
An Iterated Multi-stage Selection Hyper-heuristic

Ahmed Kheiri1a, Ender Özcana

aUniversity of Nottingham
School of Computer Science

Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
{psxak1,ender.ozcan}@nottingham.ac.uk

Abstract

There is a growing interest towards the design of reusable general purpose
search methods that are applicable to different problems instead of tailored
solutions to a single particular problem. Hyper-heuristics have emerged as
such high level methods that explore the space formed by a set of heuris-
tics (move operators) or heuristic components for solving computationally
hard problems. A selection hyper-heuristic mixes and controls a predefined
set of low level heuristics with the goal of improving an initially generated
solution by choosing and applying an appropriate heuristic to a solution in
hand and deciding whether to accept or reject the new solution at each step
under an iterative framework. Designing an adaptive control mechanism for
the heuristic selection and combining it with a suitable acceptance method
is a major challenge, because both components can influence the overall per-
formance of a selection hyper-heuristic. In this study, we describe a novel
iterated multi-stage hyper-heuristic approach which cycles through two in-
teracting hyper-heuristics and operates based on the principle that not all
low level heuristics for a problem domain would be useful at any point of the
search process. The empirical results on a hyper-heuristic benchmark indi-
cate the success of the proposed selection hyper-heuristic across six problem
domains beating the state-of-the-art approach.

Keywords: Heuristics, Combinatorial Optimisation, Hyper-heuristic,
Meta-heuristic, Hybrid Approach

1Ahmed Kheiri (a.kheiri@exeter.ac.uk) is currently an Associate Research Fellow at
the College of Engineering, Mathematics and Physical Sciences, University of Exeter.

Preprint submitted to European Journal of Operational Research September 2, 2015

1. Introduction

Most of the current decision support systems tend to use expert knowledge
at their core, and are often custom tailored to a specific application domain.
As a result, they cannot be reused for solving a problem from another domain.
On the other hand, there has been some significant scientific progress in devel-
oping automated general purpose systems that can learn, adapt and improve
their behaviour on the fly while solving a given problem. Hyper-heuristics are
such methodologies which perform search over the space formed by a set of
low level heuristics (move operators) which operate on solutions (Burke et al.,
2013). An aim in hyper-heuristic research is to increase the level of gener-
ality of solution methodologies by selecting and/or generating heuristics
automatically during the search process (Burke et al., 2010b). One of the
key features of a hyper-heuristic is that there is a logical separation between
the problem domain and the high level hyper-heuristic methodology that
operates at the top level. This study focuses on selection hyper-heuristics
which combine heuristic selection andmove acceptancemethods as their com-
ponents under a single point iterative search framework which processes a
single complete solution at each step (Burke et al., 2003; Özcan et al., 2008;
Burke et al., 2012). A selection hyper-heuristic chooses a heuristic from a
predefined set of low level heuristics and applies it to a candidate solution.
The new solution is then considered and a decision is made whether it will be
accepted or not. If accepted, the new solution replaces the current solution
and the search continues iteratively. There is a growing number of hyper-
heuristics (Chakhlevitch and Cowling, 2008; Burke et al., 2013) and they
have been successfully applied to different hard computational problems, in-
cluding examination timetabling (Pillay and Banzhaf, 2009; Rahman et al.,
2014), course timetabling (Burke et al., 2007; Soria-Alcaraz et al., 2014), re-
sponse time variability (Garćıa-Villoria et al., 2011) and water distribution
problems (Kheiri et al., 2015).

It has been observed that a selection hyper-heuristic performs differently
at different stages of the search process (Kheiri et al., in press; Asta et al.,
2013a). Moreover, there is a strong empirical evidence indicating that the
choice of heuristic selection and move acceptance combination influences the
overall performance of a hyper-heuristic (Özcan et al., 2008; Bilgin et al.,
2007). Lehre and Özcan (2013) conducted a theoretical study using a selec-
tion hyper-heuristic on a benchmark function showing that an improved run-
time complexity can be obtained by mixing simple move acceptance criteria

2

rather than using each move acceptance method on its own. In that study,
random choice is used as a heuristic selection and the algorithmic framework
could be viewed as a multi-stage framework in which two hyper-heuristics
with different move acceptance is employed. This situation points out the po-
tential of a modified single point-based search framework for selection hyper-
heuristics enabling multi-stage operation of multiple hyper-heuristics. The
design of multi-stage selection hyper-heuristics then would require another
hyper-heuristic level for managing those multiple hyper-heuristics. One of
the frameworks proposed in (Özcan et al., 2006) that handles mutational
and hill climbing heuristics separately by invoking a mutational heuristic
first followed by a hill climber, actually performs a multi-stage search. The
higher level in this framework employs two prefixed hyper-heuristics in which
each hyper-heuristic controls diversification (exploration of the search space)
managing mutational heuristics and intensification (exploitation the accumu-
lated search experience) managing hill climbing heuristics only. In another
study, Özcan and Burke (2009) conceptualised a multilevel search framework
for selection hyper-heuristics with three levels. The proposed method com-
bines multiple hyper-heuristics, each performing search over a set of low
level heuristics. Considering the recursive nature of the hyper-heuristic def-
inition of ‘heuristics to choose heuristics’ by Cowling et al. (2001), multiple
hyper-heuristics managing low level hyper-heuristics is also possible requiring
another level and so on, causing a hierarchical growth in the hyper-heuristic
levels like a tree. The usefulness of such a structure is still under debate.
An initial attempt to flatten the hierarchical growth in the hyper-heuristic
levels was made by Özcan et al. (2013), assuming a particular situation in
which there are multiple move acceptance methods for use. Instead of em-
ploying each move acceptance method individually or utilising them all in a
multi-stage manner, the authors proposed an approach merging all move ac-
ceptance methods into a single method via a group decision making strategy.

To the best of our knowledge, the effectiveness of a general multilevel
search framework which combines multiple selection hyper-heuristics based
on the ideas in (Özcan and Burke, 2009) has not been investigated further.
This work describes an iterated multilevel search framework which allows
the use of multiple interacting hyper-heuristics cyclically during the search
process. Given that one of the selection hyper-heuristics would be employed
at each stage during the search process, we will refer to the overall approach
as multi-stage (selection) hyper-heuristic. The additional level on top of the
multiple selection hyper-heuristics will be referred to as multi-stage level.

3

The proposed multi-stage hyper-heuristic framework is general, reusable and
useful in relieving the difficulty of choosing a hyper-heuristic method for
solving a problem, by automating the process of selecting a hyper-heuristic
at different point of the search process.

There are already some software tools supporting the rapid development
of (meta-)hyper-heuristics, such as HyFlex (Hyper-heuristics Flexible frame-
work) (Ochoa et al., 2012a) and Hyperion (Swan et al., 2011). The Java
implementation of the HyFlex interface was used in a cross-domain heuristic
search challenge, referred to as CHeSC 2011. The results form this competi-
tion and six HyFlex problem domain implementations became a benchmark
in selection hyper-heuristic studies (see Section 4 for more details). The
winning state-of-the-art approach of CHeSC 2011 is an elaborate but compli-
cated algorithm which makes use of machine learning techniques (Misir et al.,
2011). In this study, a novel iterated multi-stage selection hyper-heuristic
based on the proposed framework is designed, implemented and analysed.
The empirical results using the CHeSC 2011 benchmark across six problem
domains indicate the success of our hyper-heuristic beating the state-of-the-
art approach.

The sections are organised as follows. Section 2 covers some selection
hyper-heuristics relevant to this study and introduces the concept of multi-
stage selection hyper-heuristics summarising some recent studies. Section
3 describes the components of the proposed multi-stage selection hyper-
heuristic framework. An overview of HyFlex and CHeSC 2011 is provided
in Section 4. Section 5 presents the empirical results. Finally, Section 6
concludes the study.

2. Related Work

A variety of simple selection hyper-heuristic components were presented
in (Cowling et al., 2001), including the following heuristic selection methods.
Simple Random chooses a random heuristic at each time. Random Gradi-
ent selects a random heuristic and then applies it to the candidate solution
as long as the solution is improved. Random Permutation applies low level
heuristics in sequence based on a random permutation. Random Permutation
Gradient combines the Random Permutation and Random Gradient strate-
gies applying a heuristic from the sequence in a random permutation until
that heuristic makes no improvement. Greedy chooses the best solution after
applying all actively used low level heuristics to the current solution. Choice

4

Function is a learning heuristic selection method which gives a score to each
low level heuristic based on their utility value. Cowling and Chakhlevitch
(2003) suggested the use of a Tabu search based hyper-heuristic that pro-
vides a list that disallows heuristics with poor performance.

The idea of applying different hyper-heuristics at different stages has
been studied previously. Hyper-heuristics often employ a learning mechanism
Burke et al. (2013). Online learning hyper-heuristics receive feedback during
the search process potentially influencing their decision in heuristic selection
and move acceptance. Offline learning hyper-heuristics generally operate in
a train and test fashion in two fixed successive stages. Mostly, latter type of
hyper-heuristics are used to generate heuristics Burke et al. (2009). There
are studies on offline learning selection hyper-heuristics as well. For instance,
Chakhlevitch and Cowling (2005) proposed a two-stage hyper-heuristic using
a different hyper-heuristic at each stage. The first stage hyper-heuristic em-
ploys a Greedy approach which is used to reduce the number of low level
heuristics. In the following stage, a simple random hyper-heuristic accepting
non-worsening moves is used. The authors reported that using both greedy
and tabu search in combination with the aim of linearly reducing the number
of the best performing low level heuristics, is promising.

The studies particularly on iterated multi-stage selection hyper-heuristics
which enable the cyclic use of multiple selection hyper-heuristics in a staged
manner are limited. Asta and Özcan (2015) used a data science technique to
partition the low level heuristics which perform well together under a hyper-
heuristic using a certain move acceptance method. Then each partition is
associated with a relevant move acceptance method. Hence learning takes
place during this phase. In the following phase, the approach employs an
iterated multi-stage search with two hyper-heuristics, each combining the
simple random heuristic selection and a different move acceptance method
with the associated low level heuristics. There is no learning mechanism used
during this phase.

Kalender et al. (2013, 2012) applied an iterated online learning multi-
stage greedy gradient (GGHH) hyper-heuristic to the curriculum-based uni-
versity course timetabling and high-school timetabling problems. This ap-
proach performs search iteratively going through two successive stages, which
contain Greedy and Reinforcement Learning based hyper-heuristics, both us-
ing simulated annealing move acceptance. Both hyper-heuristics embed an
online learning mechanism. Reinforcement Learning oriented hyper-heuristic
uses the cost change as the score for each low level heuristic choosing the one

5

with the highest score at each step. Since Greedy stage is costly, this stage
gets invoked dynamically if all heuristics start generating poor performance.

An iterated multi-stage hyper-heuristic which combines a Dominance-
based heuristic selection method and a Random Descent hyper-heuristic with
Näıve Move Acceptance (DRD) is proposed in (Özcan and Kheiri, 2012).
The dominance-based selection method employs a greedy approach aiming
to determine an active subset of low level heuristics taking into account the
trade-off between the change in the objective value and the number of steps
taken to achieve that result. The second stage applies random descent hyper-
heuristic using that active subset of low level heuristics from the first stage
to improve the quality of a solution in hand. If the second stage hyper-
heuristic stagnates, then the first stage restarts with a given probability for
detecting a new active subset of low level heuristics. This hyper-heuristic is
tested using HyFlex producing the best performance when compared to the
‘default’ hyper-heuristics provided with HyFlex.

An iterated multi-stage hyper-heuristic known as Robinhood hyper-heuristic
(RHH) combining three hyper-heuristics is proposed in (Kheiri and Özcan,
2013). The three hyper-heuristics use the same heuristic selection method
but they differ in the move acceptance component. The selection heuristic
component employs round-robin strategy-based neighbourhood method and
applies the mutational and ruin and re-create heuristics on the candidate so-
lution, then crossover heuristics, and then hill climbing heuristics and assigns
equal time for each low level heuristic. Three move acceptance criteria (one
per each hyper-heuristic) including only improving, improving or equal, and
an adaptive acceptance methods are used in this approach. In the adaptive
acceptance method, a move that improves the quality of the current solution
is always accepted. Deteriorating moves are accepted according to a proba-
bility that is adaptively modified at different stages throughout the search.
Each hyper-heuristic in RHH is applied for a fixed duration of time and
therefore The transition between the three stages is static. This approach
outperforms the ‘default’ hyper-heuristics of HyFlex, and took the fourth
place with respect to the twenty approaches from CHeSC 2011.

An iterated multi-stage hyper-heuristic, referred to as Hyper-heuristic
Search Strategies and Timetabling (HySST) with two stages, each using a dif-
ferent hyper-heuristic is designed to solve a variety of high school timetabling
problems from different countries (Kheiri et al., in press). The Simple Ran-
dom combined with Adaptive Threshold move acceptance and Simple Ran-
dom combined with Accept All Moves hyper-heuristics are utilised only with

6

mutational and hill-climbing operators, respectively. The transition between
two stages of HySST is deterministic. The following stage starts if the input
solution cannot be improved at all in a given stage after a certain duration.
This solver is tested on a set of real-world instances and competed at the 3
rounds of the third International Timetabling Competition (ITC 2011)2. In
round 1, HySST generated the best solutions for three instances, and took
the second place in rounds 2 and 3 (Kheiri et al., in press).

Asta et al. (2013a) proposed another iterated multi-stage hyper-heuristic
combining two hyper-heuristics, namely; Dominance-based hyper-heuristic
and Roulette Wheel selection with Adaptive Threshold move acceptance
(DRW). The dominance-based hyper-heuristic reduces the set of low level
heuristics using a greedy-like approach in a given stage. This learning ap-
proach considers the trade-off between number of steps versus achieved solu-
tion quality, discovering the most useful low level heuristics in improvement
and at the same time generates their selection probabilities. Then the other
hyper-heuristic gets invoked using the reduced set of low level heuristics and
associated selection probabilities to improve a given solution at a stage. Sim-
ilar to HySST, the transition between stages in DRW is deterministic. This
multi-stage hyper-heuristic is used to improve pool of solutions as a local
search. The approach won the MISTA 2013 challenge3 at which the pur-
pose was to solve a multi-mode resource-constrained multi-project scheduling
problem (MRCMPSP).

In this study, our approach extends the previous multi-stage hyper-heuristics
and makes use of the relay hybridisation (Misir et al., 2011; Kheiri and Keedwell,
2015) technique which applies a low level heuristic to a solution generated by
applying a preceding heuristic. We propose an online learning iterated multi-
stage hyper-heuristic which is evaluated on six HyFlex problem domains. Its
performance is compared to the other multi-stage hyper-heuristics from the
scientific literature and also to the competing hyper-heuristics from CHeSC
2011.

2ITC2011 website: http://www.utwente.nl/ctit/hstt/
3MISTA2013 challenge website: http://allserv.kahosl.be/mista2013challenge/

7

3. Methodology

3.1. A Multi-stage Selection Hyper-heuristic Framework

The traditional single-stage selection hyper-heuristic framework employs
a single heuristic selection and a single move acceptance method. If a different
hyper-heuristic component is used during the search process, this constitutes
a different stage enabling the design of multi-stage hyper-heuristics as illus-
trated in Figure 1. Allowing the use of multiple hyper-heuristic components
interchangeably under a multi-stage framework opens up richer design op-
tions, such as the possibility of having several hyper-heuristics controlling
different sets of low level heuristics cooperatively. As discussed in Section 2,
there is empirical evidence that multi-stage hyper-heuristics has the poten-
tial to deliver better performance than the traditional (meta)hyper-heuristics
(Kalender et al., 2013, 2012; Özcan and Kheiri, 2012; Asta and Özcan, 2015;
Kheiri et al., in press; Asta et al., 2013a). A multi-stage framework requires
inclusion of an additional upper level which will be referred to as multi-stage
level within the selection hyper-heuristic framework as shown in Figure 1.
The multi-stage level allows the transition between available hyper-heuristics
and their automated control at different points during the search process. Al-
gorithm 1 provides the pseudocode of a multi-stage hyper-heuristic algorithm
based on the framework in Figure 1.

3.2. An Iterated Multi-stage Hyper-heuristic Using Dominance and Relay
Hybridisation

This study introduces an iterated multi-stage selection hyper-heuristic
utilising two interacting hyper-heuristics cyclically and controlled by the
multi-stage level as provided in Algorithms 2, 3 and 4. In one stage, a subset
of “useful” low level heuristics, each associated with a score is determined by
a hyper-heuristic embedding a greedy heuristic selection method (Algorithm
2, lines 15-28). Only that subset of low level heuristics is then used in the
other stage (Algorithm 2, lines 9-11) and at each step, a heuristic is selected
using a roulette wheel strategy based on those scores. As a move acceptance
component of the multi-stage hyper-heuristic, a threshold move acceptance
method is used (Asta et al., 2013a; Kheiri et al., in press) in both stages (Al-
gorithm 3, line 13 and Algorithm 4, line 10), however the threshold values
are treated in a different way in each stage as explained in this section.

In this study, we assume that the number of low level heuristics for a given
problem domain is already provided. We form “new” heuristics by pairing

8

Representation, instances, evaluation

function, solutions, …

Low Level Heuristics

LLH1 LLH2 LLH3 LLHn

Domain Barrier

Problem

Domain

Problem independent information gathering, stage

selection method, performance statistics for LLHs, …

Multi-

stage

Level

yes

Scurrent

no

no

Scurrent ← Sinput

Move Acceptance Heuristic Selection

Snew

Scurrent

Stage Terminate?

yes

Select heuristic(s)

Apply to Scurrent

 Accept Snew?

Scurrent ← Snew

Hyper-

heuristics S1HH

Stage1 Stage2 Stagek Stage3

S2HH S1HH SjHH

Figure 1: A multi-stage hyper-heuristic framework.

up each low level heuristic and invoking them successively. The technique of
combining two heuristics is known as relay hybridisation which applies the
second low level heuristic to the solution generated by the preceding low level
heuristic. The motivation behind relay hybridisation is that although a low
level heuristic that does not generate any improvement can still be useful
when employed in combination with another low level heuristic. There is
indeed empirical evidence that this technique is useful when embedded into
a selection hyper-heuristic, considering that relay hybridisation is part of the
winning selection hyper-heuristic of CHeSC 2011 (Misir et al., 2011). The
proposed selection hyper-heuristic method employing relay hybridisation ig-
nores the nature of the low level heuristics and does not make explicit use
of the heuristic type information. Consequently, given n low level heuristics
({LLH1, ..., LLHn}), we end up with (n+n2) low level heuristics in the overall
({LLH1, ..., LLHn, LLH1+LLH1, LLH1+LLH2, ..., LLHn+LLHn}), where
LLHi + LLHj denotes the combined heuristic of the pair LLHi and LLHj .

9

Algorithm 1: Multi-stage hyper-heuristic framework

1 Let HH = {S1HH,S2HH, ..., SjHH} represent set of all hyper-heuristics;
2 Let Sinput represent set of input solutions;
3 Let Soutput represent set of output solutions;
4 Let sbest represent the best solution;
5 repeat

6 SiHH ← SelectHH(HH); /* ith hyper-heuristic is chosen */

7 Update1(); /* set/update relevant parameter/variable values before

entering into a stage */

8 while notSatisfied(SiHH–TerminationCriteria) do
9 Soutput, sbest ← ApplyHH(SiHH, Sinput);

10 Update2(); /* set/update relevant parameter/variable values

during a stage */

11 end

12 Update3(); /* set/update relevant parameter/variable values after

finishing a stage */

13 until TerminationCriterionSatisfied();
14 return sbest;

Iterated Local Search (ILS) is an iterative metaheuristic seeking an improved
(optimal) solution through two main steps of perturbation and local search
(Lourenço et al., 2010). ILS explicitly balances diversification/exploration
(capability of jumping to other promising regions of the search space) and in-
tensification/exploitation (capability of performing a thorough search within
a restricted promising region) employing those steps, respectively. The relay
hybridisation technique has the potential to combine a mutational and a hill
climber as a new low level heuristics and if chosen, such a low level heuristic
would yield an ILS-like behaviour in an iteration.

Following the previous work in (Kheiri and Özcan, 2013), any selected
low level heuristic is executed for a certain duration, τ (Algorithm 3, lines
9-21 and Algorithm 4, lines 6-12).

Combining multiple hyper-heuristics always requires a decision on when
to switch between selection hyper-heuristics. The proposed method handles
this decision adaptively. If there is no improvement in consecutive stages
while the first hyper-heuristic (denoted as S1HH) is used then the second
hyper-heuristic (denoted as S2HH) may kick in with a pre-defined transi-
tion probability (PS2HH), otherwise, with a probability of (1-PS2HH), S1HH
is re-invoked again. The transition from S2HH to S1HH is not probabilis-
tic, meaning that S1HH is invoked for certain after applying S2HH. This is

10

Algorithm 2: MultiStageLevel

1 Let LLHall represent set of all (n+ n2) LLHs. Each associated with scorei
2 Let Scurrent represent the candidate (current) solution; Sinputstage1 the input
solution to S1HH; Sinputstage2 the input solution to S2HH; Sbestoverall the best
solution obtained so far; Sbeststage the best solution obtained in the relevant stage

3 Let PS2HH represent the probability to apply S2HH
4 Let f(x) represent the objective value of a solution x

5 Scurrent, Sinputstage1, Sinputstage2 , Sbestoverall, Sbeststage ← Sinitial

6 scoreall ← {LLH1 = 1, . . . , LLHn = 1, LLH1+LLH1 = 0, . . . , LLHn+LLHn = 0}
7 Let C = {c0, c1, . . . , c(|C|−1)} be the set of threshold values to be used by the move
acceptance; counter← 0; timeSbeststageImproved← getTimeElapsed()

8 while notSatisfied(terminationCriteria) do

9 while notSatisfied(S1HH–TerminationCriteria) do
10 Scurrent, Sbestoverall, Sbeststage ← S1HH(LLHall, scoreall, Sinputstage1,

Sbestoverall, timeSbeststageImproved, ccounter)
11 end

12 if counter = (|C| − 1) then
13 Sbeststage ← Scurrent; counter← 0

14 end

15 if Random(0, 1) < PS2HH then

// Pre-processing steps of S2HH

16 if f(Sbeststage) ≥ f(Sinputstage2) then
17 Sinputstage2 ← Sbeststage

18 counter← counter + 1

19 end

20 else

21 counter← 0; Sinputstage2 ← Sbeststage

22 end

23 while notSatisfied(S2HH–TerminationCriteria) do
24 Sbestoverall, Sbeststage, Sbeststep, paretoArchive←

S2HH(LLHall, Sinputstage2,

Sbestoverall, ccounter)
25 Sinputstage2 ← Sbeststep

26 end

// Post-processing steps of S2HH

27 scoreall ← computeScoresBasedOnDominance(paretoArchive)

28 end

29 else

30 scoreall ← {1, ..., 1, 0, ..., 0}; ǫ← updateEpsilon(ccounter)

31 end

32 Sinputstage1 ← Sbeststage

33 end

34 return Sbestoverall

11

explained in more details in the following subsections.

3.2.1. Stage One Hyper-heuristic (S1HH)

Algorithm 3: S1HH
input : LLHall, scoreall, Sinputstage1, Sbestoverall, timeSbeststageImproved, ccounter
output: Scurrent, Sbestoverall, Sbeststage

1 Let f(x) represent the objective value of x
2 Scurrent ← Sinputstage1

3 hIndex← rouletteWheelSelection (LLHall, scoreall)
4 if (getTimeElapsed()− timeSbeststageImproved) exceeds d then

5 Scurrent ← Sbeststage

6 ǫ← updateEpsilon(ccounter)
7 timeSbeststageImproved← getTimeElapsed()

8 end

9 while notExceeded(τ) & notExceeded(timeLimit) do
10 Snew ← applyHeuristic(LLHhIndex, Scurrent)
11 if Snew isBetterThan Scurrent OR f(Snew) isBetterThan (1 + ǫ)f(Sbeststage)

then

12 Scurrent ← Snew

13 end

14 if Scurrent isBetterThan Sbeststage then

15 Sbeststage ← Scurrent

16 timeSbeststageImproved← getTimeElapsed()

17 end

18 if Scurrent isBetterThan Sbestoverall then

19 Sbestoverall ← Scurrent

20 end

21 end

22 Sinputstage1 ← Scurrent

23 return Scurrent, Sbestoverall, Sbeststage

In stage one (Algorithm 3), the roulette wheel selection based hyper-
heuristic chooses and applies randomly a low level heuristic based on a score
associated with each low level heuristic (Algorithm 3, lines 3 and 10). As-
suming that the ith low level heuristic LLHi has a score of scorei, then the
probability of that heuristic being selected is scorei/

∑
∀k(scorek). Initially,

all single heuristics are assigned a score of 1, while the rest of the paired
heuristics are assigned a score of 0. The stage one hyper-heuristic always
maintains the best solution found during search process, denoted as Sbeststage

and keeps track of the time since the last improvement. The move acceptance

12

approach directly accepts improving moves, while non-improving moves are
accepted if the objective value of the candidate solution is better than (1+ ǫ)
of the objective value of the best solution obtained in the relevant stage.
Whenever the best solution during a stage can no longer be improved for a
duration of d, ǫ gets updated according to Equation 1.

ǫ =
⌊log(f(Sbeststage))⌋+ ci

f(Sbeststage)
(1)

where f(Sbeststage) is the objective value of the best solution obtained during
the stage and ci is an integer value in C={c0, ..., ci, ..., c(k−1)}, where c(i−1) <
ci for 0 < i < k and k = |C|. If f(Sbeststage) is less than 1, ǫ takes a small
value ∼ 0.

The value of ci never changes in this stage but it might get updated in
stage two as explained in the following section. In the first execution of stage
one, c0 is used by default.

If the overall given time limit (timeLimit) is exceeded, or there is no
improvement in the quality of the best solution obtained during the stage for
a duration of s1, then the stage one hyper-heuristic terminates.

3.2.2. Stage Two Hyper-heuristic (S2HH)

The aim of this stage (Algorithm 4) is to reduce the set of low level heuris-
tics and adjust their scores according to their “performance” using the idea of
the dominance-based heuristic selection (Asta et al., 2013a; Özcan and Kheiri,
2012). A score of 0 indicates that the corresponding heuristic will not be used
in the following stage. The reduced set of low level heuristics along with the
associated score are fed into the stage one hyper-heuristic.

Firstly, ǫ is set using Equation 1 for once at the start of this stage. Having
a sorted circular list of values C={c0, ..., ci, ..., c(k−1)} enables adaptive control
of the level of diversification and gives flexibility of relaxing the threshold
further whenever necessary allowing larger worsening moves. Initially, ci
takes the value of c0. If the best solution obtained after applying stage one
does not improve for a stage and stage two hyper-heuristic is applied, the
parameter takes the next value on the list, that is, for example, c1, allowing
a larger worsening move to be accepted, and so on. If stage one hyper-
heuristic manages to improve the solution and then stage two hyper-heuristic
is applied, the parameter is reset to c0. By default, Sbeststage is fed as an input
to the next stage. There might be a case when even the (c(k−1)) value is not
sufficient to escape from a local optimum and the current (candidate) solution

13

Algorithm 4: S2HH
input : LLHall, Sinputstage2 , Sbestoverall, ccounter
output: Sbestoverall, Sbeststage, Sbeststep, paretoArchive

1 Let f(x) represent the objective value of x
2 Sbeststage ← Sinputstage2

3 ǫ← updateEpsilon(ccounter)
4 for i = 0; i < (n+ n2); i++ do

5 Scurrent ← Sinputstage2

6 while notExceeded(τ) & notExceeded(timeLimit) do
7 Snew ← applyHeuristic(LLHi, Scurrent)
8 if Snew isBetterThan Scurrent OR

f(Snew) isBetterThan (1 + ǫ)f(Sbeststage) then
9 Scurrent ← Snew

10 end

11 Sbeststage, Sbestoverall, Sbeststep, heurbeststep ← updateBestValues(Scurrent)

12 end

13 paretoArchive← update(Sbeststep, heurbeststep)

14 end

15 return Sbestoverall, Sbeststage, Sbeststep, paretoArchive

is worse than Sbeststage. If the second stage gets executed at this point of the
search process, then the current solution is fed into the next stage as input
to allow further diversification. It is possible for a given problem domain
that Equation 1 could return a value of 0, then ci is assigned to one of the
values in C at random. After ci is updated, it does not get changed during
the execution of the remaining steps of this stage.

A greedy hyper-heuristic is applied using LLHall (Algorithm 4, lines 4-14)
for a fixed number of steps s2. At each step, all the objective values obtained
by applying all the low level heuristics are recorded only if they generate
solutions different in quality to the input solution. If all heuristics cannot
generate a new solution, then they considered all to have the worst possi-
ble objective value. The greedy approach takes the best generated solution
obtained at a step and feeds it as an input solution to the next step.

At the end of the stage, the non-dominated solutions each associated
with the low level heuristic that generated it are determined from the archive
(Algorithm 2, line 27). Then the score of each “non-dominated” low level
heuristic is increased by 1. It is potentially possible that a low level heuristic
could produce a non-dominated solution more than once and so get a higher
score indicating the frequency of such success. In the case of a tie where

14

multiple low level heuristics produce the same non-dominated solution for a
given step, their scores are all incremented.

Due to the costly run time that the second stage hyper-heuristic intro-
duces, taking s2×(n+n2) steps, a relatively low value for s2 is preferred. Ad-
ditionally, we have introduced a probability parameter (PS2HH) (Algorithm
2, line 15) in order to limit the use of this stage often. The stage terminates if
s2 steps are fully executed or overall given time limit (timeLimit) is exceeded
(Algorithm 2, line 23).

Figure 2 provides an example of how stage two hyper-heuristic executes
with n = 2, i.e., combining two heuristics {LLH1, LLH2} via relay hybridi-
sation yielding a set of six low level heuristics,LLHall = {LLH1, LLH2,
LLH3=LLH1+LLH1, LLH4=LLH1+LLH2, LLH5=LLH2+LLH1, LLH6=LLH2+
LLH2} and where s2 = 4. After running all low level heuristics in a greedy
fashion for 4 steps, the number of low level heuristics is automatically re-
duced to three using the Pareto front which considers the trade-off between
number of steps a heuristics executes and improvement in the quality of the
resultant solution. Also, the selection probability of each heuristic for the use
in the next stage is determined based on the information derived from the
Pareto front. The low level heuristics on the Pareto front are {LLH1, LLH2},
{LLH1} and {LLH3}. Hence, the scores of the fourth, fifth and sixth low
level heuristics are zeros; and scores of LLH1, LLH2 and LLH3 are assigned
to 2, 1 and 1, respectively. Given that the probability of a heuristic in S1HH
being selected is scorei/

∑
∀k(scorek), therefore, in this example the proba-

bility of selecting LLH1 becomes 50%, while it is 25% for LLH2 and LLH3.
This means that LLH4, LLH5 and LLH6 are not expected to perform well
and hence disabled. LLH1 is expected to perform better than LLH2 and
LLH3 and hence its selection probability is higher than LLH2 and LLH3.

4. Hyper-heuristics Flexible Framework - HyFlex

HyFlex4 is an interface which supports the selection hyper-heuristic de-
velopment. This interface including six problem domains was implemented in
Java as version v1.0 for a competition, referred to as Cross-Domain Heuristic
Search Challenge, CHeSC 20115. The aim of CHeSC 2011 was to deter-
mine the state-of-the-art hyper-heuristic that generalises well across a set

4http://www.hyflex.org/
5CHeSC website: http://www.asap.cs.nott.ac.uk/chesc2011/

15

http://www.hyflex.org/

 LLH4

LLH3

LLH2

LLH3

LLH2

LLH1,

LLH3,
o

b
je

ct
iv

e
 f

u
n

ct
io

n
 v

a
lu

e

step

LLH3

S'best

LLH4 LLH1

LLH4

LLH2

LLH5,

LLH1

LLH6

LLH5
LLH6

LLH5

Sinput S''best S'''best

S''best S'''best

Pareto front

τ τ τ τ

LLH6
LLH2

LLH5

S'best

Figure 2: An example of how the stage two hyper-heuristic works. The commas seperate
multiple low level heuristics achieving a solution with the same quality. For example,
LLH1 and LLH2, as well as, LLH3 and LLH5 generate solutions with the same quality
in the first step. Similarly, in the second step, LLH5 and LLH6 generate solutions with
the same quality.

of problem instances from six different problem domains. Throughout this
paper, “HyFlex” refers to that version. There is a new version of HyFlex
which is version v1.1 supporting the batch mode operation of hyper-heuristics
(Asta et al., 2013b), which is not within the scope of this study. HyFlex
currently provides implementation of six minimisation problem domains:
boolean satisfiability (SAT), one-dimensional bin-packing (BP), personnel
scheduling (PS), permutation flow-shop (PFS), travelling salesman problem
(TSP) and vehicle routing problem (VRP). The software package includes a
set of low level heuristics (LLHs) and a number of instances associated with
each domain. The code for SAT, BP, PS and PFS was released first along
with some public instances, while the code and instances for TSP and VRP
were released after the competition.

In HyFlex, the low level heuristics are perturbative heuristics processing
and returning complete solutions after their application. Heuristics are cat-
egorised as mutational (MU) which modifies a solution in some way with no
guarantee of improvement, ruin and re-create heuristic (RR) which destructs
a given complete solution generating a partial solution and then reconstructs
a complete solution, hill climbing (HC) which performs local search return-
ing a solution which has the same or better quality of the input solution,
and crossover (XO) which creates a new solution by combining some parts
from two given solutions. HyFlex provides functionality for controlling the

16

intensity of the mutation and ruin and re-create operators, as well as, the
depth of the search in local search operators. The setting of a parameter is
allowed to range from 0.0 to 1.0. Table 1 provides an overview of the low level
heuristics from each heuristic category for each HyFlex domain. A low level
heuristic from a domain in HyFlex is given a unique ID. For example, low
level heuristics from LLH0 to LLH5 in the SAT domain are all mutational
heuristics.

Table 1: The category of low level heuristics, each indicated by its unique HyFlex ID from
each problem domain.

SAT BP PS PFS TSP VRP
MU 0–5 0,3,5 11 0–4 0–4 0,1,7
RR 6 1,2 5,6,7 5,6 5 2,3
HC 7,8 4,6 0–4 7–10 6,7,8 4,8,9
XO 9,10 7 8,9,10 11–14 9–12 5,6

Before CHeSC 2011, the results of eight mock hyper-heuristics from liter-
ature over four of the HyFlex problem domains were put on the competition
website. The description of the mock hyper-heuristics were not provided on
the competition website, but it is reported in (Burke et al., 2010a) that the
iterated local search which applies a sequence of heuristics in a predefined
order has the best performance.

The ranking method used at CHeSC 2011 is inspired from the Formula
1 points scoring system. The top eight hyper-heuristics are determined after
comparison of the median objective values that all hyper-heuristics achieve
over 31 trials for each instance. Each algorithm is then awarded a score
according to its ranking. The winner receives 10 points, the runner up gets
8 and then 6, 5, 4, 3, 2 and 1, respectively. In the case of a tie for a given
instance, the corresponding points are added together and shared equally
between each algorithm. In CHeSC 2011, five instances from each domain
is used. The winner is the one which scores the maximum points over the
thirty instances across all six problem domains.

The results of twenty participants in the competition along with the de-
scription of their algorithms were available from the website of the compe-
tition. Those results were based on five instances of all HyFlex problem
domains. The winner, Mustafa Misir, developed an approach, denoted as
AdapHH, which is a solver that applies an adaptive heuristic selection com-

17

bined with adaptive iteration limited list-based threshold move accepting
method (Misir et al., 2011). The second place was taken by a hyper-heuristic
based on Variable Neighborhood Search (VNS-TW) which applies shaking
heuristics then hill-climber heuristics (Hsiao et al., 2012).

There has been a growing number of studies on selection hyper-heuristics
which are evaluated on HyFlex problem domains since CHeSC 2011. We
provide a brief overview of some of those single stage generic selection hyper-
heuristics in here. An improved choice function hyper-heuristics is proposed
in (Drake et al., 2012) showing that this approach is more successful than the
traditional choice function heuristic selection. Drake et al. (2015) extended
this previous study introducing crossover operators into the set of low level
heuristics and a mechanism to control the input those binary operators, which
slightly improved the overall performance of the hyper-heuristic. An adaptive
iterated local search approach is proposed and applied on HyFlex problem
domains in (Burke et al., 2011; Ochoa et al., 2012b). Jackson et al. (2013)
evaluated variants of late acceptance-based selection hyper-heuristics. The
authors point out the best configuration for the late acceptance strategy
which accepts a solution if its quality is better than the quality of a solution
obtained from a certain number of prior steps. None of those previously
proposed selection hyper-heuristics perform better than AdapHH.

5. Experimental Results

We have evaluated the performance of the proposed dominance-based and
relay hybridisation multi-stage hyper-heuristic, denoted as MSHH, across six
problem domains of HyFlex. During our experimentation, crossover oper-
ators are ignored as low level heuristics, considering that the multi-stage
hyper-heuristics operate under a single point based search framework. The
Mann-Whitney-Wilcoxon test (Fagerland and Sandvik, 2009; Kruskal, 1957)
is used as a statistical test for pairwise average performance of two given
algorithms. We have used the following notation: Given two algorithms; A
versus B, > (<) denotes that A (B) is better than B (A) and this performance
difference is statistically significant within a confidence interval of 95% and
A ≥ B (A ≤ B) indicates that A (B) performs better on average than B (A)
but no statistical significance.

In CHeSC 2011, the competing algorithms are run for 31 trials. Therefore,
each experiment is repeated for 31 times unless it is mentioned otherwise.
A benchmarking software tool provided at the CHeSC 2011 website is used

18

to obtain the equivalent time value (timeLimit) on the used machines that
correspond to 600 nominal seconds according to the competition rule.

We have fixed the parameter values based on our previous work (Özcan and Kheiri,
2012; Kheiri and Özcan, 2013; Kheiri et al., in press; Asta et al., 2013a): τ =
15ms, d = 9s, s1 = 20s, s2 = 5, PS2HH = 0.3, C = {0, 3, 6, 9}. The experi-
ments are performed using those settings as “regular” settings on all thirty in-
stances from all domains used at CHeSC 2011. We compare the performance
of our approach to each individual hyper-heuristic used in a stage, previ-
ously proposed multi-stage hyper-heuristics and competing hyper-heuristics
of CHeSC 2011 including the state-of-the art hyper-heuristic which won the
competition, respectively.

5.1. Parameter Settings

A set of experiments is performed on four arbitrarily chosen (first) in-
stances of four public problem domains to observe the performance of the
proposed algorithm under different parameter settings:

• τ = {10, 15, 20, 30} (in milliseconds)

• d = {7, 9, 10, 12} (in seconds)

• s1 = {10, 15, 20, 25} (in seconds)

• s2 = {3, 5, 10, 15} (in steps/iterations)

• PS2HH = {0.1, 0.3, 0.6, 0.9, 1.0}

• C = {{0}, {3}, {6}, {9}, {0, 3, 6, 9}}

While testing a different setting for a given parameter, the remaining param-
eters are fixed with the values marked in bold which are our initial settings.
MSHH is run with each setting for 10 trials on the selected instance from
each public domain. Table 2 summarises the results based on the average
performance of MSHH with various parameter settings when a given param-
eter value deviates from its regular setting. In all cases, MSHH with the
“regular” parameter setting wins against another setting, however, mostly,
this performance difference is not statistically significant. There are a few
cases for which MSHH with a setting other than the proposed one yields a
slightly better average performance on the BP and PS instances. For exam-
ple, τ = 10 performs slightly better than τ = 15 on the BP instance, and

19

PS2HH = 0.6 is a slightly better choice than PS2HH = 0.3 for the PS instance.
MSHH with the “regular” parameter setting always performs better than an-
other setting on the PFS and SAT instances. The overall performance of a
setting across all domains is important in cross domain search. Hence, MSHH
with the “regular” parameter setting turns out to be indeed a good choice
and so the same setting is used during the remaining experiments.

Recall that each low level heuristic in HyFlex has a parameter (intensity
or depth of the search) that can take any value in the range from 0.0 to 1.0.
Initially, we assigned the parameter value of 0.0 to each low level heuristic.
The relevant parameter setting of a selected low level heuristic gets updated
to a random value in case the move does not improve the candidate solution,
otherwise the same setting is kept.

Table 2: The average performance comparison of MSHH for different parameter settings
over 10 trials. MSHH with “regular” setting of a given parameter is compared to MSHH
when that setting is changed to a given setting based on Mann-Whitney-Wilcoxon statis-
tical test for each selected instance from a public domain.

Par.: τ d C
Dom. 10 20 30 7 10 12 {0} {3} {6} {9}
SAT ≥ ≥ ≥ > ≥ ≥ > > ≥ ≥
BP ≤ ≥ ≥ ≥ ≥ ≥ ≥ ≤ ≥ ≥
PS ≥ ≥ > ≤ ≥ ≥ ≤ ≥ ≥ ≥
PFS > > > ≥ > ≥ > > ≥ ≥
wins 3 4 4 3 4 4 3 3 4 4

Par.: s1 s2 PS2HH

Dom. 10 15 25 3 10 15 0.1 0.6 0.9 1
SAT ≥ ≥ ≥ ≥ > ≥ > ≥ ≥ ≥
BP ≤ > ≤ ≥ ≥ ≥ ≥ ≥ ≤ ≥
PS ≥ ≥ ≥ ≥ ≥ ≥ > ≤ > ≥
PFS > > > > > > > > ≥ ≥
wins 3 4 3 4 4 4 4 3 3 4

5.2. Performance Comparison to the Constituent Hyper-heuristics

We have experimented with the hyper-heuristics used at each stage, de-
noted as S1HH and S2HH, respectively, run on their own and compare their
performances to the performance of the proposed multi-stage hyper-heuristic.
Tables 3 presents the results. MSHH obtains the best solution in 31 trials for
27 out of 30 of the CHeSC 2011 instances, which include all instances from

20

the SAT, BP and TSP domains and exclude one instance from the remain-
ing domains. On average, MSHH still performs better than the constituent
hyper-heuristics of S1HH and S2HH run on their own on the 22 instances
across all six problem domains. The standard deviation associated with the
average objective value from MSHH is the lowest in all cases on the SAT and
TSP problem domains.

On average, MSHH outperforms S2HH and this performance is statisti-
cally significant for all instances, except for Inst2, Inst3 and Inst4 from the
PS domain and Inst3 from the VRP domain. On the SAT and TSP domains,
MSHH performs still significantly better than S1HH on all instances. On PS,
MSHH is better than S1HH in four instances, but this performance variation
is significant for two out of the four instances. MSHH performs slightly bet-
ter than S1HH on the BP, PFS and VRP domains. However, S1HH performs
better than MSHH only on two instances, Inst1 from BP and Inst2 from PFS
for which the performance difference is statistically significant.

Our study empirically confirms that combining hyper-heuristics under a
multi-stage framework can potentially lead to an improved overall perfor-
mance.

5.3. Performance Comparison to the Previous Multi-stage Selection Hyper-
heuristics

The performance of the proposed dominance-based and relay hybridisa-
tion multi-stage hyper-heuristic is compared to the performance of some pre-
viously proposed elaborate and successful multi-stage hyper-heuristics which
are described in Section 2: greedy, random gradient and simulated annealing
hyper-heuristic (also known as greedy-gradient) (GGHH) (Kalender et al.,
2012), dominance-based and random descent hyper-heuristic (DRD) (Özcan and Kheiri,
2012), Robinhood selection hyper-heuristic (RHH) (Kheiri and Özcan, 2013),
hyper-heuristic search strategies and timetabling approach (HySST) (Kheiri et al.,
in press), dominance-based and roulette wheel hyper-heuristic (DRW) (Asta et al.,
2013a). Table 4 presents the results achieved after the application of all those
multi-stage hyper-heuristics to the CHeSC 2011 domains under the same set-
ting.

In the overall, MSHH turns out to be a viable general methodology out-
performing the other multi-stage hyper-heuristic approaches in most of the
HyFlex problem domains. The MSHH consistently performs the best in SAT,
BP and TSP problem domains based on the average and minimum objective
values obtained over 31 runs for each instance. Only for Inst1 from BP, DRD

21

Table 3: The performance comparison of MSHH, S1HH and S2HH based on the average
(avg.), associated standard deviation (std.), minimum (min.) of the objective values over
31 trials and the pairwise average performance comparison of MSHH vs S1HH and MSHH
vs S2HH based on Mann-Whitney-Wilcoxon for each CHeSC 2011 instance produced by
each approach. The hyper-heuristic producing the best value for avr. and min. per each
instance are highlighted in bold.

MSHH S1HH S2HH

Domain Instance avg. std. median min. vs. avg. std. min. vs. avg. std. min.

SAT

Inst1 0.9 0.7 1.0 0.0 > 6.4 4.5 1.0 > 15.0 4.6 3.0
Inst2 3.1 3.9 2.0 1.0 > 21.3 13.3 3.0 > 44.9 9.8 18.0
Inst3 0.7 0.5 1.0 0.0 > 7.1 7.7 0.0 > 26.3 14.0 1.0
Inst4 1.7 1.0 1.0 1.0 > 5.7 4.3 1.0 > 20.0 4.6 12.0
Inst5 7.6 0.9 7.0 7.0 > 10.4 1.5 7.0 > 15.4 1.7 13.0

BP

Inst1 0.0163 0.0014 0.0163 0.0136 < 0.0159 0.0010 0.0137 > 0.0198 0.0015 0.0160
Inst2 0.0037 0.0015 0.0030 0.0025 > 0.0061 0.0015 0.0034 > 0.0104 0.0021 0.0077
Inst3 0.0050 0.0015 0.0049 0.0025 ≥ 0.0054 0.0012 0.0027 > 0.0128 0.0011 0.0104
Inst4 0.1084 0.0000 0.1084 0.1083 ≤ 0.1084 0.0000 0.1083 > 0.1084 0.0000 0.1084
Inst5 0.0050 0.0019 0.0044 0.0032 ≥ 0.0055 0.0021 0.0032 > 0.0210 0.0015 0.0187

PS

Inst1 25.5 4.5 25.0 16.0 > 28.8 4.7 18.0 > 31.6 4.9 22.0
Inst2 9668.9 217.8 9638.0 9184.0 ≤ 9645.3 159.6 9334.0 ≤ 9645.8 106.7 9391.0
Inst3 3283.7 93.3 3270.0 3132.0 ≥ 3304.8 99.6 3134.0 ≥ 3309.9 110.2 3172.0
Inst4 1786.3 172.1 1760.0 1545.0 ≥ 1801.0 142.3 1570.0 ≥ 1836.0 291.1 1400.0

Inst5 353.2 21.2 350.0 315.0 > 724.4 657.3 320.0 > 810.7 621.5 360.0

PFS

Inst1 6239.8 14.9 6239.0 6212.0 > 6287.6 21.9 6249.0 > 6353.3 29.8 6301.0
Inst2 26895.2 55.3 26889.0 26775.0 < 26873.2 30.7 26822.0 > 26976.9 54.7 26849.0
Inst3 6333.8 19.0 6325.0 6303.0 > 6360.5 16.4 6323.0 > 6405.5 23.7 6369.0
Inst4 11363.8 32.7 11359.0 11320.0 > 11429.9 43.8 11357.0 > 11529.3 35.9 11436.0
Inst5 26711.9 47.0 26709.0 26630.0 ≤ 26693.1 40.7 26608.0 > 26779.1 49.8 26702.0

TSP

Inst1 48208.1 31.8 48194.9 48194.9 > 50032.0 571.1 49263.1 > 50326.5 606.6 49221.6
Inst2 2.09e+7 9.05e+4 2.09e+7 2.07e+7 > 2.14e+7 1.12e+5 2.12e+7 > 2.13e+7 1.05e+5 2.11e+7

Inst3 6809.1 7.1 6808.8 6796.6 > 7012.5 30.4 6964.6 > 7040.2 31.3 6988.6
Inst4 66840.2 276.5 66843.6 66236.8 > 68908.4 382.4 68159.9 > 70241.9 704.6 68791.0
Inst5 53011.4 469.7 52910.2 52341.3 > 54411.1 595.1 53686.0 > 55814.8 946.4 53992.4

VRP

Inst1 70998.4 3840.3 70506.5 63948.2 ≤ 70223.0 2960.2 64273.2 > 84103.9 7225.8 68958.3
Inst2 13421.8 251.6 13359.6 13303.9 ≥ 13658.0 471.4 13319.6 > 13695.8 473.9 13320.0
Inst3 148498.2 1625.8 148436.2 145466.5 ≤ 148232.6 1935.3 145426.5 ≥ 149553.2 2377.8 145362.7

Inst4 21016.4 488.2 20671.4 20650.8 ≤ 20991.3 478.0 20653.5 > 21131.9 510.3 20657.5
Inst5 148813.7 1272.5 149193.7 146334.6 ≥ 148999.1 1217.1 146844.9 > 150282.6 1616.3 146666.9

22

performs better in terms of average and minimum objective values. MSHH
achieves the best average results on three instances on the PS and PFS prob-
lem domains. MSHH performs the best on average only on the Inst1 VRP
instance, while RHH and GGHH perform better on three instances and one
VRP instance, respectively. This appears to be an indication that appli-
cation of all low level heuristics and performing local search and accepting
solutions which is the best at any given time is potentially a better approach
on the VRP domain. DRD performs the worst on the SAT problem domain,
but delivers a good average performance on the BP problem domain. GGHH
and DRW manage to provide the best average results on a single instance
of VRP and PFS, respectively. MSHH is better than HySST on all problem
instances across all domains and this performance difference is statistically
significant.

5.4. Performance Comparison to the CHeSC 2011 Hyper-heuristics

MSHH and the twenty competing hyper-heuristics from CHeSC 2011 are
ranked under the same criteria used at the time of the competition. Table 5
presents the scores for each algorithm based on the Formula 1 scoring system
with respect to the median objective values obtained during the 31 trials over
all instances across the six domains. Although MSHH delivers a relatively
poor “median” performance in the PS and VRP problem domains, the overall
results reveal that MSHH is the winner with a total score of 163.60.

Another performance evaluation method was suggested by Di Gaspero and Urli
(2012) to illustrate the relative performance variation of each hyper-heuristic
in a given bunch. Considering a set of hyper-heuristics, denoted as P and
the resultant solutions associated with their objective values obtained from
running a hyper-heuristic, denoted as j ∈ P for 31 trials on a given problem
instance i, the median objective value, denoted as medj(i) is normalised to
a value, Nmedj(i) in [0,1] using Equation 2:

Nmedj(i) =
medj(i)−minP (i)

maxP (i)−minP (i)
, (2)

where minP (i) and maxP (i) are the minimum and maximum median objec-
tive values achieved by running all hyper-heuristics in P on i, respectively.
Normalising the median objective values also acts as a unification method
for all hyper-heuristics on a given domain as well as all problem domains
enabling visualisation of relative performance of different hyper-heuristics on

23

Table 4: The performance comparison of MSHH, GGHH, DRD, RHH, HySST and DRW multi-stage hyper-heuristics based on
the average (avg.), associated standard deviation (std.), minimum (min.) of the objective values over 31 trials and the pairwise
average performance comparison of MSHH vs (GGHH, DRD, RHH, HySST and DRW) based on Mann-Whitney-Wilcoxon for
each CHeSC 2011 instance produced by each approach. The hyper-heuristic producing the best value for avr. and min. per
each instance are highlighted in bold.

MSHH GGHH DRD RHH HySST DRW

Domain Instance avg. std. min. vs. avg. std. min. vs. avg. std. min. vs. avg. std. min. vs. avg. std. min. vs. avg. std. min.

SAT

Inst1 0.9 0.7 0.0 > 18.4 4.5 9.0 > 27.7 5.0 16.0 > 6.6 1.2 3.0 > 3.2 1.2 1.0 > 7.4 2.7 2.0
Inst2 3.1 3.9 1.0 > 42.0 9.8 17.0 > 58.2 8.3 27.0 > 11.8 1.9 8.0 > 16.0 20.4 2.0 > 15.2 12.2 5.0
Inst3 0.7 0.5 0.0 > 22.0 7.8 10.0 > 40.5 6.1 17.0 > 4.3 1.5 1.0 > 4.0 6.8 1.0 > 9.4 7.9 0.0

Inst4 1.7 1.0 1.0 > 19.5 3.5 10.0 > 29.9 3.7 22.0 > 8.9 2.0 4.0 > 4.2 1.5 1.0 > 6.3 2.0 2.0
Inst5 7.6 0.9 7.0 > 10.4 1.5 7.0 > 18.5 2.7 13.0 > 8.5 0.8 7.0 > 9.7 2.5 7.0 > 10.5 1.5 7.0

BP

Inst1 0.0163 0.0014 0.0136 > 0.0608 0.0038 0.0541 < 0.0133 0.0018 0.0109 ≥ 0.0167 0.0016 0.0136 > 0.0659 0.0066 0.0536 > 0.0228 0.0022 0.0190
Inst2 0.0037 0.0015 0.0025 > 0.0105 0.0017 0.0073 > 0.0084 0.0014 0.0071 > 0.0071 0.0010 0.0036 > 0.0158 0.0036 0.0116 > 0.0070 0.0012 0.0036
Inst3 0.0050 0.0015 0.0025 > 0.0209 0.0018 0.0179 > 0.0135 0.0011 0.0114 > 0.0070 0.0016 0.0046 > 0.0330 0.0043 0.0238 > 0.0071 0.0011 0.0050
Inst4 0.1084 0.0000 0.1083 > 0.1132 0.0006 0.1116 ≥ 0.1084 0.0000 0.1083 > 0.1085 0.0000 0.1084 > 0.1268 0.0011 0.1226 > 0.1084 0.0000 0.1084
Inst5 0.0050 0.0019 0.0032 > 0.0379 0.0023 0.0322 > 0.0209 0.0023 0.0166 > 0.0079 0.0020 0.0053 > 0.0632 0.0048 0.0542 > 0.0074 0.0022 0.0034

PS

Inst1 25.5 4.5 16.0 > 32.5 5.2 23.0 ≥ 27.0 4.1 20.0 ≥ 27.4 4.1 20.0 > 49.6 4.1 41.0 > 30.6 4.0 24.0
Inst2 9668.9 217.8 9184.0 ≥ 9695.8 135.0 9415.0 ≥ 9684.7 110.3 9433.0 ≤ 9644.6 114.6 9405.0 > 10131.0 140.5 9905.0 ≥ 9723.3 147.7 9486.0
Inst3 3283.7 93.3 3132.0 ≥ 3303.8 93.3 3182.0 ≥ 3321.0 112.3 3157.0 ≥ 3316.9 88.4 3158.0 > 3669.5 130.3 3461.0 ≥ 3292.8 87.5 3139.0
Inst4 1786.3 172.1 1545.0 ≥ 1791.9 217.7 1505.0 ≤ 1773.5 173.8 1523.0 ≤ 1738.0 99.3 1555.0 > 58241.9 7050.4 47646.0 ≤ 1754.7 146.2 1448.0

Inst5 353.2 21.2 315.0 > 696.9 519.6 340.0 ≥ 395.7 235.3 325.0 > 385.3 30.6 330.0 > 208250.210796.2192036.0> 769.0 838.7 355.0

PFS

Inst1 6239.8 14.9 6212.0 > 6302.8 11.3 6275.0 > 6333.1 22.5 6285.0 > 6285.3 8.8 6267.0 > 6341.2 25.5 6300.0 > 6255.8 14.3 6228.0
Inst2 26895.2 55.3 26775.0 ≤ 26872.6 32.5 26805.0 > 26963.5 56.9 26860.0 > 26931.3 41.0 26846.0 > 27101.0 17.0 27068.0 < 26807.6 36.0 26735.0

Inst3 6333.8 19.0 6303.0 > 6368.3 3.9 6352.0 > 6395.0 19.4 6359.0 > 6354.4 13.1 6326.0 > 6395.4 17.5 6369.0 > 6349.6 22.7 6303.0

Inst4 11363.8 32.7 11320.0 > 11454.4 19.4 11420.0 > 11505.3 27.8 11455.0 > 11455.3 19.5 11415.0 > 11551.1 23.1 11482.0 ≥ 11380.8 34.6 11319.0

Inst5 26711.9 47.0 26630.0 < 26682.0 27.0 26624.0 > 26756.3 54.2 26639.0 ≥ 26733.9 35.7 26632.0 > 26882.4 18.2 26841.0 < 26644.0 29.2 26598.0

TSP

Inst1 48208.1 31.8 48194.9> 49189.7 280.2 48658.0 > 49561.2 513.7 48579.8 > 49946.2 354.9 48862.2 > 50633.4 2321.2 49356.2 > 50071.6 579.1 49028.9
Inst2 2.09e+7 9.05e+42.07e+7 > 2.14e+7 1.60e+5 2.12e+7 > 2.13e+7 1.05e+5 2.11e+7 > 2.32e+7 1.82e+6 2.13e+7 > 2.49e+7 1.20e+5 2.47e+7 > 2.13e+7 8.91e+4 2.11e+7

Inst3 6809.1 7.1 6796.6 > 7008.8 22.3 6928.2 > 7052.0 31.9 6993.6 > 7063.1 22.5 7013.8 > 8093.3 88.8 7934.9 > 7023.7 41.6 6963.6
Inst4 66840.2 276.5 66236.8> 71115.5 1245.2 69138.4 > 70161.9 445.4 69397.5 > 72505.3 2540.5 69036.3 > 78243.2 739.8 76803.1 > 68817.0 394.5 68088.7
Inst5 53011.4 469.7 52341.3> 57995.5 1643.8 54137.8 > 55144.2 744.3 53787.7 > 57138.0 2417.3 54477.8 > 60433.8 755.5 59470.7 > 54427.7 621.9 53601.3

VRP

Inst1 70998.4 3840.3 63948.2> 81271.4 4660.9 73486.9 ≥ 71768.6 4168.4 65292.3 ≥ 71146.5 3673.4 65726.4 > 99928.7 2677.2 95327.9 > 97991.1 3940.5 91978.2
Inst2 13421.8 251.6 13303.9 < 13418.5 41.3 13319.7 > 14523.1 680.4 13354.4 ≤ 13405.4 183.5 13327.0 > 13832.4 605.9 12351.7> 14015.3 601.4 13367.0
Inst3 148498.2 1625.8 145466.5> 171937.4 3951.0 163675.7> 151904.0 1871.8 148551.8< 146174.9 1817.0 142480.2> 350453.2 6010.8 336025.8> 307301.215683.8280087.2
Inst4 21016.4 488.2 20650.8≤ 20669.7 9.7 20654.6 > 21910.4 564.5 20657.2 ≤ 20766.5 295.9 20653.8 > 24370.2 903.8 21048.8 > 22072.5 560.5 20827.7
Inst5 148813.7 1272.5 146334.6> 153931.3 1621.4 150687.8> 149886.1 1382.4 147255.8< 147234.4 622.8 145552.5> 208923.3 5196.0 202032.9> 196210.4 6374.2 183749.7

24

Table 5: Ranking (performance comparison) of MSHH and the 20 hyper-heuristic ap-
proaches competed at CHeSC 2011 across six problem domains based on the Formula 1
scoring system.

Label SAT BP PS PFS TSP VRP Overall
MSHH 48.00 38.00 6.00 25.00 42.60 4.00 163.60

AdapHH 27.58 44.00 8.00 33.00 34.60 14.00 161.18
VNS-TW 27.08 2.00 39.50 30.00 13.60 6.00 118.18
ML 10.00 8.00 31.00 36.50 10.00 22.00 117.50
PHUNTER 7.00 2.00 11.50 6.00 21.60 33.00 81.10
EPH 0.00 6.00 10.50 18.00 30.60 12.00 77.10
HAHA 25.58 0.00 24.50 2.83 0.00 14.00 66.92
NAHH 10.50 16.00 2.00 19.50 9.00 6.00 63.00
ISEA 3.50 25.00 14.50 3.50 7.00 4.00 57.50
KSATS-HH 19.00 7.00 8.50 0.00 0.00 22.00 56.50
HAEA 0.00 1.00 1.00 7.33 8.00 27.00 44.33
GenHive 0.00 10.00 6.50 7.00 2.00 6.00 31.50
ACO-HH 0.00 17.00 0.00 6.33 6.00 1.00 30.33
SA-ILS 0.25 0.00 18.50 0.00 0.00 4.00 22.75
AVEG-Nep 9.50 0.00 0.00 0.00 0.00 9.00 18.50
XCJ 3.50 10.00 0.00 0.00 0.00 5.00 18.50
DynILS 0.00 9.00 0.00 0.00 8.00 0.00 17.00
GISS 0.25 0.00 10.00 0.00 0.00 6.00 16.25
SelfSearch 0.00 0.00 3.00 0.00 2.00 0.00 5.00
MCHH-S 3.25 0.00 0.00 0.00 0.00 0.00 3.25
Ant-Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00

the same scale. Figures 3 and 4 provide the box plots of the normalised
median objective values for the MSHH and the competitors’ hyper-heuristics
for each domain and overall, respectively. It is observed that the MSHH out-
performs the other approaches overall and in SAT, PFS, and TSP problem
domains, taking the second place in BP problem domain. However, the pro-
posed hyper-heuristic delivers a relatively poor performance on the PS and
VRP problem domains.

5.5. An Analysis of the Proposed Hyper-heuristic

We have repeated some experiments in order to track and interpret the
behaviour of the proposed multi-stage hyper-heuristic. Each trial is repeated
for 10 times during this set of experiments. The percentage utilisation is the
ratio of the number of improvements that a low level heuristic generates over
the best solution found so far to the total number of such improvements.
Figure 5 shows the average percentage utilisation of the single and combined
low level heuristics while an arbitrarily chosen representative instance from

25

each problem domain is solved. As one would expect, not all the low level
heuristics can generate improvement over the best solution found so far dur-
ing the search process. For example, in PS, surprisingly, LLH0 and LLH1

heuristics which are provided as hill climbers do not yield any improvement
neither themselves individually nor in combination with another low level
heuristic on the tested instance. On the other hand, LLH3 and LLH5 are
not able to make any improvement on the best solutions while BP instance
is being solved. This is not surprising, though, as those low level heuristics
are mutational heuristics.

With the exception on SAT problem domain, most of the improving moves
are due to hill climbers rather than mutational heuristics. The use of the
combination of a mutational heuristic followed by a hill climbing heuristic,
like the basic steps of iterated local search (Burke et al., 2010a), is automat-
ically favoured by our hyper-heuristic in the PFS and TSP domains (Figure
5(d), (e)). Similarly, ruin and re-create followed by a hill climber is another
favourite automatically detected pairing in the TSP problem domain. In
TSP, LLH1 does not seem to be that useful at the first glance, but considering
the relay hybridisation technique, it seems to serve as a ‘good’ diversification
component, improving the performance of the hill climbing heuristic (LLH8)
employed afterwards. In BP, MSHH favours the pairing of a mutational low
level heuristic followed by a ruin and re-create heuristic. The relay hybridi-
sation of low level heuristics seem to be useful, except for the PS and VRP
domains, in which it has been observed that no generated heuristic pairs
contributes towards the improvement of the best solutions. The proposed
hyper-heuristic looses time by testing all pairs of given low level heuristics
which could have been used in the search process. This could be one of the
reasons why the proposed hyper-heuristic performs relatively poor on those
domains.

The behaviour of MSHH considering the average threshold value of the
move acceptance method and average objective values of the current solution
in time is illustrated in Figure 6 for an arbitrarily selected instance from each
problem domain. In some cases, MSHH improves the quality of the initially
generated solution at the beginning of the search process rapidly. Then the
improvement slows down, but still continues as in the BP problem domain
(Figure 6(b)). While MSHH solves a given instance, it enters into what
seems to be a “neutral” region getting stuck at a local optimum. Due to the
employment of the adaptive move acceptance method, the MSHH managed
to escape from the local optimum and further improvements to the candidate

26

solutions are obtained. MSHH seems to require partial restarts while solving
problem instances from the SAT and PFS problem domains more than the
others which definitely works and this could be one of the reasons for the
success of MSHH on those problem domains.

Figure 7 depicts the average number of low level heuristics including indi-
vidual and paired low level heuristics versus time, over 10 trials on a selected
instance from each problem domain. Interestingly, on average, the number of
low level heuristics are reduced to approximately less than 10% of the total
in all six problem domains. This reduction occurs due to the employment of
S2HH which aims to disable the poor performing heuristics. In PS problem
domain, it is observed that all the single low level heuristics are used during
the entire search process. The fluctuations in the number of used low level
heuristics during the search process are very frequent in all the other problem
domains. It has been observed that the number of low level heuristics never
decreases to a single low level heuristic at any time in none of the domains.
Figure 7 illustrates that different set of low level heuristics are useful at dif-
ferent parts of the overall search process. For example, at the start of the
search process, the number of the low level heuristics stays the same for BP,
then it starts decreasing towards the midst of the given time.

6. Conclusion

A selection hyper-heuristic is a general-purpose search methodology that
mixes and controls a given set of heuristics for solving a computationally
hard problem. Such high level methods do not require any modification while
being applied to a new/unseen problem domain. Moreover, the component-
based design of selection hyper-heuristics enables re-usability of those com-
ponents as well.

Up to this date, most of the selection hyper-heuristics performing single
point based search contains two key components: heuristic selection and
move acceptance. This work is one of the initial studies that explicitly
addresses whether it is useful to combine multiple hyper-heuristics or not
and how. We present a general multi-stage hyper-heuristic framework and
describe its main components. The proposed multi-stage hyper-heuristic
framework is reusable and useful in relieving the difficulty of choosing a
hyper-heuristic method for solving a problem. This framework is used as
a basis to implement an iterated multi-stage hyper-heuristic with synergis-
tic components embedding two hyper-heuristics with an adaptive threshold

27

move acceptance method. One of the hyper-heuristics aims to reduce the
number of low level heuristics discovering the “potentially” useful ones at
a given stage during the search process and adjust the probability of each
low level heuristic being selected in the following stages. The hyper-heuristic
extends the low level heuristic set first by creating “new” heuristics through
relay hybridisation, and then a dominance based learning strategy is em-
ployed reducing the number of heuristics. The strategy captures the trade-
off between the extent of improvement that a heuristic can generate and the
number of steps it takes to achieve that improvement. Moreover, each cho-
sen low level heuristic in the “reduced” set is associated with an adaptively
decided selection probability to be used in the following stages. The second
hyper-heuristic mixes the “reduced” set of low level heuristics with the given
probabilities during the search process.

The proposed learning multi-stage selection hyper-heuristic with adaptive
move acceptance is tested on a benchmark of problem domains. The results
confirm its success when compared to each constituent hyper-heuristics, pre-
viously proposed other multi-stage hyper-heuristics as well as the state-of-
the-art hyper-heuristic which won the CHeSC 2011 competition. Our hyper-
heuristic is a relatively simple approach which is easy-to-implement and
easy-to-maintain as compared to some previously proposed hyper-heuristics
including the previous state-of-the-art hyper-heuristic, yet, it is extremely ef-
fective in cross-domain search delivering a superior performance. The success
of the proposed multi-stage hyper-heuristic approach based on the proposed
“simple” framework across a variety of domains indeed indicates the potential
of utilising and mixing the existing or new selection hyper-heuristics.

References

Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., Parkes, A. J., 2013a.
Combining monte-carlo and hyper-heuristic methods for the multi-mode
resource-constrained multi-project scheduling problem. In: Kendall, G.,
Vanden Berghe, G., McCollum, B. (Eds.), Proceedings of the 6th Mul-
tidisciplinary International Scheduling Conference: Theory and Applica-
tions (MISTA2013). Ghent, Belgium, pp. 836–839.

Asta, S., Özcan, E., 2015. A tensor-based selection hyper-heuristic for cross-
domain heuristic search. Information Sciences 299, 412 – 432.

28

Asta, S., Özcan, E., Parkes, A. J., 2013b. Batched mode hyper-heuristics.
In: Nicosia, G., Pardalos, P. (Eds.), Learning and Intelligent Optimiza-
tion. Vol. 7997 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 404–409.

Bilgin, B., Özcan, E., Korkmaz, E. E., 2007. An experimental study on
hyper-heuristics and exam scheduling. In: Burke, E. K., Rudová, H. (Eds.),
Practice and Theory of Automated Timetabling VI. Vol. 3867 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 394–412.

Burke, E., Kendall, G., Misir, M., Özcan, E., 2012. Monte Carlo hyper-
heuristics for examination timetabling. Annals of Operations Research
196 (1), 73–90.

Burke, E. K., Curtois, T., Hyde, M. R., Kendall, G., Ochoa, G., Petrovic, S.,
Rodŕıguez, J. A. V., Gendreau, M., 2010a. Iterated local search vs. hyper-
heuristics: towards general-purpose search algorithms. In: IEEE Congress
on Evolutionary Computation (CEC ’10). pp. 1–8.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E.,
Qu, R., 2013. Hyper-heuristics: a survey of the state of the art. Journal of
the Operational Research Society 64 (12), 1695–1724.

Burke, E. K., Gendreau, M., Ochoa, G., Walker, J. D., 2011. Adaptive iter-
ated local search for cross-domain optimisation. In: Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation (GECCO
’11). ACM, New York, NY, USA, pp. 1987–1994.

Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.,
2003. Hyper-heuristics: an emerging direction in modern search technology.
In: Glover, F., Kochenberger, G. (Eds.), Handbook of Metaheuristics.
Kluwer, pp. 457–474.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J. R.,
2010b. A classification of hyper-heuristic approaches. In: Gendreau, M.,
Potvin, J.-Y. (Eds.), Handbook of Metaheuristics. Vol. 146 of International
Series in Operations Research and Management Science. Springer US, pp.
449–468.

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E., Wood-
ward, J. R., 2009. Exploring hyper-heuristic methodologies with genetic

29

programming. In: Kacprzyk, J., Jain, L. C., Mumford, C. L., Jain, L. C.
(Eds.), Computational Intelligence. Vol. 1 of Intelligent Systems Reference
Library. Springer Berlin Heidelberg, pp. 177–201.

Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., Qu, R., 2007. A
graph-based hyper-heuristic for educational timetabling problems. Euro-
pean Journal of Operational Research 176 (1), 177–192.

Chakhlevitch, K., Cowling, P., 2005. Choosing the fittest subset of low level
heuristics in a hyperheuristic framework. In: Raidl, G., Gottlieb, J. (Eds.),
Evolutionary Computation in Combinatorial Optimization. Vol. 3448 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 23–
33.

Chakhlevitch, K., Cowling, P., 2008. Hyperheuristics: recent developments.
In: Cotta, C., Sevaux, M., Sörensen, K. (Eds.), Adaptive and Multilevel
Metaheuristics. Vol. 136 of Studies in Computational Intelligence. Springer
Berlin Heidelberg, pp. 3–29.

Cowling, P., Chakhlevitch, K., 2003. Hyperheuristics for managing a large
collection of low level heuristics to schedule personnel. In: IEEE Congress
on Evolutionary Computation (CEC ’03). pp. 1214–1221.

Cowling, P., Kendall, G., Soubeiga, E., 2001. A hyperheuristic approach
to scheduling a sales summit. In: Burke, E., Erben, W. (Eds.), Practice
and Theory of Automated Timetabling III. Vol. 2079 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 176–190.

Di Gaspero, L., Urli, T., 2012. Evaluation of a family of reinforcement learn-
ing cross-domain optimization heuristics. In: Hamadi, Y., Schoenauer, M.
(Eds.), Learning and Intelligent Optimization. Vol. 7219 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 384–389.

Drake, J. H., Özcan, E., Burke, E. K., 2012. An improved choice function
heuristic selection for cross domain heuristic search. In: Coello, C. A. C.,
Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (Eds.), Parallel
Problem Solving From Nature (PPSN XII). Vol. 7492 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 307–316.

30

Drake, J. H., Özcan, E., Burke, E. K., May 2015. A modified choice function
hyper-heuristic controlling unary and binary operators. In: Evolutionary
Computation, 2015. CEC ’15. IEEE Congress on. p. to appear.

Fagerland, M. W., Sandvik, L., 2009. The Wilcoxon–Mann–Whitney test
under scrutiny. Statistics in Medicine 28 (10), 1487–1497.

Garćıa-Villoria, A., Salhi, S., Corominas, A., Pastor, R., 2011. Hyper-
heuristic approaches for the response time variability problem. European
Journal of Operational Research 211 (1), 160–169.

Hsiao, P.-C., Chiang, T.-C., Fu, L.-C., 2012. A VNS-based hyper-heuristic
with adaptive computational budget of local search. In: IEEE Congress
on Evolutionary Computation (CEC ’12). pp. 1–8.

Jackson, W. G., Özcan, E., Drake, J. H., 2013. Late acceptance-based selec-
tion hyper-heuristics for cross-domain heuristic search. In: 13th UK Work-
shop on Computational Intelligence (UKCI2013). IEEE, pp. 228–235.

Kalender, M., Kheiri, A., Özcan, E., Burke, E. K., 2012. A greedy
gradient-simulated annealing hyper-heuristic for a curriculum-based course
timetabling problem. In: 12th UK Workshop on Computational Intelli-
gence (UKCI2012). IEEE, pp. 1–8.

Kalender, M., Kheiri, A., Özcan, E., Burke, E. K., 2013. A greedy gradient-
simulated annealing selection hyper-heuristic. Soft Computing 17 (12),
2279–2292.

Kheiri, A., Keedwell, E., 2015. A sequence-based selection hyper-heuristic
utilising a hidden Markov model. In: Proceedings of the 2015 on Genetic
and Evolutionary Computation Conference. GECCO ’15. ACM, New York,
NY, USA, pp. 417–424.

Kheiri, A., Keedwell, E., Gibson, M. J., Savic, D., 2015. Sequence analysis-
based hyper-heuristics for water distribution network optimisation. Pro-
cedia Engineering 119, 1269–1277, computing and Control for the Water
Industry (CCWI2015) Sharing the best practice in water management.

Kheiri, A., Özcan, E., 2013. A hyper-heuristic with a round robin neigh-
bourhood selection. In: Middendorf, M., Blum, C. (Eds.), Evolutionary

31

Computation in Combinatorial Optimization. Vol. 7832 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 1–12.

Kheiri, A., Özcan, E., Parkes, A. J., in press. A stochastic local search al-
gorithm with adaptive acceptance for high-school timetabling. Annals of
Operations Research.

Kruskal, W. H., 1957. Historical notes on the Wilcoxon unpaired two-sample
test. Journal of the American Statistical Association 52 (279), 356–360.

Lehre, P. K., Özcan, E., 2013. A runtime analysis of simple hyper-heuristics:
to mix or not to mix operators. In: Proceedings of the Twelfth Workshop
on Foundations of Genetic Algorithms (FOGA XII ’13). ACM, New York,
NY, USA, pp. 97–104.

Lourenço, H. R., Martin, O. C., Stützle, T., 2010. Iterated local search:
framework and applications. In: Gendreau, M., Potvin, J.-Y. (Eds.), Hand-
book of Metaheuristics. Vol. 146 of International Series in Operations Re-
search and Management Science. Springer US, pp. 363–397.

Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G., 2011. A
new hyper-heuristic implementation in HyFlex: a study on generality. In:
Fowler, J., Kendall, G., McCollum, B. (Eds.), Proceedings of the 5th Multi-
disciplinary International Scheduling Conference: Theory and Application
(MISTA2011). pp. 374–393.

Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J. A., Walker, J., Gen-
dreau, M., Kendall, G., McCollum, B., Parkes, A. J., Petrovic, S., Burke,
E. K., 2012a. HyFlex: a benchmark framework for cross-domain heuristic
search. In: Hao, J.-K., Middendorf, M. (Eds.), Evolutionary Computation
in Combinatorial Optimization. Vol. 7245 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 136–147.

Ochoa, G., Walker, J., Hyde, M., Curtois, T., 2012b. Adaptive evolutionary
algorithms and extensions to the HyFlex hyper-heuristic framework. In:
Coello, C. A. C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (Eds.), Parallel Problem Solving from Nature (PPSN XII). Vol. 7492
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp.
418–427.

32

Özcan, E., Bilgin, B., Korkmaz, E. E., 2006. Hill climbers and mutational
heuristics in hyperheuristics. In: Runarsson, T. P., Beyer, H.-G., Burke,
E., Merelo-Guervós, J. J., Whitley, L. D., Yao, X. (Eds.), Parallel Problem
Solving from Nature (PPSN IX). Vol. 4193 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 202–211.

Özcan, E., Bilgin, B., Korkmaz, E. E., 2008. A comprehensive analysis of
hyper-heuristics. Intelligent Data Analysis 12 (1), 3–23.

Özcan, E., Burke, E. K., 2009. Multilevel search for choosing hyper-heuristics.
In: Proceedings of the 4th Multidisciplinary International Scheduling Con-
ference: Theory and Application (MISTA2009). pp. 788–789.

Özcan, E., Kheiri, A., 2012. A hyper-heuristic based on random gradient,
greedy and dominance. In: Gelenbe, E., Lent, R., Sakellari, G. (Eds.),
Computer and Information Sciences II. Springer London, pp. 557–563.

Özcan, E., Misir, M., Kheiri, A., 2013. Group decision making hyper-
heuristics for function optimisation. In: 13th UK Workshop on Compu-
tational Intelligence (UKCI2013). IEEE, pp. 327–333.

Pillay, N., Banzhaf, W., 2009. A study of heuristic combinations for hyper-
heuristic systems for the uncapacitated examination timetabling problem.
European Journal of Operational Research 197 (2), 482–491.

Rahman, S. A., Bargiela, A., Burke, E. K., Özcan, E., McCollum, B., Mc-
Mullan, P., 2014. Adaptive linear combination of heuristic orderings in
constructing examination timetables. European Journal of Operational Re-
search 232 (2), 287–297.

Soria-Alcaraz, J. A., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke,
E. K., 2014. Effective learning hyper-heuristics for the course timetabling
problem. European Journal of Operational Research 238 (1), 77–86.

Swan, J., Özcan, E., Kendall, G., 2011. Hyperion - a recursive hyper-heuristic
framework. In: Coello, C. A. C. (Ed.), Learning and Intelligent Optimiza-
tion. Vol. 6683 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 616–630.

33

MSHH

AdapHH

VNS-TW

HAHA

KSATS

AVEGNep

ML

NAHH

PHUNTER

ISEA

MCHH-S

HAEA

ShafiXCJ

EPH

GISS

SA-ILS

SelfS

ACO-HH

GenHive

Ant-Q

DynILS

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

SAT

AdapHH

MSHH

NAHH

ISEA

ACO-HH

DynILS

GenHive

EPH

KSATS

VNS-TW

ML

HAEA

SelfS

MCHH-S

ShafiXCJ

HAHA

PHUNTER

SA-ILS

AVEGNep

Ant-Q

GISS

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

BP

ML

VNS-TW

PHUNTER

HAHA

ISEA

SA-ILS

EPH

KSATS

GenHive

NAHH

SelfS

HAEA

MSHH

AdapHH

ShafiXCJ

GISS

AVEGNep

ACO-HH

MCHH-S

DynILS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

PS

MSHH

AdapHH

ML

VNS-TW

NAHH

EPH

HAEA

HAHA

ISEA

PHUNTER

GenHive

ACO-HH

DynILS

SelfS

KSATS

ShafiXCJ

AVEGNep

SA-ILS

MCHH-S

GISS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

PFS

MSHH

EPH

AdapHH

PHUNTER

ML

ACO-HH

ISEA

DynILS

VNS-TW

NAHH

HAEA

GenHive

ShafiXCJ

HAHA

SelfS

Ant-Q

SA-ILS

AVEGNep

MCHH-S

KSATS

GISS

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

TSP

HAEA

PHUNTER

AdapHH

ML

MSHH

GISS

ShafiXCJ

HAHA

ISEA

KSATS

NAHH

SA-ILS

GenHive

EPH

DynILS

VNS-TW

MCHH-S

AVEGNep

ACO-HH

SelfS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

VRP

Figure 3: Ranking (performance comparison) of MSHH and CHeSC 2011 hyper-heuristics
for each HyFlex problem domain based on the median results converted to the normalised
objective values. The dots in the box plots are outliers.

34

MSHH

AdapHH

ML

VNS-TW

PHUNTER

NAHH

ISEA

HAEA

EPH

HAHA

KSATS

ShafiXCJ

GenHive

DynILS

ACO-HH

SelfS

SA-ILS

AVEGNep

GISS

MCHH-S

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

Overall

Figure 4: Ranking (performance comparison) of MSHH and CHeSC 2011 hyper-heuristics
in overall based on the median results converted to the normalised objective values. The
dots in the box plots are outliers.

35

7%

7%2%

10%

14%

16%
< 1%

31%

12%

< 1%

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7
LLH8
LLH5+LLH7

(a) SAT problem domain

2%1%

41%

14%

36%

4%
1%

1%

LLH0
LLH1
LLH2
LLH4
LLH6
LLH0+LLH2
LLH1+LLH2
LLH4+LLH2

(b) BP problem domain

25%

29%

45%

1%

LLH2
LLH3
LLH4
LLH6

(c) PS problem domain

9%
4%

10%

11%

21%
14%

14%

7%

6%

4%

LLH0
LLH1
LLH7
LLH8
LLH9
LLH10
LLH0+LLH7
LLH0+LLH8
LLH0+LLH9
LLH1+LLH7

(d) PFS problem domain

11%4%

9%

5%

9%

14% 10% 3%

4%

32%

LLH0
LLH4
LLH6
LLH7
LLH8
LLH0+LLH8
LLH1+LLH8
LLH4+LLH8
LLH5+LLH6
LLH5+LLH8

(e) TSP problem domain

3%3%

7%3%

81%

2%

LLH2
LLH3
LLH4
LLH7
LLH8
LLH9

(f) VRP problem domain

Figure 5: Average percentage utilisation of single/combined low level heuristics over 10
trials while solving a sample instance representing each problem domain.

36

0 100 200 300 400 500 600

10

15

20

obj vs. time
threshold vs. time

(a) SAT problem domain

0 100 200 300 400 500 600

0.005

0.01

0.015

0.02

obj vs. time
threshold vs. time

(b) BP problem domain

0 100 200 300 400 500 600
0

1000

2000

3000

obj vs. time
threshold vs. time

(c) PS problem domain

200 250 300 350 400 450 500 550 600
6255

6260

6265

6270

6275

obj vs. time
threshold vs. time

(d) PFS problem domain

0 100 200 300 400 500 600
4.8

4.9

5

5.1
x 10

4

obj vs. time
threshold vs. time

(e) TSP problem domain

0 100 200 300 400 500 600
2

2.2

2.4
x 10

4

obj vs. time
threshold vs. time

(f) VRP problem domain

Figure 6: Plots of the average objective and threshold level values over 10 trials versus
time while solving a sample instance representing each problem domain.

37

0 100 200 300 400 500 600
6

8

10

12

14

#LLH vs. time

(a) SAT problem domain

0 100 200 300 400 500 600

4

5

6

7

8

#LLH vs. time

(b) BP problem domain

0 100 200 300 400 500 600
8

9

10

#LLH vs. time

(c) PS problem domain

0 100 200 300 400 500 600
0
2
4
6
8

10
12
14

#LLH vs. time

(d) PFS problem domain

0 100 200 300 400 500 600
2

4

6

8

10

12

#LLH vs. time

(e) TSP problem domain

0 100 200 300 400 500 600
4

6

8

10

#LLH vs. time

(f) VRP problem domain

Figure 7: Plots of the average of changes in the number of single/combined low level
heuristics versus time from 10 trials while solving a sample instance representing each
problem domain.

38

	Introduction
	Related Work
	Methodology
	A Multi-stage Selection Hyper-heuristic Framework
	An Iterated Multi-stage Hyper-heuristic Using Dominance and Relay Hybridisation
	Stage One Hyper-heuristic (S1HH)
	Stage Two Hyper-heuristic (S2HH)

	Hyper-heuristics Flexible Framework - HyFlex
	Experimental Results
	Parameter Settings
	Performance Comparison to the Constituent Hyper-heuristics
	Performance Comparison to the Previous Multi-stage Selection Hyper-heuristics
	Performance Comparison to the CHeSC 2011 Hyper-heuristics
	An Analysis of the Proposed Hyper-heuristic

	Conclusion

