is to partition the meratof setV into N
different groups wherél < N < |V]) each itemis in exactly one group. In most of the
grouping problems, not all possible groupings are pernhitievalid solution usually has
to comply a set of constraints. For example in graph colgtiing vertices in the same
group must not be adjacent in the graph. In bin packing propgm of the sizes of
items of any group should not exceed the capacity of the bhinHence, the objective
of grouping is to optimize a cost function defined over a sevalid groupings. In
both graph coloring and bin packing the objective is to mimarthe number of groups
(independent sets and bins respectively) subjected to émtiomed constraints.

Grouping problems are characterized by the cost functisadban the composition
of the groups. An item in isolation has little or no meaningidg the search process.
Therefore, the building blocks that should be preserved ievalutionary search should
be the groups or the group segments.

2.1 Representations in Grouping Problems

The most predominant representation in grouping problenisth evolutionary and
local search methods is Number Encoding (NE). In NE, eachablig encoded with
a group id indicating which group it belongs to. For example individual2342123
encodes the solution where first object is in gr@ysecond in3, third in 4, and so
on. However, it is easy to see that the encodifg1412 represents exactly the same
solution, since the naming or the ordering of the partitisrisrelevant. The drawbacks
of this representation are presented in [8] and it is poimtedthat this encoding is
against the minimal redundancy principles for encodingesui [24].

Another representation for grouping problems is Group Hivap (GE). The ob-
jects which are in the same group are placed into the samiéigrarfor instance, the
above sequence can be represente@l as 6)(2,7)(3)(5). The ordering within each
partition is unimportant, since search operators work aupgs rather than objects un-
like in NE. However the ordering redundancy among groupisteilds. For instance,
(2,7)(3)(5)(1,4, 6) would again represent the same solution.



2.2 Linear Linkage Encoding

LLE can be implemented using an array. Let the entries in inernosome be indexed
with values froml to n. Each entry in the array then holds one integer value which
is a link from one object to another object of the same partitWith n objects, any
partition on them can be represented as an array of lemgilwo objects are in the
same partition if either one can be reached from anotheugirehe links. If an entry

is equal to its own index, then it is considered as an endinigndhe links in LLE are
unidirectional, thus; backward links are not allowed. Iorshin order to be considered
as a valid LLE array, the chromosome should follow the follaytwo rules:

— The integer value in each entry is greater than or equal index but less than or
equal ton.

— No two entries in the array can have the same value; the inidex ending node is
the only exception to this rule.

In LLE, the items in a group construct a linear path endindhwitself referencing
last item. It can be represented by tlabeled oriented pseudo (LOP) graph. A LOP
Graph is a labeled directed graptV, E'), whereV is the vertex set andl’ is the edge
set. A composition of G is a grouping &f(G) into disjointed oriented pseudo path
graphszy, Go, ....G,, with the following properties:

Fig. 1.LLE Array and LOP Graphs

— Disjoint paths{J!", V(G;) = V(G) and fori # j,V(G;) NV (G;) = @
— Non-backward oriented edges: If there is an edgirected from vertex; to vy
theni < k.
— Balanced Connectivity
- alE(G)| = [V(G)|
— b. each7; has only one ending node with amdegree of 2 andout-degree of 1.
— c. eachd; has only one starting node whasedegree = 0 andout degree = 1
— All other |V (G;)| — 2 vertices inG; havein-degree = out-degree = 1.

There are three clear observations regarding LOP Graphs:

1. Given a set of items, there is one and only one composition of LOP Graphs
G(V, E) for each grouping of, where|V| = |S]|.

2. The number of LOP Graphs is given by thé Bell Number [6].

3. LLE in array form is a unique implementation of the LOP drap
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2.3 Final Exam Timetabling as a Grouping Problem

Final exam timetabling requires satisfactory assignmétiteetable slots (periods) to a
set of exams. Each exam is taken by a number of students, baseskt of constraints.
In most of the studies, NE like representations are used3]ina[ randomly selected
light or a heavy mutation followed by a hill climbing methodasvapplied. Various
combinations of constraint satisfaction techniques wéhegic algorithms can be found
in [20]. Paquete et. al. [23] applied a multi-objective exa@nary algorithm based on
pareto ranking with two objectives: minimize the number ohfticts within the same
group and between groups. Wong et. al [26] applied a GA witbradlitist replacement
strategy. After genetic operators are applied, violatemesrepaired with a hill climbing
fixing process. In their experiments a single problem instamas used. Ozcan et. al.
[22] proposed a memetic algorithm (MA) for solving final eximetabling at Yeditepe
University. MA utilizes a violation directed adaptive hilimber.

Considering the task of minimizing the number of exam pegiadd removing the
clashes, final exam timetabling reduces to the graph caggniablem [19].

2.4 Graph Coloring Problem as a Grouping Problem

Graph Coloring (GCP) is a well known combinatorial optintiaa problem which is
proved to be NP Complete [11]. Informally stated, graph dolpis assigning colors
to each vertex of an undirected graph such that no adjaceinte®should receive the
same color. The minimal number of colors that can be usedvali@coloring is called
the chromatic number. A more formal definition is as follows:

Given a grapiG = (V, E) with vertex sef” and edge seE, and given an integer
k, ak-coloringof G is a functionc : V' — 1, ..., k. The values(z) of a vertexx is called
the color ofx. The vertices with color (1 < r < k) define a color class, denotégl.

If two adjacent verticeg andy have the same colar x andy are conflicting vertices,
and the edgéz, y) is called a conflicting edge. If there is no conflicting edgertthe
color classes are all independent sets ancktbaoring is valid. The Graph Coloring
Problem is to determine the minimum intedefthe chromatic number d& - x(G) )
such that there exists a ledatoloring of G [1].

In the literature there are many heuristics devised for fig¢ghromatic number and
solving k-coloring problems. Early applications of GCPv&os are simple constructive
methods [2], [19] which color each vertex of the graph oneradhother based on dy-
namic ordering of the vertices according to its saturatiegrde as in DSATUR. Local
search methods such as tabu search [14] and simulated ugnjd#] have been fol-
lowed with hybridizations of these techniques with genatgorithms [9], [10] which
resulted the state of the art graph coloring algorithms.

Graph coloring is generally considered as a difficult probier pure Genetic Algo-
rithms [13]. Currently, the most successful algorithmsrasgnetic algorithms [9], [10]
which hybridize the evolutionary techniques with a locahrsd method. In this ap-
proach, the role of genetic operators is limited to findingrpising points in the search
landscape from which the local search can initiate. Heteeexploration of the search
space is carried out by the local search operator. For iostanGalinier and Hao’s
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hybrid algorithm [10], a crossover operation is proceedgd babu search procedure
which may last thousands of tabu iterations.

There are mainly two reasons for the unsuccessful attenfpisiog pure genetic
implementations on graph coloring: The redundancies gftdn the representations
used for the encoding of the chromosome, and lack of a ssitetolssover operator
which would transmit the building blocks efficiently, predbly with some domain
knowledge. In this paper, we are mainly interested in theesgntational issues, but
we also present suitable crossover operators for the peodpwosilti-objective genetic
algorithm.

3 A Multi-Objective Genetic Algorithm for Graph Coloring an d
Timetabling

Note that our main intention in this study is to propose a nobjective solution founda-

tion to multi-constraint timetabling problems. To our krledge, none of the efficient
graph coloring algorithms in the literature empowers giengperators as their main
search mechanism. These methods usually rely on locallseperators. We are more
interested in the applicability of linear linkage encodarggrouping problems by using
suitable crossover and mutation operators. We present tr-ohjgctive genetic algo-

rithm employing weak elitism and the main search operatthiefapproach is mutation
aided by crossover.

3.1 Initialization

Since we are dealing with a minimal coloring problem, it isid&ble to initialize the
population with individuals having different number of od. Setting the range of
number of colors too wide will unnecessarily increase thardde space and thus the
execution time. For example, in a graph instance with 128oe and with a predicted
chromatic number of 20, setting the range between the mimiraiod maximum values
(1 and the|V'| which is 128 in this case) will force the algorithm to survey individuals
far away from the optimal coloring. It is also undesirableébthe range too narrow ei-
ther. Such a scheme will prevent promising individuals wiifferent number of colors
from cooperating through crossover and mutation.

A tight lower bound can be found by using a fast maximal cligp@roximation
algorithm and an upper bound can be found by simply findingragimal degree of
the graph (the degree of the vertex with the maximum numbereafhbors). Since
exact or approximate chromatic numbers in the test instaaealready known, these
bounds are set manually in this study.

In our experiments, we have used a population with indivMglliaving different
number of colors and an external population which holds & iImdividuals with the
minimal conflicts for a specific number of colors within a sarange {ower Bound <
k < upperBound). In order to create an individual, firktis determined, then a k-
colored individual is randomly created. An external smiittdlization method was not
used to reduce the edge conflicts in order not to give any biagrtcrossover operators
and let the multi-objective evolutionary method do the skar
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3.2 Selection

A k-coloring problem is solved when the number of conflictedpes is zero. If &
coloring solution is obtained + 1 colorings can also be generated by dividing inde-
pendent sets into two. It might be possible to unite two se#si 1 coloring to obtain a
k coloring. Therefore, if the chromatic number lies within the uppet bower bounds,
the pareto front will almost be a straight line along the cabas with zero conflict if the
lower bound is set close to the chromatic number. A restfictelti-objective method
might work efficiently on a search range within specified btsiaround the chromatic
number.

As a multi-objective genetic algorithm a modified versiomMi¢hed Pareto Genetic
Algorithm (NPGA) described in [15] was used. In NPGA, two datfate individuals
are selected at random from the population to be one of thesnAtcomparison set
is formed from randomly selected individuals within the ptgtion. Each candidate
is then compared against each individual in the comparistnisone candidate is
dominated by the comparison set (which means it is worsevérygart of the objective
function than any individual in the comparison set) and ttheepis not, then the latter
is selected for reproduction. If neither or both are doneddty the comparison set,
then niching is used to select a winner mate. The size of casgraset {4,.,) allows
a control over the selection pressure. The comparisonzetas preset to around ten
percent of the population size as suggested by [15].

When neither or both candidates are dominated by the cosypeset, the candidate
with a smaller niche count is selected for reproduction. @lewdate the niche valua;
of the:*" individual by:

m; = Y sh(d[i, ) (1)
JjEpop

whered[i,j] is the distance between two individuals according to objedtinction

values anah(d) is the sharing function which is:

1 ifd=0
Sh(d) =4q1- d/,ushm’e if d< Hshare (2)
0 if d Z MHshare-

and distance measure is Manhattan distance in terms of @otbconflict values in
the individuals.
d[i, j] = lea — ¢ja| + |eiz — ¢j2 3)

3.3 Redundancy and Genetic Operators

Although LLE in theory is a non-redundant representatiomgfouping problems, prac-
tically this advantage disappears if the search operatbretiadhere to this principle.
Therefore a more desirable option is to make the search edumadant additional to
the representation. For example consider a basic hill éignimutation which sends
one vertex from one set to another. This is analogous of ¢hgreggene value in the
number encoding. If majority of the group ids of the items bammaintained for a long
period of time, then it is quite possible to make a low-redamtéearch even on a highly



Vil

redundant encoding such as NE. This is one of the reasonsskeaiah based methods
are quite successful on grouping problems. Because of tlhd perturbations on the

search space, these methods not only preserve the builidickston the candidate so-
lution but also are able to operate on a low-redundant sregibn of the large search
landscape.

The same advantage, unfortunately does not hold for cressdvich makes huge
jumps on the search space. It is possible to keep the majufritye group ids of the
items fixed by using traditional crossovers like one-pointiniform crossover. Such
methods, however do not preserve the groups which are thirigiblocks themselves.
Therefore, a crossover operator should preserve the oftlez oolors as long as possi-
ble. Two ordering mechanism which assigns group ids to thepg after crossover and
mutation are investigated within the context of LLE. Thege tedundancy elimination
mechanisms are based on the cardinality of the groups aridvtlest index number at
each group. In [25], the authors investigated the effeche$é¢ two methods on Graph
Coloring by using 0/1 ILP SAT solvers.

Cardinality Based Ordering In Cardinality Based Ordering, each group receives a
group id according to its cardinality (set size). Groupssanged according to their car-
dinality and the group with the highest cardinality will besggned group id, the sec-
ond highest will be identified as gro2pand so on. For example groufs 3)(5)(2, 4, 6)

are indexed a¥; = (2,4,6), Vo = (1,3), andV3 = (5). Since more than one group
can have the same cardinality, the ordering might not beugniq

Lowest Index Ordering In Lowest Index Ordering, the smallest index in each group
is found first, then the group with the smallest index numbeassigned group id,

the group with the second smallest index number is assignaabgd 2, and so on.
For example, group§l, 3)(5)(2, 4, 6) are indexed a¥; = (1,3), Vo, = (2,4,6), and

V3 = (5). Since each group has one unique lowest index, the orderadg/ays unique.

3.4 Crossover

Linear linkage encoding can be implemented using one diiloeakarrays, allow-
ing applicability of the traditional crossover methodstsas, one point or uniform
crossover. However, it is observed that these crossoverbedoo destructive espe-
cially for graph coloring due to the danger of introducingwlaks in the LOP graph
absent in both parents. Also since the building blocks [d2jraph coloring are strictly
large independent sets (not even independent set segirtbets)is a risk of destruct-
ing these building blocks. However, for small problem insts, one-point crossover in
LLE is reported to generate satisfactory results for chirsggproblem [6]. (This might
be due to the fact that building blocks may be a segment otarsisather than the
whole cluster.)

Unfortunately we have observed a very poor performance froenpoint crossover
in our experiments. It was not even able to generate sokitiothe color search range
we specified.

Three types of crossover operators are compared using Ljiggentation.
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Greedy Partition Crossover Graph Coloring Problem can be considered as partition-
ing the graph into independent sets. Therefore by presgthialarge independent sets,
the vertices in non-independent sets can be forced to fodepiendent sets as well.

Greedy Partition Crossover (GPX) was proposed by Galimdrtdao [10] in their
Hybrid Graph Coloring Algorithm. The idea is to transmit thegest set (group) from
one parent, then to delete the vertices in this largest sat the other parent. This
transmission and deletion process is repeated on bothtpasaccessively until all of
the vertices are assigned to the child.

Two forms of Greedy Partition Crossover by following theasibf Cardinality and
Lowest Index Ordering are implemented. The differencess assigning the color ids
to the groups after the crossover. In GPX Lowest Index Craesq@&PX-LI), the groups
with lower index numbers are given lower color ids, whereasPX Cardinality Based
Crossover (GPX-CB), the lower color ids are assigned to thaggs with higher cardi-
nality. A general pseudocode of GPX is presented in Algarith

Consider two parents in Figure 2. We can obtain the child b@#is: Largest Set in
parentl is (3,4, 5, 6). This set is transmitted to the child ahd3 and6 are deleted from
parent. After this deletion largest set in parehfl) is transmitted to the child. Finally
(2) is assigned as the last group. After sorting according testtwdex ordering (GPX-
LI), the coloring then becomeS; = (1), C; = (2), C5 = (3,4, 5,6). If the groups
are sorted according to their cardinality (GPX-CB), theocilg is C; = (3,4,5,6),
Cz = (1), C5 = (2).

Both GPX-LI and GPX-CB are applicable to other represeotatisuch as num-
ber or group encodings. Our intention of using these crassag to create crossover
operators applicable only to LLE. The following two crosemvare inspired from GPX.

Algorithm 1 Greedy Partition Crossover
Require: Two Parents parentl andparent2 in LLE form.
Ensure: Oneof fspring in LLE form.
1: repeat
2. currentParent = Randomparentl, parent?2).
3: largestSet = Find largest set irurrent Parent.
4:  transmit unassigned the vertices (links) in thegestSet to of fspring.
5:  mark transmitted vertices as assigned.
6: if currentParent = parentl then
7:
8
9

currentParent = parent2.
else
: currentParent = parentl.
10:  endif
11: until all vertices are assigned
12: if Lowest Index Ordering is Usedtien
13:  sort group ids according to lowest index number (GPX-LI)
14: else
15:  sort group ids according to cardinality (GPX-CB).
16: end if
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Fig. 2.a) Two Parents in LLE Array and LOP Graph form. b) Resultinigming from Greedy

Partition Crossover - Cardinality Based Ordering. c) Rasgloffspring from Greedy Partition
Crossover - Lowest Index Ordering. d) Resulting offsprirgrf Lowest Index First Crossover.
e) Resulting offspring from Lowest Index Max Crossover.



X

Lowest Index First Crossover In Lowest Index First Crossover (LIFX), the goal is to
transmit the groups beginning with lowest index numbersX.Works as follows:

A parent is randomly selected. Beginning with the loweseinflzertex) which has
not been assigned yet, the vertices are transmitted to ilelghfollowing the links.
If the vertices along the path are assigned before, theylappexd. The process is
repeated by successively changing the parents for trasgmiantil all of the vertices
are assigned to the child. A general pseudocode of LIFX isgurted in Algorithm 2.

The application of LIFX on the parents in Figure 2 would be @fofvs: Assum-
ing we begin with first parent, current lowest index numbet.iJherefore(1,2) is
transmitted to the child. The current lowest index numbeois 3. Switching to parent
2, we copy(3,6) as the next group. Switching back to parénturrent lowest index
is 4, therefore(4, 5) is copied to the child. Final coloring then becomé€s: = (1, 2),
Cy =(3,6),Cs = (4,5).

Note that this crossover prioritizes groups beginning whithlowest index number,
therefore it reduces the sizes of the groups beginning vigther index numbers. This
is in concordance with the nature of LLE, because the numiiqssible values for the
higher index locations is lower.

Algorithm 2 Lowest Index First Crossover

Require: Two Parents parentl andparent2 in LLE form.
Ensure: Oneof fspring in LLE form.

1:4=0
2: repeat
3. currentParent = Randomparentl, parent2).
4:  lengthO f Parent = Calculate the path length ofirrent Parent starting from.
5:  transmit unassigned vertices (links) in fherentToSelect to of fspring.
6: mark transmitted vertices as assigned.
7. i =nextunassigned vertex.
8: if currentParent = parentl then
9: currentParent = parent2.
10: else
11: currentParent = parent]l.
12:  endif

13: until all vertices are assigned

Lowest Index Max Crossover In Lowest Index Max Crossover (LIMX), the child is
generated with two objectives: Transmit large groups tegmee Cardinality Based Or-
dering, and to transmit groups beginning with lowest indember (to preserve Lowest
Index Ordering). Therefore this method can be considerethasmalgamate of LIFX
and GPX. LIMX works as follows:

Beginning with the lowest index number (vertex) which hasbeen assigned first
we calculate the length of the links (path length) in bothep#s. Already assigned
vertices are not counted in this link length calculationisTddlows finding the largest
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set in parents beginning with the lowest index number. Thetlinks (and thus vertices)
are transmitted to the child from the parent with the grela&rlength. After that next

unassigned lowest index number is found and the procespéated until all vertices
are assigned. A general pseudocode of LIMX is presentedgorhm 3.

Application of LIMX to parents in Figure 2 is as follows: Cernt lowest index ig.
(1,3,6) is longer than(1, 2) so(1, 3, 6) is copied to the child. Current lowest index is
now 2.(2, 4) is larger thar(2) so itis tranmitted to the child. Finalls) is copied to the
child as the last group. At the end of LIMX the coloring thebmes:C; = (1, 3,6),
Cy = (2a4)1 C(3 = (5)

Algorithm 3 Lowest Index Max Crossover

Require: Two Parents parentl andparent2 in LLE form.
Ensure: Oneof fspring in LLE form.

1:i=0

2: repeat

3.  lengthO fParentl = Calculate the path length phirentl1 starting fromi.
4:  lengthO f Parent2 = Calculate the path length @farent1 starting from.
5: if LengthOfParentl < LengthO f Parent2 then

6: parentToSelect = parentl.

7. else

8: parentToSelect = parent2.

9: endif

10:  transmit unassigned vertices (links) in fherentToSelect to of fspring.
11:  mark transmitted vertices as assigned.

12: i =next unassigned vertex.

13: until all vertices are assigned

3.5 Mutation

We have used a mutation scheme that sends a selected cogfliettexx from its color
set to the best possible other one. A tournament method ttosselect a vertex for
transfer. A percentage of conflicting vertices are takem éntournament and the vertex
with the highest conflict in this set is transferred to a besbrcavailable.

This mutation can increase or decrease the number of cojoosd. The number
of colors will increase if a one vertex group is introducedthg operator and it will
decrease if a one vertex group is merged with another one.

As aforementioned, assigning group ids after crossovesdsrgial for low redun-
dancy and the success of the mutation. In GPX-LI, LIMX andX |Ithe ids are assigned
according to Lowest Index Ordering whereas in GPX-CB thardsassigned according
to Cardinality Based Ordering.

3.6 Replacement

In our simulations we have employed a trans-generatiop&cement with weak elitism.
At each generationy offspring are produced by (non elitist)+ . (elitist individuals,
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one for each number of colors within the searching rangergairto replace th& non
elitist parents. By using elitism to hold the best conflict pamber of colors we are
giving a bias to number of colors constraint.

4 Experiments

In our tests, we use several graphs from the DIMACS Challéngte [18]. The general
test setup is summarized in Table 1.

Table 1. Test Setup

Test Machine: Pentium 4 2Ghz with 256MB Ram

Compiler: GCC C++ 3.2 with -O2 flags

No of Generations: 10000

Population Size: %25 percent of the number of vertices in graph
Comparison Set Size: %210 percent of the population size

Niche Size: 5.0

Crossover Rate: 0.25

Mutation Rate: a single mutation is enforced

Number of Runs: 50 for each instance

In Table 2, we present the characteristics of the test iosgisampled from the
DIMACS test suite. Table shows the name, number of vertidég( number of edges
(|E|), edge density%) and chromatic number(G)) of the instances.

In all our tests, the mutation count is set to 1, and cross@teris fixed at 0.25. In
this setup, the algorithm is more like a genetic hill climpmethod. Since the chromatic
number of these graphs are already known, we have set the bgrftand according to
the chromatic numbey(G).

Note that our primary intention is to compare the crossoperators in the context
of LLE. As a result, we did not run our experiments for a longdi (The longest time
required for one run is around 5 minutes for cars91 grapfainst). This might have
resulted in performance hit for large problem instancestvhiay need an exponential
increase rather than a linear increase in the maximum nuaflgemeration.

In Table 3, we present the best solutions obtained after 88 by using the four
crossover operators mentioned. Figure 3 represents thrageseolor number of 50
runs for each instance. The results show no significansttati differences between
crossover operators except for a few instances. For exdonglat30Q.20 graph, LIMX
was able to find a best 20 coloring while the other crossovers wery far from the
optimal. However, for this graph, average colorings fourith&ll crossovers and stan-
dard deviation are quite high. This is possibly due to themédifficulty of flat graphs.
Another slight difference appeared in register allocatioaphs (zeroin.X.col graphs)
where LIFX performed worst while GPX crossovers performestb

We have also presented graph coloring algorithm resultsrolvkki et. al. [17] for
two set of parameters (Kirovski B and Kirovski C). Kirovskalgorithm is based on



Table 2. Data Characteristics about the problem instances from tNMADS Suite

Instance V| |E| % x(G)
DSJC1255 |125 3891 (0,50 |?
DSJC125.9 |125 6961 |0,90 |?
zeroin.l.col (211 4100 |0,19 |49
zeroin.2.col (211 3541 |0,16 |30
zeroin.3.col |206 3540 |0,27 |30
DSJC250.1 |250 3218 (0,10 |?
DSJC250.5 |250 15668 |0,50 |?
DSJC250.9 |250 27897 10,90 |?
flat300.20 300 21375 10,48 |20
flat300.26 300 21633 |0,48 |26
flat30Q.28 300 21695 |0,48 |28
schoollnsh (352 14612 (0,24 |14
le45015a 450 8168 |0,08 |15
le450.15b 450 8169 |0,08 |15
le45015¢c 450 16680 (0,17 |15
le45015d 450 16750 |0,17 |15
le45025a 450 8260 |0,08 |25
le45025b 450 8263 |0,08 |25
le45025¢ 450 16680 (0,17 |25
le45025d 450 16750 |0,17 |25
DSJC500.1 |500 12458 (0,10 |?
DSJC500.5 |500 62624 10,50 |?

Xl
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divide and conquer paradigms, global search for conswlaimependent sets, assign-
ment of most-constrained vertices to least constrainihgrsgeuse and locality explo-
ration of intermediate solutions, post processing lotsalgeduling iterative improve-
ment. With respect to Kirovski’s solutions, our crossovgase similar and for some
instances better results however when the instance bedanges and more difficult,
Kirovski's algorithm performs better. However, our primantention was not to com-
pare LLE representation with state of the art algorithmstbutompare the crossover
operators as stated before.

Table 3.Best colorings obtained for the instances in the DIMACS Bamark Suite

Instance |x(G)|LIMX |LIFX |GPX-LI|GPX-CBKirovski-B|Kirovski-C
DSJC125.% ? 18 | 18 18 18 19 18
DSJC125.9 ? 44 | 44 44 44 45 45
zeroin.l.col 49 | 49 | 50 49 49 49 49
zeroin.2.col 30 | 31 | 35 31 31 30 30
zeroin.3.col 30 | 31 | 35 30 31 30 30
DSJC250.1 2 9 9 9 9 9 9
DSJC250.% ? 31 | 31 31 31 30 30
DSJC250.9 ? 75 | 75 75 74 77 77
flat30020| 20 | 20 | 31 27 32 20 20
flat30026 | 26 | 34 | 34 34 34 32 28
flat30028 | 28 | 34 | 34 34 34 33 32
schoollnsh 14 | 14 | 14 14 14 16 14
le45015a| 15 | 16 | 16 16 16 17 17
le45015b| 15 | 16 | 16 16 16 17 17
le45015c| 15 | 23 | 23 23 23 22 21
le45015d| 15 | 23 | 23 23 23 22 21
led5025a| 25 | 25 | 25 25 25 25 25
le45025b| 25 | 25 | 25 25 25 25 25
le45025c| 25 | 28 | 29 28 28 28 28
le45025d| 25 | 28 | 28 28 28 ? ?
DSJC500.1 2 14 | 14 14 14 14 14
DSJC500.% ? 55 | 55 55 55 51 50

Table 4 presents some instances taken from the CartershBeark [5]. We again
present the number of vertices, edges and edge density s# tiraphs in this table.
Table 5 represents the best colorings obtained after 50 huridgure 4, the average
colorings of 50 runs are presented.

For instances in the Carter’s timetabling benchmark, agagignificant difference
among crossover operators is not observed. However, LIM>aHsightly better perfor-
mance in terms of best and average color (group) number. Ldisé the best colorings
in staf83 and Isef91 instances while others were one colunkat. Yet, the difference
between average colorings and standard deviation is niggtitally significant for al-
most all instances.
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Fig. 3. Average number of groups for instances in DIMACS Benchmark.



XVI

Table 4. Data Characteristics of the problem instances from thee€8gnchmark Suite

Instance V| |E| %

Hecs92 81 1363 |0.42
Staf83 139 1381 |0.14
Yorf83 181 4691 (0.29
Utes92 184 1430 |0.08
Earf83 190 4793 |0.27
Tres92 261 6131 |0.18
Lsef91 381 4531 |0.06
Kfus93 461 5893 |0.06
Ryes93 486 8872 |0.08
Carf92 543 20305 |0.14
Utas92 622 24249 10.13
Cars91 682 [29814 |0.13

Carter's Benchmark

$TresJ \ \ \ \ ‘ ] LIMX

292 i ; : : \ B LIFX

2 Lse- ﬁ -

|2 ree | | [ ] GPX-LI
_ [ ]GPX-CB

[
i
0.00 500  10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00
No of Groups

Fig. 4. Average number of Groups obtained for instances in CaiBatechmark.



XVII

Table 5. Best colorings obtained for the instances in the CarteriscBmark Suite

InstanceLIMX |LIFX |GPX-LI|{GPX-CB|CartefCaramiaMerlot
Hecs92 17 | 17 17 17 17 17 18
Staf83| 13 | 14 14 14 13 13 13
Yorf83| 20 | 20 20 20 19 19 23
Utes92| 10 | 10 10 10 10 10 11
Earf83| 23 | 24 24 23 22 22 24
Tres92| 21 | 21 21 21 20 20 21
Lsefol| 17 | 18 18 18 17 17 18
Kfus93| 20 | 20 20 20 19 19 21
Ryes93 23 | 23 23 23 21 21 22
Carfo2| 36 | 36 36 36 28 28 31
Utas92| 38 | 39 38 38 32 30 32
Cars91] 36 | 36 37 35 28 28 30

We have also compared the best colorings after 10000 ganesavith some of
the results from the literature (Carter et. al [5], Carantiaaé [4] and Merlot et. al
[21]). Like DIMACS instances, the performance of the grapfith vertices above 500
suffered due to the limit on the maximum number of generatidior instances, our
crossovers gave similar results in terms of best groupingiogd. Generally they ob-
tained colorings equal or one color behind colorings of €agt. al and Caramia et. al,
and better than of Merlot et. al.

Full test results are presented with average best colooingd, standard deviation,
and best coloring of 50 runs for each crossover operatorbieTa

5 Conclusion

In this paper, we have investigated the performance of LL&e@H known grouping
problems, exam timetabling and graph coloring. We presksggeral crossover oper-
ators that can be used with LLE. The results obtained are ignognsince LIMX and
LIFX perform approximately similar to the two variants of &PRwhich is an integral
part of the most successful graph coloring algorithm. Alsparossover operators gave
satisfactory results for instances in Carter’'s and DIMA@R&dhmark suites. In the fu-
ture Linear Linkage Encoding will be used on other groupingfems together with
the crossover operators aforementioned. The multi-obgtiE framework will be
used for timetabling problems with additional constraints
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Table 6. Average Best, Standard Deviation and Best Results for DIIgA@d Carter's Bench-
mark

LIMX LIFX GPX-LI GPX-CB
Instance [x(G)| # [ o [B] w [ o [B] u [o|B] n ] o |B
DSJC125.% ? |18,700,4618/18,760,4318/18,660,47,18/18,680,4718
DSJC125.9 ? |44,660,4744/44,740,4844|44,240,4344(44,360,4844
zeroin.3.col 30 |33,6(01,3331/36,641,0235/31,600,9430|31,860,9031
zeroin.1.col 49 |49,040,204950,660,5550/49,000,0049/49,000,0049
zeroin.2.col 30 |33,481,4131/36,581,0235|31,480,9231/32,041,2231
DSJC250.1 ? |[9,00(0,00 9|9,00/|0,00 9|9,00|0,00 9|9,00|0,00 9
DSJC250.% ? [31,680,5831/31,50,5431/31,6(00,57,31/31,660,4731
DSJC250.9 ? |75,380,575/75,900,7Q75|75,380,7775/75,440,7074
flat300.20 | 20 |30,843,8520/33,221,3031/34,261,5527|34,421,3332
flat30Q26 | 26 |35,540,57/34/35,400,5334|35,780,643435,760,64 34
flat300.28 | 28 |35,320,5134/35,340,5134(35,560,6434|35,340,6534
schoollnsh 14 (14,820,8214{14,820,8914|14,600,8014(14,940,9514
le45015a| 15 |16,980,3216/17,000,2016|16,9240,2716|16,960,2016
le45015b| 15 (16,820,4316(16,980,1416|16,920,27/16(16,900,3016
le45Q15c | 15 |23,820,5223/23,700,4623/23,760,4323|23,580,4923
le45015d | 15 (23,940,47/23/23,660,51{23|23,780,5023|23,580,5323
le45025a| 25 |25,000,0025/25,100,3025/25,000,0025|25,020,0025
le45025b | 25 |25,000,0025(25,080,2725|25,000,0025(25,000,0025
le45025¢ | 25 |29,080,342829,240,4329/29,080,3428/29,020,3228
le45025d | 25 (29,120,4328]29,200,4528/29,120,47/28(29,080,34/28

DSJC500.1 ? |14,000,0014(14,160,37/14(14,000,0014/14,090,0014
DSJC500.% ? |55,980,5555/55,960,4955|56,000,5755(56,180,71/55
Hecs92 | ? |17,640,4717/17,8 0,4(17/17,800,4017|17,760,4317
Staf83 ? (13,100,3013/15,060,37/14/14,440,57/14{14,4(30,4914
Yorf83 ? 120,6Q00,5320/20,860,4520/20,680,5120/20,600,6020
Utes92 ? (10,000,0010/10,020,1410/10,040,0010/10,040,0410
Earf83 ? |24,220,7623|25,260,7224|24,640,5524/24,640,8223
Tres92 ? 122,260,522122,320,51j21|22,260,5621|22,300,5721
Lsef9l ? (19,200,6617/19,100,6718/19,140,67/18/19,340,58 18
Kfus93 ? |20,860,57/20/21,300,6120/21,140,6520,21,2730,5720
Ryes93 | ? |23,860,4923/23,960,6623|23,900,6423|23,680,5523
Carfo2 ? |38,741,2936|38,241,0136|38,141,0536|38,441,0536
Utas92 ? |40,521,0338/40,841,0139/40,6(31,083840,841,0138
Cars91 ? 138,341,1636/38,091,0036|38,161,0337/38,181,2335




