
GENERATING JAVA CLASS SKELETON USING A
NATURAL LANGUAGE INTERFACE

Ender ÖZCAN, Şadi Evren ŞEKER, Zeynep İlknur KARADENİZ

{eozcan, seseker, ikaradeniz}@cse.yeditepe.edu.tr
Yeditepe University, Department of Computer Engineering

Artificial Intelligence Laboratory (AR+I)
26 Ağustos Yerleşkesi Kayışdağı/İstanbul

Turkey

Abstract. An intelligent natural language interface based on Turkish Language is
designed for creating Java class skeleton, listing the class and its members. This
interface is developed as a part of a project named as TUJA, a tool for producing
Java programs using Turkish sentences. Turkish sentences are converted into
instances of schemata, representing classes and their members. Concept hierarchies
are utilized for building the classes and their hierarchical representation for Java
class skeleton generation. In this paper, the details of the design and the
implementation are described and a sample run is provided.

1 Introduction

Programming languages are machine processible, precise and mostly unambiguous with
predefined syntax and semantics. Still, a novice programmer spends a lot of effort in
learning syntactic rules and at the same time developing general programming skills.
Even an experienced programmer may face the same problems, if the programming
language is a new one. On the other hand, natural languages are more declarative,
flexible, powerful and richer, being useful even for occasional users. Also, the
programmer may not know the language used in the resources, such as books, to learn a
new programming language.

There are visual tools for creating object oriented designs, furthermore, generating
Java/C++ skeletal programs, such as Rational Rose (an IBM product). Turkish to Java
(TUJA) is a natural language processing (NLP) application, designed with two modes of
operation, where each mode is to be implemented as a phase. First phase involves in
building an interface for creating a skeletal Java program, including all classes, their
attributes (data) and prototypes of member methods of each class. Second phase involves
in enlarging the functionality of the same interface to convert each skeletal class into full
Java programs by allowing users to express them in Turkish sentences. In this paper,
details of the first phase of TUJA projects are described. TUJA accepts Turkish sentences,

describing a class, a member method or a member attribute of a class, using a
conversational front end. Then the input is fed into an augmented transition network
(ATN) 1 for parsing and semantic analysis. At the end of this process knowledge database
is updated using the current command. Knowledge is represented using schemata. At any
instant, the user can ask TUJA to produce the Java skeletal code, saving it into a file.
Architecture of TUJA is illustrated in Fig. 1.

Fig. 1. Framework of TUJA.

2 Natural Language Processing using Turkish

NLP consists of 5 layers: morphology, syntax, semantics, pragmatics and phonetics (2,
10). Due to our scope and purposes we have limited our work in morphology and
especially in syntax and semantics layers.

Turkish is one of the most widely spoken languages in the world, distributed over a
large geographical region in Europe and Asia, as pointed in 6 based on United Nations
sources. Note that there are many Turkish dialects, such as the Azeri, the Türkmen, the
Tartar, the Uzbek, the Baskurti, the Nogay, the Kyrgyz, the Kazakh, the Yakuti, the
Cuvas. Turkish is similar to Mongolian, Manchu-Tungus, Korean belonging to the same
family of languages: the Altaic branch of the Ural-Altaic family. There are 29 letters
based on the Latin alphabet in Turkish, including 8 vowels. There is a vowel harmony in
Turkish words. Words do not have gender. In Turkish sentences adjectives precede nouns.
It is unfortunate that there are a few number of natural language applications (1, [3],[5], 7-
[9]) based on Turkish language due to its agglutinative nature.

 Morpheme
Database

TUJA I
User Interface

Knowledge
Database

IS-A
Hierarchy

Java
Code

Generator

Method

Attribute

Class

Hierarchy

User

Schemata

ATN Manager

The same suffix can be attached to different words in different ways. Sometimes, a
vowel or a consonant towards the end of a word may deform. For this reason,
morphological analysis in Turkish is not straightforward as shown in Table 1.

Table 1. Some deformation examples in Turkish words due to suffixes.

Word (Stem) + Suffixes
görünürlerde (in sight) (gör) + ün + ür + ler +de (görmek - to see)
ağaca (towards the tree) (ağaç) + a (tree)
ağlıyor (he/she/it is crying) (ağla) + yor (ağlamak – to cry)

There are seven morphological categories in Turkish: nouns, private nouns, compound
nouns, adjectives, verbs, adverbs and conjunctions. In Turkish, another difficulty rises due
to the syntax. Sentences with different syntaxes using the same words are allowed in
Turkish (free world-order), yielding a group of sentences with the same meaning as
illustrated in Table 2. The common property of all these three sentences is a feature of
Turkish language, that is, the verb appears at the end of the sentences.

Table 2. Turkish sentences with different syntax having the same meaning.

Sentence (I gave the book to the child)
Çocuğa kitabı ben verdim
Çocuğa ben kitabı verdim
Ben çocuğa kitabı verdim

3 Morphology, Syntax and Semantics

It is assumed that Object Oriented Programming terminology is known. Morphology of
TUJA is inherited from a previous project, TUSA [6] based on PROLOG. The sentences
are categorized into four different groups: (a) Class Declaration Sentences, (b) Attribute
Declaration Sentences, (c) Method Declaration Sentences, (d) Relation Declaration
Sentences. All possible syntax types are supported to create an abstract model
representing the classes. An augmented transition network (ATN) is developed for TUJA
interface. HASA relationship is used for composing classes and ISA relationship is used
for building the class hierarchy. TUJA assumes that in general, a noun in a sentence refers
to a class, interface, or an attribute (primitive or an object), and a verb refers to a method.

3.1 Class Declaration Sentences

This group of sentences is used to create a new class or name an existing class as shown
in Fig. 2b. Note that declaration of abstract classes; Java interfaces are also supported.

Fig. 2 (a) ATN, (b) some sample sentences for class declaration sentences.

Part of the ATN for TUJA detects class declarations as illustrated in Fig. 2a. Nominalverb
component alone and combined with the Modifier component in the ATN determines
whether a class is abstract or not.

3.2 Attribute Declaration Sentences

This group of sentences is used to define the attributes of an existing class or to define a
new class with specified attributes as shown Fig. 3. HAS relation represents the inclusion
relationship, determining the elements included by an object. In other words, HAS
relation is used to define the members of a class. Part of the ATN for TUJA detects
attribute declarations as shown in Fig. 3.

3. 3 Method Declaration Sentences

This group of sentences is used to define the methods of predefined classes or to define a
new class with specified member methods as shown in Fig. 4b. Part of the ATN for TUJA
determines method declarations as shown in Fig. 4a.

Class
diye

(so that)
Modifier

olan
(called)

Nominalverb

Modifier

Modifier

Modifier

Noun
bir

(a(n))

Noun

bir
(a(n))

• nokta diye bir kavram
vardır. (there exists a
concept called point)
• şekil bir kuraldır.
(shape is a rule)

• liste soyut bir kavramdır.
(list is an abstract concept)
• liste diye soyut bir
kavram vardır. (there exists
an abstract concept called
list)
• bağlı liste soyut bir
kavramdır. (link list is an
abstract concept)

(a) (b)

Fig. 3 (a) ATN, (b) sample sentences for attribute (HASA relationship) declaration sentences.

Noungroup(none)

Attribute

her
(every)

bütün
(all) Noun

Noun

Modifier

Modifier

bütün
(all)

Noungroup
(-e)

Verb

ile
(with)

 Verb

Nominalverb

her
(every)

Noungroup
(-den)

Noungroup
(-i or none)

• nokta x adlı korunan
tamsayıya sahiptir (point has
a protected integer named x)
• nokta y adlı korunan
tamsayıya sahiptir (point has
a protected integer named y)
• çember çap adlı korunan
çifte sahiptir (circle has a
protected double named
radius)

• liste kuralı yeni uzunluk adlı
tamsayıya sahiptir (list rule
has an integer named new
length)
• sıra soyut kavramı eski
uzunluk adlı tamsayıya
sahiptir (the abstract concept
named queue has an integer
named old length)
• her otomobil renge modele
markaya sahiptir (all
automobiles has color, model
and brand)
• bütün otomobil kavramları
rengi markası modeli ile
tanımlanabilir (all automobiles
can be defined by color, brand
and models)

(a) (b)

Fig. 4. (a) ATN, (b) sample sentences for method declaration sentences.

3.4 Hierarchy Declaration Sentences

Our knowledge about the world can be organized hierarchically using a naming
convention for each class including a set of objects with common properties. For example,
cows and horses represent two different set of objects, and mammals contains both of
them as a super class. Note that cows and horses carry the properties of mammals.
Similarly objects defined by a formal object oriented programming language can be
organized hierarchically, forming a class hierarchy, supporting inheritance.
ISA hierarchy is used to represent inclusion relationship between classes. A class can be
defined to be a subset of two or more super classes (multiple inheritance). Since the goal
is generating JAVA class skeletal codes and JAVA does not support multiple inheritance,
such sentences are converted into JAVA class templates assuming that at least one of

Noungroup

Noungroup
(-den

condition)

Noun

Verb

 Return
only

 Both
Parameter
&Return

 Both
Void

 Parameter
only

Noun

Method

• şekil kuralı çift döndüren alan
metoduna sahiptir (shape rule has an
area method, which returns double)
• şekil kuralı çift döndüren hacim
metoduna sahiptir (shape rule has a
volume method which returns double)

• insan ekmek yer (man eats bread)
• liste sıralanabilir (list can be sorted)
• liste eleman arar (list searches an
element)
• liste sona eleman ekler (list inserts an
element to the end)
• liste tamsayı döndüren yeni uzunluk
adlı uzunluk parametreli ölç korunan
metoduna sahiptir (list has a protected
size method, who returns an integer and
has a size parameter named new size)
• liste eleman döndüren başdan çıkar
genel metoduna sahiptir (list has a
remove from beginning method which
returns an element)

(a) (b)

them is a class and the rest are interfaces. Part of the ATN for TUJA detects relation
declarations as shown in Fig. 5a.

Fig. 5. (a) ATN, (b) sample sentences for hierarchy (ISA relationship) declaration sentences.

4 Knowledge Database

Knowledge database keeps all valuable data resulting from the object oriented design,
retrieved from sentences, necessary to generate the skeleton of each class. After parsing
and understanding a sentence, TUJA converts the input into an appropriate instance of a
schema or modifies an existing schema in the knowledge database. PROLOG provides the
advantage of keeping the instances in a relational database form. There are three basic
schemata, each generated by the corresponding ATN: (a) Method Schema, (b) Attribute
Schema, (c) Class/Interface Schema. Furthermore, ISA hierarchy is embedded into the
class schema.

Details of each schema are shown in Table 3. ISA hierarchy is supported using,
InheritedClass slot of the class schema, a pointer to the parent class. ClassSpecifier slot
keeps the access specifier of the related class (e.g. public, private, protected).

Table 3. Schemata details supported by TUJA.

class/interface(ClassName, InheritedClass, ListofAttributes, ListofMethods,
ListofImplementedIntefaces, ClassSpecifier)
attribute(AttributeName, AttributeType, AttributeSpecifier)
method(MethodName, ListofParameters, ListofReturnValues,MethodSpecifier)

Noun

bir
(a(n))

her
(every)

Nominalverb

Birer
(one each)

bütün
(all)

Noun

Hierarchy

• her nokta bir şekildir (every point
is a shape)
• bütün çemberler bir noktadır (all
circles are point)
• silindir bir çemberdir (cylinder is a
circle)

(a) (b)

4.1 Method Schema

Besides certain sentences, such as, “get X as input and return Y value”, there are
uncertainties for the verb in some sentences like “Routers send messages”. In this specific
example, it is obvious that the verb “send” gets “message” as a parameter. On the other
hand, there might be an input, such as, “Routers generate error message”, where the verb
of the sentence “generate” should return “error message” as an object. In order to retrieve
the prototype of a method fully, verbs in Turkish are categorized as follows (Table 4):
− Consuming verbs identify methods requiring a list of parameters with no return value
− Producing verbs identify methods requiring no parameters and returning a value
− Unaffecting verbs identify methods requiring no parameters with no return value
− Modifying verbs identify methods requiring a list of parameters and returning a value

Table 4. Verb categories supported by TUJA to determine method parameters and return values.

Verb Type Example Parameters Return
Consuming “İnsanlar ekmek yer”

(Human-beings eat bread)
Ekmek
(bread)

Void

Producing “At tay doğurur”
(A horse gives birth to a foal)

Void Tay
(foal)

Unaffecting “At hızlanır”
 (The horse speeds up)

Void Void

Modifying “İnsan undan sudan ekmek pişirir”
(Man cooks bread from flour and water)

Un, su
(Flour, water)

Ekmek
(bread)

There is a special case for modifying verbs: “İnsan kuş avlar” (Man hunts for bird).

The question, “what is the result of the hunt?”, can be answered as “bird”, just as the
question, “what does man hunt for?”. Both return value and parameter of the method are
the same. ATN parses Turkish sentences, and if a sentence defines a method, nouns are
identified as a list of parameters or a list of return values of the related method.

In Java, a method may have only one return value, but our sentence might contain more
than one return values. For example, “insan undan sudan ekmek börek pişirir” (man cooks
bread and pastry from flavor and water) consist of two return values; bread and pastry. In
such cases, TUJA produces two functions, one with return type of bread, second with
return type of pastry with different function names.

5 Code Generation

User can trigger the code generation at any time by using the “kodla”(code) command at
the prompt. TUJA code generator is a Prolog based predicate to java code translator.

Schemata, kept in the memory all the time, are processed and the code is generated. This
way of approach provides flexibility to handle any changes in the declarations.

TUJA uses its defaults in the case of obscurities in access modifiers, getter/setter
methods and interface rules. TUJA generates all member methods as public and all
member attributes as private, generating public getter and setter methods for each attribute
during the code generation.

TUJA inherits all the member methods of an interface, generating each prototype of the
method as a member inside the class implementing it.

Following output is produced after feeding the input sentences in Figures 2b, 3b, 4b,
5b, formatted as bold. This example is the class skeleton of the Java codes provided as a
case study in 4:

class Point implements Shape{
 protected int x;
 public int getX(){return x;}
 public void setX(int x){this.x=x;}
 protected int y;
 public int getY(){return y;}
 public void setY(int y){this.y=y;}
 public double volume(){}
 public double area(){}
}
class Circle extends Point{
 protected double radius;
 public double getRadius(){return radius;}
 public void setRadius(double radius){this.radius=radius;}
 public double area(){}
}
class Cylinder extends Circle{
 protected double heigth;
 public double getHeigth(){return heigth;}
 public void setHeigth(double heigth){this.heigth=heigth;}
 public double volume(){}
 public double area(){}
}
interface Shape{
 public double volume(){}
 public double area(){}
}

6 Conclusion

TUJA is a project for creating skeletal Java codes using our natural language, Turkish.
This project will be extended further allowing users to enter Turkish sentences, producing
the body of each member method. Yet, there are some issues to be attacked before this

next phase. For example, nested class declarations are not allowed. By the time being,
TUJA does not handle the cases, if an interface extends another. Supporting punctuations
and anaphora resolution will make TUJA to accept more natural sentences.

At the best of our knowledge, this is the first time verbs are categorized for retrieving
possible parameters and return values from the sentences. TUJA is useful for experienced
programmers. Novice programmers should be familiar with at least object oriented
concepts. Since the code generator and knowledge database is separate, TUJA can be
easily modified to support other object oriented or object based programming languages.
Adapting the system to use a different natural language requires more effort, necessitating
modification of ATN Manager and morpheme database components of TUJA.

7 Acknowledgement

Special thanks to Prof. Dr. A. C. Cem SAY from Boğaziçi University for providing the
morphological analyzer.

References

1. A. Cetinoglu, Prolog Based Natural Language Processing Infrastructure for Turkish,
M.Sc. Thesis, Bogazici University, 2001

2. M.A. Covington, Natural Language Programming for Prolog Programmers,
(Englewood Cliffs, NJ:Prentice-Hall, 1994)

3. O. N. Darcan, An intelligent database interface for Turkish, M.Sc. Thesis, Bogazici
University, Istanbul, 1991

4. H. M.Deitel, P. J. Deitel, Java: How To Program, 1998, 389-392
5. S. Demir, Improved treatment of word meaning in a Turkish conversational agent,

M.Sc. Thesis, Bogazici University, Istanbul, 2003.
6. M.U.Karakas, E. Inan, Current Status in Turkish Code Table Problem, Bilisim,

Bogazici University, Istanbul, 1996
7. K. Köymen, Prototype DMBS with a Turkish Query Language, University of

Petroleum and Minerals, Dhahran, Saudi Arabia, 1976
8. S.E. Seker, Türkçe Doğal Dil Arayüzlü Bir Kişisel Takvim Programının, Tasarım ve

Kodlamasi, TAINN 2003, Canakkale, Turkey.
9. S.E. Seker, A Personal Assistant with A Natural Language Interface in Turkish,

M.Sc. Thesis, Yeditepe University, Istanbul, 2003.
10. J. Weizenbaum, ELIZA: A Computer Program for the Study of Natural Language

Communication between Man and Machine, ACM Press, NY, USA, 1983, 23-28
11. W. A. Woods, Transition Network Grammars for Natural Language Analysis,

Harvard University, Cambridge, Massachusetts, 1970

