
Turk J Elec Eng & Comp Sci

() : –

c© TÜBİTAK

doi:10.3906/elk-

Hyper-heuristics for explicit resource partitioning in simultaneous multi-threaded
processors

İsa Ahmet GÜNEY1∗, Kemal POYRAZ2, Gürhan KÜÇÜK3, Ender ÖZCAN4

1Department of Computer Engineering, Yeditepe University, Istanbul, Turkey,
ORCID iD: https://orcid.org/0000-0002-4492-0218

2Department of Computer Engineering, Yeditepe University, Istanbul, Turkey,
ORCID iD: https://orcid.org/0000-0003-2578-9557

3Department of Computer Engineering, Yeditepe University, Istanbul, Turkey,
ORCID iD: https://orcid.org/0000-0002-3589-5321

4School of Computer Science, University of Nottingham, Jubilee Campus, Nottingham,
United Kingdom, ORCID iD: https://orcid.org/0000-0003-0276-1391

Received: .201 • Accepted/Published Online: .201 • Final Version: ..201

Abstract: In Simultaneous Multi-Threaded (SMT) processors, various datapath resources are concurrently shared by

many threads. A few number of heuristic approaches, which explicitly distribute those resources among threads with

the goal of improved overall performance, have already been proposed. A selection hyper-heuristic is a high-level search

methodology which mixes a predetermined set of heuristics under an iterative framework to utilize their strengths for

solving a given problem instance. In this study, we propose a set of selection hyper-heuristics for selecting and executing

the heuristic with the best performance at a given stage. To the best of our knowledge, this is one of the first studies

implementing a hyper-heuristic algorithm on hardware. The results of our experimental study show that hyper-heuristics

are indeed capable of improving the performance of the studied workloads. Our best performing hyper-heuristic achieves

better throughput than both baseline heuristics in 5 out of 12 workloads and gives around 15% peak performance gain.

The average performance gains over the well-known hill-climbing and adaptive resource partitioning heuristics are around

5% and 2%, respectively.

Key words: Hyper-heuristics, simultaneous multithreading, resource partitioning

1. Introduction

Simultaneous Multi-Threaded (SMT) processors aim to improve system throughput by issuing instructions from

multiple threads within a clock cycle [1]. The SMT architecture is simply a modified superscalar processor with

shared Issue Queue (IQ), Re-Order Buffer (ROB), Physical Register Files (PRF), Load/Store Queue (LSQ),

Arithmetic Logic Units (ALU) and caches. In a typical superscalar processor, the datapath resources are also

shared by multiple threads but each thread waits its time for the total control of all datapath resources. At

the end of each context switch, the running thread is suspended and the next scheduled thread starts executing

its instructions. In such a scheme, between two context switches, only one thread can claim its monopoly on

all resources. However, in SMT processors, multiple threads must simultaneously share the available resources.

Fair sharing of the resources among threads while maximizing the processor throughput is a major challenge,

and today, most of the research effort is focused on this issue.

∗Correspondence: iguney@cse.yeditepe.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.

1



Güney et al./Turk J Elec Eng & Comp Sci

There are many ways to improve the effectiveness of SMT processors. For instance, various SMT fetch

policies attempt to load-balance the stream of instructions introduced at the processor pipeline [2, 3]. These

fetch-oriented techniques are known as implicit methods for improving resource utilization since they implicitly

manage the distribution of shared resources among working threads. Beside these implicit techniques, there

are explicit resource partitioning methods that partitions shared resources according to runtime behavior of

running threads. These are examples of explicit techniques applying heuristics over resource partitioning and

distribution problem.

Heuristics are inexact, rule of thumb computational methods, tailored for a specific problem in hand.

Dynamically Controlled Resource Allocation (DCRA) [4], Hill Climbing [5] and Adaptive Resource Partitioning

Algorithm (ARPA) [6] are examples of heuristic approaches for partitioning SMT resources. There are many

different heuristics for many different computationally hard problems in the literature. Considering a single

problem domain, it has been frequently observed that different heuristics yield different performance figures

across given instances. For each instance, a different heuristic might perform the best. Hyper-heuristics have

emerged as general high-level methods searching the space generated by a set of low-level heuristics compared to

solutions that target direct solution for a given problem [7]. Here, the main strategy is combining the strengths

of various heuristics and avoiding their weaknesses for both solving seen and, most importantly, unseen problem

instances. Hyper-heuristics are already successfully applied to numerous static problems. However, there are

only a few examples on their use in dynamically and continuously changing problems [8, 9].

Our preliminary studies give us very promising results on performance improvements of SMT processors

using hyper-heuristics. In the literature, there are two major heuristics proposed for solving resource partitioning

problem in SMT processors. Here, we aim to improve the throughput of SMT processors by partitioning shared

resources among threads using hyper-heuristics under a multistage framework. Since both hill climbing and

adaptive resource partitioning heuristics have periodic nature, we study mixing them using several hyper-

heuristic approaches in this study.

Our main motivation in this study is to combine the power of these two algorithms by integrating them

into a hyper-heuristic framework. In the end, we show that our proposed hyper-heuristic algorithms successfully

switch to the best performing heuristic when it is really needed.

The organization of the manuscript is as follows: Section 2 provides an overview of related work covering

SMT resource management, and hyper-heuristics in general. Section 3 presents results from preliminary

experiments, which provides the motivation of using hyper-heuristics for SMT resource partitioning. Section 4

elaborates our proposed design. In Section 5, experimental results are presented. The last section, Section 6,

concludes our study.

2. Related Work

2.1. Heuristics for SMT Resource Management

One of the major design challenges in SMT processors is on the pipeline frontend. Here, the fetch stage has

to decide what to fetch next so that the resource utilization is improved and either throughput or fairness (or

maybe both) criteria are satisfied. Tullsen et. al. show that fetching right instructions has a great effect on

performance and propose a variety of algorithms for selecting instructions for the Fetch stage [3]. BRCOUNT

promotes threads with the fewest unresolved branches to mitigate the effects of mispredicted branch instructions;

MISSCOUNT prioritizes threads with fewest outstanding D-cache misses to reduce IQ-clogging; IQPOSN gives

a lower priority to threads with instructions closest to the head of IQ, and ICOUNT favors efficient threads by

2



Güney et al./Turk J Elec Eng & Comp Sci

prioritizing threads with least number of instructions on-the-fly.

Tullsen and Brown discuss the effects of long-latency instructions, with the focus on long-latency load

instructions, on SMT processors in [2]. Once a long latency instruction is identified (by either an L2 cache miss

or the instruction spending more than a predetermined number of cycles), either instructions from the thread

which owns the long latency instruction are flushed, or the thread is prevented from fetching more instructions

for a certain amount of time.

Eyerman and Eeckhout point out that previous fetch policies do not take Memory Level Parallelism (MLP)

into account [10]. As a matter of fact, by stalling fetch or flushing instructions, these previous policies serialize

the penalty of the long-latency load instructions. The study proposes an MLP-aware fetching mechanism which

aims to overlap the penalties of long-latency loads by executing them simultaneously, if possible. Once a long

latency instruction is identified, the MLP-distance is predicted to determine how further the processor should

go to exploit MLP. Threads with such load instructions are either prevented from fetching more instructions

than the MLP-distance or instructions beyond the MLP-distance are flushed.

Vandierendonck and Seznec propose a framework called Speculative Instruction Window Weighting

(SIWW) for applying different fetch policies and resource limitations on the SMT architecture [11]. In this

framework, SIWW fetch policy gives priority to instructions from threads with the minimum amount of work

remained in the pipeline. The work identifies several types of instructions and each type is assigned a weight. The

amount of work remained for an individual thread is computed by adding predetermined weights of remaining

instructions that belong to that thread in the pipeline. Resource limitations can be applied by defining an upper

limit for the amount of work. A thread, which exceeds this limit, cannot fetch any more instructions until it

commits and releases some instructions. Assigning different weights to different instruction types allow SIWW

to apply different fetch policies without making any changes to the existing hardware. For example, assigning

a weight of 1 to all instruction types results in a fetch policy equivalent to ICOUNT [3].

Beside these implicit techniques, there are explicit resource partitioning methods that partitions shared

resources according to runtime behavior of each thread. The mechanism, which is known as Dynamically

Controlled Resource Allocation (DCRA) is one of these explicit methods [4]. DCRA dynamically tracks down

the behavior of each thread and the use of datapath resources with the help of various hardware counters. Here,

a datapath resource becomes inactive when it is not referenced for a predetermined timeout period. Meanwhile,

a thread becomes a slow thread, when it has a pending cache miss. Then, DCRA allocates more resources

to slow threads by taking some portion of resources from fast or inactive threads. The rationale behind this

mechanism is as follows: a fast thread is already fast, and so there is no harm stealing a few resource entries

from them and giving them to the slow threads. Similarly, when a thread is labeled as inactive for a resource,

then there is no harm giving its share on that resource to a thread that actually needs it.

In another explicit mechanism, which proposes hill climbing for solving SMT resource partitioning

problem, runs in epochs (periodic intervals) [5]. The hill climbing heuristic is a greedy algorithm that aims to

gradually climb to a peak performance point by changing resource allocations at certain decision points. The

execution is divided into trial epoch, and at each trial epoch, an arbitrary thread receives more resources than its

actual portion. After running trial epochs for each thread, the decision point selects the best performing thread

with extra resources and gives that extra resource to that selected thread. These trial epochs and decisions are

run in a continuous manner in the SMT processor.

The Adaptive Resource Partitioning Algorithm (ARPA) utilizes a resource efficiency metric known as

Committed Instructions Per Resource Entry (CIPRE) [6]. At the end of each epoch, CIPRE of each thread is

3



Güney et al./Turk J Elec Eng & Comp Sci

calculated, and the thread with the highest CIPRE value receives proportionately more resources, whereas the

thread with the lowest CIPRE value receives the least amount of resources. This mechanism has a self-balancing

nature so that none of the threads can always dominate or starve. For instance, if a thread is provided with more

resources, its new calculated CIPRE becomes lower as long as its commit rate does not change. As a result,

a thread with the worse CIPRE value can indirectly improve its efficiency later and receive extra resources, in

the end.

In another work from the literature, Eyerman and Eeckhout propose a method which estimates execution

time of threads in SMT architecture if threads were run alone [12]. Weng and Liu provide higher fetching

priority to threads with less utilized resources by examining early stages of the pipeline as well as low-level

data cache misses [13]. Zhang and Lin limit the number of entries each thread can have in the issue queue

according to the previous allocation’s impact on performance [14]. Zhang and Lin improve SMT performance

by partitioning shared register file among threads [15]. Güngörer and Küçük utilize a hill-climbing algorithm

to dynamically partition the physical register file among threads in an SMT processor [16]. Finally, Sheikh and

Lin also propose a dynamic physical register file capping scheme that allows thread-base individual capping in

SMT processors [17].

2.2. Hyper-heuristics

Hyper-heuristics are high-level methodologies that work on top of the heuristic search space for solving computa-

tionally difficult problems. The basic idea is to exploit the strength of multiple heuristics (move/neighborhood

operators) which dates back to early 60s [18]. Mainly, there are selection and generation hyper-heuristics,

which manage a set of low-level heuristics[19]. Currently, hyper-heuristics are designed based on the notion of

a domain barrier which separates the problem domain from any high-level method. The barrier acts as a filter

disallowing no problem specific information from the problem domain pass to the hyper-heuristic level. This

approach provides a basis for an automated, adaptive, modular, easy-to-maintain and flexible software design

that is enabled for reuse while solving an unseen instance from a domain and even other problem domains

without necessitating any modification.

A selection hyper-heuristic is often an iterative search method, consisting of heuristic selection and move

acceptance methods that are invoked successively at each step [20]. This type of framework manages by mixing

and controlling a fixed set of low-level heuristics. Cowling et al. introduce almost all of the simple selection

hyper-heuristic components [21]. For instance, random permutation gradient selection heuristic, first, generates

a list of permutations of low-level heuristics. Consequently, it selects a low-level heuristic in that predetermined

order at any step to run on the current solution. Once a selected heuristic gives an improvement, it is utilized

one more time.

Some of the hyper-heuristics can also make use of various machine learning techniques. Learning within

hyper-heuristics takes place in an online or offline manner. Offline learning hyper-heuristics are employed in a

train-and-test order, where the feedback from the search process is obtained during the training stage on some

sample problem instances. Online learning hyper-heuristics receive feedback during the ongoing search process

for guidance. One of the best examples of this category of hyper-heuristics is known as the reinforcement

learning-based hyper-heuristic. In this approach, each heuristic is assigned a utility score that can either

increase as a rewarding mechanism after an improving move or decrease as a punishment mechanism after

a worsening move [22, 23]. The utility score is updated after each step of the algorithm, and the heuristic

with the best score can be selected as the default strategy. Moreover, a hyper-heuristic can embed a delayed

4



Güney et al./Turk J Elec Eng & Comp Sci

learning mechanism, which, for example, scores low-level heuristics in a stage and then using those scores for

choosing heuristics in the following stage. Bai et al. successfully apply a reinforcement-based delayed learning

hyper-heuristic on a timetabling problem as well as bin packing [24]. There is a theoretical [25] as well as an

empirical evidence [26, 27] that hyper-heuristics are effective solution methodologies for solving combinatorial

optimization problems. Even if the environment changes dynamically for a given problem, it has been shown

that the hyper-heuristics can adapt and result with high-quality solutions [8, 9].

More on hyper-heuristics can be found in [7, 28, 29]. Sharing the SMT processor datapath resources

among the threads of a given workload is a challenging task which needs to be addressed in a dynamically

changing environment. Moreover, even a small change in a workload, for example, swapping the order of two

programs, could lead to a large change in the overall characteristics of the instance and so making the problem

even more difficult to handle. Here, we use the previous work on selection hyper-heuristics as an inspiration

to design a set of learning selection hyper-heuristics to mix well-known SMT heuristics to improve the SMT

throughput.

3. Motivation

Although we can try utilizing as many of the aforementioned heuristics as possible in our hyper-heuristic

framework, there are two major obstacles ahead. First, a selection hyper-heuristic asks for freedom to select

and utilize any of the heuristics that are under its control at any given time. However, each heuristic has its

own running strategy. For instance, all [5, 6, 16] have a periodic nature, whereas [4] is based on instant decision

and re-partitioning. Second, heuristics that we focus may not always be in the same mindset. For instance, all

[4–6] focus on resource partitioning, whereas [14–17] focus on resource capping, which might be a quite different

task compared to partitioning from time to time. In this study, we focus on two well-known heuristics (i.e. Hill

Climbing and Adaptive Resource Partitioning) that fall into the same category (i.e. resource partitioning with

a periodic nature) to demonstrate the viability and feasibility of hyper-heuristics on the SMT domain.

We present the results obtained in our preliminary study, which reveal that neither of the heuristics

examined (Hill Climbing and Adaptive Resource Partitioning Algorithm) is better than the other in every

case1. Figure 1 shows the performance charts for some of the well-known benchmark workloads [30]. These

results present both cases where HILL outperforms ARPA and ARPA outperforms HILL indicating that there

is no single heuristic, which performs better than the other when all workloads are considered. The figure also

presents the BEST value, which depicts the throughput of an oracle selection hyper-heuristic that successfully

selects the best performing heuristic in all cases. The duration of this preliminary analysis is only 8-heuristic

periods long, but it is sufficient to show the potential of our approach for improving throughput as long as the

correct sequence of heuristics is chosen.

As a case study, we examine how HILL, ARPA, and BEST perform when the three-threaded lbm-milc-

gobmk workload is run. Figure 2a shows the throughput of three threads when the optimal permutation of

heuristics (BEST) is used, and Figures 2b and 2c show the throughput results when ARPA and HILL are used,

respectively. By examining the results for HILL, it can be seen that giving extra resources to gobmk during

the first few epochs do not improve throughput. However, this is exactly what HILL does: it wastes resources

on threads which are unable to improve throughput with additional resources. Another shortcoming of HILL

1In order for our model to work, the processor should be able to run Hill Climbing and ARPA heuristics at each stage,
interchangeably. To make both heuristics fully compatible, we made a few minor changes in our implementation of these heuristics.
From now on, we refer to our implementations of Hill Climbing and Adaptive Resource Partitioning algorithms as HILL and ARPA,
respectively.

5



Güney et al./Turk J Elec Eng & Comp Sci

hm
m

er
-s
je
ng

hm
m

er
-z
eu

sm
p

lb
m

-z
eu

sm
p

m
cf
-n

am
d

m
cf
-z
eu

sm
p

m
ilc

-z
eu

sm
p

na
m

d-
ze

us
m

p

4

4.5

5

4.
0
1

4.
3
5

4.
26

4
.6

2

4
.5

8

4.
58

4.
4

3
.8

5

4
.1

8

4.
18

4.
5
6

4.
5

4.
4
9

4.
2
9

3.
87

4.
2
4

4.
09

4.
6

4
.4

1

4
.4

1

4.
3
5

T
h

ro
u

g
h

p
u

t

BEST HILL ARPA

Figure 1: Throughput of HILL, ARPA, and maximum possible throughput achievable by a perfect selection
hyper-heuristic, which we name BEST.

is that it is slower than ARPA. In the first few epochs, the best allocation decision is to take as many resources

from lbm and gobmk, and give them to milc. ARPA can reach this state as fast as in six epochs, whereas it

takes three times longer for HILL (since there are three threads in this workload).

On the other hand, ARPA has its shortcomings too. ARPA evaluates threads by their Committed

Instructions Per Resource Entry (CIPRE) value, and takes resources away from threads with low CIPRE values

and allocate these resources to the one with the highest CIPRE. However, when ARPA takes resources away

from a thread, the window in which that thread can search for data independent instructions shrinks and the

thread starts to lose its ability to exploit instruction level parallelism. The problem ARPA experiences in this

workload is that it becomes harder for both lbm and gobmk to improve their CIPRE value as they lose their

resources, creating a harmful feedback loop for these threads. It can be seen in Figure 2b that after epoch nine,

ARPA is stuck with its allocation decision, and cannot increase the number of resources allocated to gobmk,

which can improve throughput with additional resources as it can be seen in epochs 24 to 30, in Figure 2a.

Figure 3 shows the throughput results of all possible heuristic permutations for bzip2-cactusADM-hmmer

workload for first ten epochs. In the graph, the x-axis represents the first five heuristics selected in the first

five epochs, and the y-axis represents the last five heuristics selected in the last five epochs. Here, H stands for

HILL and A stands for ARPA. The colors represent the overall throughput in terms of Instructions Per Cycle

(IPC) where red means higher IPC and green means lower. Lower-left and upper-right corners show the actual

throughputs of the original heuristics, ARPA and HILL respectively. Simulation results show that only less

than 11% of permutations are able to improve throughput compared to ARPA in this workload, meaning that

more than 89% of permutations hurt performance. These results indicate that randomly selecting heuristics to

utilize is more likely to degrade system performance, and smarter selection algorithms are needed, instead.

Based on the insights gained by our preliminary analysis and previous work, which concur that there is

no single heuristic which will perform better than the rest in all cases, we propose using hyper-heuristics to take

advantage of multiple heuristics. Furthermore, Figure 1 suggests that the performance of hyper-heuristics can

even surpass the individual performance of each utilized heuristic.

6



Güney et al./Turk J Elec Eng & Comp Sci

1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30
0

2

4

Epoch

T
h

ro
u

gh
p

u
t

lbm milc gobmk

(a) Throughput of individual threads when the best performing combination of HILL and ARPA is used for the workload
lbm-milc-gobmk

1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30
0

2

4

Epoch

T
h

ro
u

gh
p

u
t

lbm milc gobmk

(b) Throughput of individual threads when ARPA is used as the heuristic for the workload lbm-milc-gobmk

1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30
0

2

4

Epoch

T
h

ro
u

gh
p

u
t

lbm milc gobmk

(c) Throughput of individual threads when HILL is used as the heuristic for the workload lbm-milc-gobmk

Figure 2: Throughputs of individual threads under various heuristics for the workload lbm-milc-gobmk.

7



Güney et al./Turk J Elec Eng & Comp Sci

A
A

A
A

A

H
A

A
A

A

A
H

A
A

A

H
H

A
A

A

A
A

H
A

A

H
A

H
A

A

A
H

H
A

A

H
H

H
A

A

A
A

A
H

A

H
A

A
H

A

A
H

A
H

A

H
H

A
H

A

A
A

H
H

A

H
A

H
H

A

A
H

H
H

A

H
H

H
H

A

A
A

A
A

H

H
A

A
A

H

A
H

A
A

H

H
H

A
A

H

A
A

H
A

H

H
A

H
A

H

A
H

H
A

H

H
H

H
A

H

A
A

A
H

H

H
A

A
H

H

A
H

A
H

H

H
H

A
H

H

A
A

H
H

H

H
A

H
H

H

A
H

H
H

H

H
H

H
H

H

HHHHH

AHHHH

HAHHH

AAHHH

HHAHH

AHAHH

HAAHH

AAAHH

HHHAH

AHHAH

HAHAH

AAHAH

HHAAH

AHAAH

HAAAH

AAAAH

HHHHA

AHHHA

HAHHA

AAHHA

HHAHA

AHAHA

HAAHA

AAAHA

HHHAA

AHHAA

HAHAA

AAHAA

HHAAA

AHAAA

HAAAA

AAAAA

List of heuristics run in the first five epochs

L
is

t
of

h
eu

ri
st

ic
s

ru
n

in
th

e
la

st
fi

ve
ep

o
ch

s

Figure 3: Throughput results of all possible heuristic permutations in bzip2-cactusADM-hmmer workload
represented as a heatmap. Red represents higher IPC values whereas green represents lower values.

8



Güney et al./Turk J Elec Eng & Comp Sci

	Domain	Layer

Set	of	low	level	heuristics:	{ARPA,	HILL}
Threads:	{Th1,...,Thk,...,Thj,...,Thn}
Resources:	IQ,	ROB,	LSQ

Methodologies	to	decide	which	low	level	heuristic	to	apply,
favouring	which	thread	to	run,	allocationg	more	resources

Hyper-heuristic	Layer

Shared	Hardware
Counters

Figure 4: The proposed design.

HILL ARPA ARPA ARPA ARPA ARPA ARPA ARPA HILL

epoch	0 epoch	1 epoch	2 epoch	3 epoch	4 epoch	5 epoch	6 epoch	7 epoch	8

Figure 5: An example timeline with heuristics running in arbitrary order.

4. The Proposed Hyper-Heuristic Design

We start by creating a mechanism which can interchangeably run either adaptive resource partitioning or hill

climbing algorithms. ARPA and HILL heuristics are our faithfully implemented versions of these heuristics on

hardware. The relationship between the hyper-heuristic and the underlying heuristics is shown in Figure 4.

The aim of ARPA and HILL heuristics is to find the thread that deserves extra resources the most. The
hardware counters are shared by all heuristics and the hyper-heuristic that utilizes those heuristics. These per

epoch counters are committed instructions per cycle (IPC), committed instructions per resource entry CIPRE

and fetched instructions per cycle (FIPC). When the performance of a low-level heuristic deteriorates and the

indicator value reduces below a certain threshold, our hyper-heuristic selects the next one from the other available

low-level heuristics. Therefore, we can say that our proposed hyper-heuristic presents similar characteristics

of a permutation gradient hyper-heuristic. In this study, we investigate various runtime statistics as well as

heuristic selection methods.

4.1. Mixing ARPA and HILL

The proposed hyper-heuristic should be able to run both heuristics, interchangeably and adaptively in epochs.

This is a challenging task, as additionally, this needs to be done in real time based on hardware entries. There

is a slight difference between HILL and ARPA: HILL needs a number of trial epochs to decide whereas ARPA

can make permanent decisions at the end of a single epoch. If the system allows ARPA to run between two

trial epochs of HILL, this will have two severe consequences. First, it will increase the chances of a workload

changing its behavior between the two trial periods, which leads HILL to compare trial performances of two

different program phases and renders it to be a totally different heuristic. This can be observed better in the

timeline given in Figure 5. In this example, HILL is run in the first epoch, and HILL runs its first trial round.

Then, the hyper-heuristic decides that ARPA should be run for the next seven epochs. When HILL finishes its

trials and makes a decision, it has to compare performance results of epochs 0 and 8, which are quite far away

from each other, causing inaccurate evaluations that the original algorithm does not experience at all.

The second problem that may occur when ARPA is allowed to be run between two trial epochs of HILL

9



Güney et al./Turk J Elec Eng & Comp Sci

HILL HILL HILL ARPA ARPA ARPA HILL HILL HILL

epoch	0 epoch	1 epoch	2 epoch	3 epoch	4 epoch	5 epoch	6 epoch	7 epoch	8

Big	Epoch	0 Big	Epoch	1 Big	Epoch	2

Figure 6: An example timeline where the hyper-heuristic decides HILL, ARPA and HILL should be run on an
SMT processor with 3 threads.

is that the processor may have to make radical changes in resource distribution if ARPA keeps changing the

distribution in a particular direction and HILL wants to return to its anchor state. This phenomenon would

cause the processor to act in a way against the nature of both heuristics.

Throughout this process, we tried our best to faithfully implement the algorithmic behavior of each

heuristic to be consistent with its original implementation. To overcome the problems described above, we

define Big Epochs. Big Epochs consist of T epochs, where T is the number of threads running simultaneously in

the system. Only a single type of heuristic runs within a Big Epoch, as shown in Figure 6. Therefore, the hyper-

heuristic makes decisions only at the beginning of Big Epochs. To provide the hyper-heuristic with accurate

data on how heuristics perform, all evaluations are done using performance values of heuristics gathered in Big

Epochs. Although, the heuristics still make their decisions in the traditional epoch granularity.

As stated earlier, the nature of utilized heuristics must have a certain similarity so the system can

accommodate all heuristics at the same time without major difficulties. For example, DCRA is another

promising heuristic with different qualities compared to HILL and ARPA, but it is different from the others due

to its non-periodic nature [4]. Thus, DCRA and such other heuristics are left out in this research. However, it

is certainly a prominent future research direction to include heuristics of different nature into the mix.

4.2. Proposed Hyper-heuristics

In this section, we focus on hyper-heuristics for selecting a heuristic that allocates SMT resources among

concurrently running threads. For the selection process, simpler rules usually produce more effective results as

more complex hyper-heuristics are more likely to introduce many corner cases where the hyper-heuristic fails to

choose the right heuristic for the job. Although we tested tens of hyper-heuristics with different metrics and for

different reasons, we only present three hyper-heuristics, which sufficiently represent the effect of hyper-heuristic

usage on SMT resource partitioning.

4.2.1. HH1: A Throughput-Oriented Hyper-heuristic

Our first proposed hyper-heuristic is the most straightforward one as it directly uses the end result as a decision

parameter. At the end of a decision period, HH1 toggles the heuristic that is being used if the current heuristic

causes a throughput drop compared to the previous decision period. By introducing a threshold rate, HH1 can

be more forgiving to heuristics, which cause a small throughput drop, or more greedy by punishing heuristics

which fail to improve throughput above the threshold. The algorithm for HH1 is shown in Algorithm 1.

10



Güney et al./Turk J Elec Eng & Comp Sci

Algorithm 1 Algorithm for HH1

1: IPCi : Throughput of ith Big Epoch
2: procedure HH1(bigepoch: current big epoch number)
3: target ipc← IPCbigepoch − 1 ∗ threshold
4: if IPCbigepoch >= target ipc then
5: Keep heuristic
6: else
7: Switch heuristic

4.2.2. HH2: An Efficiency-Oriented Hyper-heuristic

Our second hyper-heuristic, HH2, evaluates heuristics based on their ability to help threads commit most of their

instructions that they fetch. Speculative instructions from mispredicted paths do not make any contribution

to the throughput metric. These instructions are fetched into the pipeline but are not committed. Hence,

such instructions cause shared pipeline resources to be wasted. HH2 aims to keep the ratio of the number

of instructions committed to the number of instructions fetched as small as possible by switching to the next

heuristic if the current heuristic fails to improve this ratio above a certain threshold. The algorithm for HH2 is

shown in Algorithm 2.

Algorithm 2 Algorithm for HH2

1: commiti : Number of instructions committed in ith Big Epoch
2: fetchi : Number of instructions fetched in ith Big Epoch
3: procedure HH2(bigepoch: current big epoch number)
4: FIPCbigepoch − 1 ← commitbigepoch − 1 / fetchbigepoch − 1

5: FIPCbigepoch ← commitbigepoch / fetchbigepoch

6: target fipc← FIPCbigepoch − 1 ∗ threshold
7: if FIPCbigepoch >= target fipc then
8: Keep heuristic
9: else

10: Switch heuristic

Algorithm 3 Algorithm for HH3

1: commiti : Number of instructions committed in ith Big Epoch
2: fetchi : Number of instructions fetched in ith Big Epoch
3: procedure HH3(bigepoch: current big epoch number)
4: FIPCbigepoch − 1 ← commitbigepoch − 1/fetchbigepoch − 1

5: FIPCbigepoch ← commitbigepoch / fetchbigepoch

6: target fipc← FIPCbigepoch − 1 ∗ threshold
7: target commit← commitbigepoch − 1 ∗ threshold
8: if FIPCbigepoch >= target fipc and commitbigepoch >= target commit then
9: Keep heuristic

10: else
11: Switch heuristic

4.2.3. HH3: A Hybrid Solution

Finally, HH3 borrows metrics from both HH1 and HH2, and, thus, it is a mixture of these two heuristics.

A heuristic may help improve the number of instructions committed but degrade the ratio of the number of

11



Güney et al./Turk J Elec Eng & Comp Sci

Table 1: Specifications of the simulated system

Number of concurrent threads 4
Decode / Issue / Commit bandwidth 8

Number of memory ports 8
Register file 256 integer, 256 floating point

Re-order buffer size 64 entries
Issue Queue size 32 entries

Load/Store Queue size 40 entries
Number of integer ALUs 6

Number of integer multipliers 3
Number of floating point ALUs 3

Number of floating point multipliers 1
L1 Instruction Cache size 32KB, 2-way, LRU

L1 Data Cache size 32KB, 4-way, LRU
L1 Cache hit time 1 cycle

L2 Cache Size 512KB, 4-way, LRU
L2 Cache hit time 20 cycles

Main memory access time 300 cycles

instructions committed to the number of instructions fetched, or vice versa. HH3, therefore, constitutes a more

aggressive approach by switching the heuristic if it causes performance degradation on either of these metrics.

Similar to HH1 and HH2, HH3 utilizes a threshold ratio to adjust the level of tolerance (or intolerance) against

performance drops. The algorithm for HH3 is shown in Algorithm 3.

5. Computational Experiments

5.1. Experimental Settings

In our study, we used M-Sim as our simulation environment2. The configuration of the simulated processor

is shown in Table 1. hmmer (Hidden Markov Models for protein sequence analysis), lbm (Lattice Boltz-

mann method for simulating incompressible fluids in 3D), mcf (single-depot vehicle scheduling in public mass

transportation), milc (Multiple Instruction Multiple Data Lattice Computation for quantum chromodynamics),

namd (a parallel program for simulating large biomolecular systems), sjeng (a chess application for exploring

the tree of variations resulting from a given position), and zeusmp (a program for solving the equations of

non-resistive, non-relativistic, hydrodynamics and magnetohydrodynamics) benchmarks are randomly chosen

from the SPEC2006 CPU suite to create multithreaded workloads. Twelve workloads are created using these

benchmarks. For a fair comparison, these workloads are organized as two 6-workload groups: WLHILL, which

consists of workloads for which HILL performs better than ARPA, and WLARPA, which consists of workloads

for which ARPA performs better than HILL. These workloads are shown in Table 2. For all workloads, the

system is fast forwarded for 100M cycles as a warm-up period followed by a cycle-accurate simulation for 200M

cycles.

Epoch duration is chosen as 32K cycles. This is the epoch duration used in the previous work [5, 6].

We also empirically determined that both HILL and ARPA work best with this duration. Since a Big Epoch

consists of epoch times number of threads, the Big Epoch duration becomes 128K cycles. As both heuristics

2M-SIM (2005): A Flexible, Multithreaded Architectural Simulation Environment [online]. Website
https://www.cs.binghamton.edu/ msim/documentation/msim tr.pdf [accessed 11 November 2019].

12



Güney et al./Turk J Elec Eng & Comp Sci

1 2 3 4 5 6

4

4.5

5
4.

1
7

4
.0

5

3.
9
9 4
.1

7

4.
19

3.
8
6

4
.6

2

4.
4
4 4
.5

6

4.
6

4.
7
9

4
.0

4

4.
32

4
.4

7 4.
5
7

4.
6
2 4.

78

4.
03

4
.6

2

4.
4
5 4.
55 4.

6
2 4.
73

4
.0

1

4.
6
2

4
.4

5 4.
56 4.
6
1 4
.7

8

4.
0
5

Workload

T
h

ro
u

g
h

p
u

t

HILL ARPA HH1 HH2 HH3

Figure 7: Throughput of HILL, ARPA, and hyper-heuristics for workload set WLARPA

move ROB, IQ, and LSQ entries between threads, the number of entries moved for these resources at each

step must be proportional to their sizes. We determined these values as 4, 2, and 2 entries, respectively. The

threshold values for all hyper-heuristics are empirically set as 1.0.

Table 2: Workloads

Workload No. WLHILL WLARPA
1 hmmer-mcf-milc-namd hmmer-lbm-mcf-sjeng
2 hmmer-mcf-milc-zeusmp hmmer-mcf-milc-sjeng
3 lbm-mcf-milc-zuesmp hmmer-mcf-namd-sjeng
4 mcf-milc-namd-zeusmp lbm-mcf-milc-sjeng
5 mcf-milc-sjeng-zeusmp lbm-mcf-namd-sjeng
6 mcf-namd-sjeng-zeusmp lbm-milc-namd-sjeng

5.2. Results

In this section, we present the experimental results obtained from our simulation environment. The throughput

of the proposed hyper-heuristics is examined in two different workload sets: 1) workloads for which HILL

achieves higher throughput compared to ARPA (WLHILL), and 2) workloads for which ARPA gives higher

throughput compared to HILL (WLARPA). Figures 7 and 8 show the throughput obtained by utilizing HILL,

ARPA, and our proposed hyper-heuristics on WLARPA and WLHILL workload sets, respectively.

It is shown in the previous work [5, 6] that both heuristics have their advantages and disadvantages, and

may outperform each other in different workloads. This can also be seen in the results shown in Figures 7 and

8. In WLHILL, HILL outperforms ARPA by more than 3%, and, in WLARPA, ARPA outperforms HILL by

around 10%, on the average. Here, our main motivation is to be able to select and utilize the better performing

heuristic in a timely manner, so that we do not lose too much performance. From Figure 1 we also know that we

can even achieve a higher performance than both ARPA and HILL if we make this selection right and timely.

The results show that our proposed hyper-heuristics can achieve throughput results quite close to the

results of the better-performing heuristic, and, in almost all of the WLARPA workloads, they can even perform

slightly better than both heuristics. However, we also see that devising a perfect hyper-heuristic, which always

gives higher performance than the heuristics that it operates on, is really a challenging (if not impossible) task.

13



Güney et al./Turk J Elec Eng & Comp Sci

1 2 3 4 5 6

4.5

5

5.5

4.
5
3

4
.8

3 4.
95 5
.0

5

4.
8
7 4.

9
8

4
.4

9

4.
6
6 4
.8 4.
8
1

4.
73

4
.8

5

4.
52

4
.8

4.
9
3 5.

02

4.
8

4.
9
9

4
.5

4.
79

4.
9
3 5.

02

4.
7
6

5

4.
5
2

4
.8

2 4.
9
2 5

4
.7

5

4.
9
7

Workload

T
h

ro
u

g
h

p
u

t

HILL ARPA HH1 HH2 HH3

Figure 8: Throughput of HILL, ARPA, and hyper-heuristics for workload set WLHILL

As a result, our best performing hyper-heuristic (HH3) outperforms HILL by around 5% and ARPA by around

2%, on the average. The peak performance gain over HILL is around 15% in the third workload of WLARPA,

whereas the peak performance gain over ARPA is slightly lower (5%) in the fourth workload of WLHILL.

We were also expecting that our hyper-heuristics perform better than HILL and ARPA, in occasional

cases. In the second, the third, the fourth and the sixth workload of WLARPA, we clearly observe this

phenomenon. Although the performance gain over both heuristics is small, these results are important to

demonstrate that hyper-heuristics are tools for not only tracking better performing heuristics but also achieving

optimal or close-to-optimal results even better than the best heuristic that is under the hood.

In terms of hardware complexity, all hyper-heuristics induce an insignificant complexity to the system.

HH3, the most complex hyper-heuristic among all proposed hyper-heuristics, requires only one register to

store the FIPC value for the previous epoch. The computation required by HH3 consists of one division, two

multiplication, and two comparison operations, which can be carried out by the processor’s already existing

functional units in less than hundred cycles. Considering that the control logic for both heuristics themselves

introduce little complexity, it can be said that the proposed hyper-heuristics can be applied to an SMT processor

without any significant costs in terms of hardware complexity.

6. Conclusion

It is shown in the literature that resource partitioning in SMT processors has an important impact on through-

put. In this research, we show that there is no single solution, which works best in all situations, and we

investigate utilizing hyper-heuristics to exploit the advantages of two well-known SMT resource partitioning

algorithms.

Among various hyper-heuristics which use different heuristic selection logic and feedback metrics evaluated

in this research, three most prominent hyper-heuristics are presented. The best performing hyper-heuristic

improves performance by 5% compared to Hill Climbing and by 2% compared to Adaptive Resource Partitioning

Algorithm, on the average across all workloads that are studied. The peak performance gain reaches up to 15%.

We studied the usage of hardware hyper-heuristics, and this is one of the first studies that implements

a selection hyper-heuristic on such a restricted environment with limited resources. Implementing the hyper-

heuristic on hardware requires the decision logic to be fairly simple due to increasing hardware complexity and

14



Güney et al./Turk J Elec Eng & Comp Sci

power considerations. A future research direction would be to implement hyper-heuristics as kernel modules,

allowing more complex hyper-heuristics to be utilized.

Apart from using different selection algorithms and feedback metrics, one way to improve the potential

and effective throughput gain would be to introduce new low-level heuristics into the system. Such extra

heuristics can enable hyper-heuristics to cover a larger search space with richer and better performance options.

Acknowledgment

This work is supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Grant

No. 117E866.

References

[1] Tullsen DM, Eggers SJ, Levy HM. Simultaneous multithreading: maximizing on-chip parallelism. In: 25 Years of

the International Symposia on Computer Architecture (Selected Papers); Barcelona, Spain; 1998. pp. 533-544.

[2] Tullsen DM, Brown JA. Handling long-latency loads in a simultaneous multithreading processor. In: Proceedings

of the 34th Annual ACM/IEEE International Symposium on Microarchitecture; Austin, Texas, USA; 2001. pp.

318-327.

[3] Tullsen DM, Eggers SJ, Emer JS, Levy HM, Lo JL et al. Exploiting choice: instruction fetch and issue on an

implementable simultaneous multithreading processor. ACM SIGARCH Computer Architecture News 1996; 24 (2):

191-202. doi: 10.1145/232974.232993

[4] Cazorla FJ, Ramirez A, Valero M, Fernandez E. Dynamically controlled resource allocation in SMT processors.

In: Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture; Portland, Oregon,

USA; 2004. pp. 171-182.

[5] Choi S, Yeung D. Hill-climbing SMT processor resource distribution. ACM Transactions on Computer Systems

(TOCS) 2009; 27 (1): 1-47. doi: 10.1145/1482619.1482620

[6] Wang H, Koren I, Krishna CM. Utilization-based resource partitioning for power-performance efficiency in

SMT processors. IEEE Transactions on Parallel and Distributed Systems 2011; 22 (7): 1150-1163. doi:

10.1109/TPDS.2010.199

[7] Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G et al. Hyper-heuristics: A survey of the state of the art.

Journal of the Operational Research Society 2013; 64 (12): 1695-1724. doi: 10.1057/jors.2013.71

[8] Kiraz B, Etaner-Uyar AS, Özcan E. Selection hyper-heuristics in dynamic environments. Journal of the Operational

Research Society 2013; 64 (12): 1753-1769. doi: 10.1057/jors.2013.24

[9] Uludağ G, Kiraz B, Etaner-Uyar AS, Özcan E. A hybrid multi-population framework for dynamic environments

combining online and offline learning. Soft Computing 2013; 17 (12): 2327-2348. doi: 10.1007/s00500-013-1094-7

[10] Eyerman S, Eeckhout L. Memory-level parallelism aware fetch policies for simultaneous multithreading processors.

ACM Transactions on Architecture and Code Optimization 2009; 6 (1): 1-33. doi: 10.1145/1509864.1509867

[11] Vandierendonck H, Seznec A. Managing SMT resource usage through speculative instruction window weighting.

ACM Transactions on Architecture and Code Optimization 2011; 8 (3): 1 - 20. doi: 10.1145/2019608.2019611

[12] Eyerman S, Eeckhout L. Per-thread cycle accounting in SMT processors. ACM SIGPLAN Notices 2009; 44 (3):

133-144. doi: 10.1145/1508284.1508260

[13] Weng L, Liu C. A resource utilization based instruction fetch policy for SMT processors. Microprocessors and

Microsystems 2015; 39 (1): 1-10. doi: 10.1016/j.micpro.2014.10.001

[14] Zhang Y, Hays M, Lin WM, John E. Autonomous control of issue queue utilization for simultaneous multi-threading

processors. In: Proceedings of the High Performance Computing Symposium; Tampa, Florida, USA; 2014. pp. 1-8.

15



Güney et al./Turk J Elec Eng & Comp Sci

[15] Zhang Y, Lin WM. Efficient resource sharing algorithm for physical register file in simultaneous multi-threading

processors. Microprocessors and Microsystems 2016; 45 (PB): 270-282. doi: 10.1016/j.micpro.2016.06.002

[16] Güngörer H, Küçük G. Dynamic capping of physical register files in simultaneous multi-threading processors for

performance. In: 32nd International Symposium (ISCIS 2018); Poznan, Poland; 2018. pp. 41-48.

[17] Sheikh MN, Lin WM. Dynamic capping of rename registers for SMT processors. Journal of Systems Architecture

2019; 99. doi: 10.1016/j.sysarc.2019.101637

[18] Fisher H, Thompson GL. Probabilistic learning combinations of local job-shop scheduling rules. In: Muth JF,

Thompson GL (editor). Industrial Scheduling. NJ, USA: Prentice-Hall Inc, 1963, pp. 225-251.

[19] Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E et al. A classification of hyper-heuristics approaches. In:

Gendreau M, Potvin JY (editor). Handbook of Metaheuristics. Springer, 2010, pp. 449-468.

[20] Özcan E, Bilgin B, Korkmaz E. A comprehensive analysis of hyper-heuristics. Intelligent Data Analysis 2008; 12

(1): 3-23. doi: 10.3233/ida-2008-12102

[21] Cowling P, Kendall G, Soubeiga E. A hyperheuristic approach to scheduling a sales summit. In Burke E, Erben W

(editor). Practice and Theory of Automated Timetabling III, 2001, pp. 176-190.

[22] Nareyek A. Choosing search heuristics by non-stationary reinforcement learning. In: Resende MGC, de Sousa JP

(editor). Metaheuristics: Computer Decision-Making, 2003. pp-523-544.

[23] Özcan E, Mısır M, Ochoa G, Burke EK. A reinforcement learning - great-deluge hyper-heuristic for ex-

amination timetabling. International Journal of Applied Metaheuristic Computing 2010; 1 (1): 39-59. doi:

10.4018/jamc.2010102603

[24] Bai R, Blazewicz J, Burke EK, Kendall G, McCollum B. A simulated annealing hyper-heuristic methodology for

flexible decision support. 4OR 2012; 10 (1): 43-66. doi: 10.1007/s10288-011-0182-8

[25] Lehre PK, Özcan E. A runtime analysis of simple hyper-heuristics: to mix or not to mix operators. In: Proceedings

of the Twelfth Workshop on Foundations of Genetic Algorithms XII; Adelaide, Australia; 2013. pp. 97-104.

[26] Kheiri A, Özcan E. An iterated multi-stage selection hyper-heuristic. European Journal of Operational Research

2016; 250 (1): 77-90. doi: 10.1016/j.ejor.2015.09.003

[27] Shahriar A, Karapetyan D, Kheiri A, Özcan E, Parkes AJ. Combining monte-carlo and hyper-heuristic methods for

the multi-mode resource-constrained multi-project scheduling problem. Information Sciences 2016; 373: 476-498.

doi: 10.1016/j.ins.2016.09.010

[28] Cowling P, Kendall G, Soubeiga E. Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In:

Applications of Evolutionary Computing: Proceedings of Evo Workshops 2002; Kinsale, Ireland; 2002. pp.269-287.

[29] Ross P. Hyper-heuristic. In: Burke EK, Kendall G (editor). Search Methodologies: Introductory Tutorials in

Optimization and Decision Support Techniques, Springer, 2005, pp. 529-556.

[30] Prakash TK, Peng L. Performance characterization of SPEC CPU2006 benchmarks on Intel Core 2 Duo processor.

ISAST Transactions on Computers and Software Engineering 2008; 2 (2): 36-41. doi: 10.1109/TPDS.2010.199

16


	Introduction
	Related Work
	Heuristics for SMT Resource Management
	Hyper-heuristics

	Motivation
	The Proposed Hyper-Heuristic Design
	Mixing ARPA and HILL
	Proposed Hyper-heuristics
	HH1: A Throughput-Oriented Hyper-heuristic
	HH2: An Efficiency-Oriented Hyper-heuristic
	HH3: A Hybrid Solution


	Computational Experiments
	Experimental Settings
	Results

	Conclusion

