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Abstract
The use of packing algorithms to fill build volumes in 3D

printing promotes both more efficient processes and better util-
isation of the available build space. There are various pack-
ing techniques, and the choice of an appropriate one is often
highly dependent on the characteristics of the parts to be printed,
among other factors. Part complexity, and particularly convexity,
is an important factor. This paper presents metrics for quantita-
tively evaluating part complexity, extending a 2D metric to a 3D
situation. These metrics are then available for classifying prob-
lems and identifying appropriate packing algorithms.

Introduction
Cutting and packing (C&P) is an important research area

within Operations Research. It aims to develop solutions for
problems of maximising the utilisation of available manufactur-
ing capacity or material. It has been demonstrated that there is
a relationship between the usage of the available build space and
the efficiency of some 3D Printing processes in terms of resource
consumption, including financial cost [1] and energy consump-
tion [2]. Therefore, improving and applying automated packing
methodologies to 3D Printing is likely to result in more sustain-
able and profitable production.

A large variety of C&P techniques have been developed in
the last few decades. One particular approach that has shown
promising results is the utilisation of basic information about
the parts to be packed to evolve the method itself rather than
to solve an individual case [3, 4]. The majority of papers that
use this approach address regular packing problems by orthogo-
nally placing cuboid elements of geometry within a large bin or
container. To address more realistic cases, this research inves-
tigates whether additional characteristics, or features, present in
irregular parts can be used to improve the performance of C&P
methodologies.

Previous research on the evaluation of part complexity,
sometimes referred to as shape complexity, has been applied to
areas other than 3D Printing, e.g. architecture [5] and design [6].
This paper introduces a new part complexity measure for pack-
ing approaches supporting 3D Printing processes. By discussing
the proposed complexity measure in the context of the existing
measures which have already been identified in the literature, the
authors expect to lay the groundwork for future research into ir-
regular packing.

This paper is structured as follows: A brief presentation of
packing methodologies applied to 3D Printing and an overview
of existing shape complexity measures are presented in the next
two sections. The next section introduces the new proposed met-
rics, along with a practical method for calculating the Spies Ra-
tio. The experimental results are then presented and discussed,
before the final section concludes the paper, summarising the
work and discussing future work.

Background
A variety of packing methodologies has been applied to 3D

Printing [7, 8, 9, 10] and they differ mainly in the way that they
search for promising sequences of parts, i.e. in the order in which
the items are positioned within the build volume. For example,
Canellidis et al. [11] use a Genetic Algorithm (GA) to determine
a good ordering of the parts. A GA is a metaheuristic, which is a
high level algorithm that mimics the process of natural selection
and reproduction of the fittest individuals [12]. An interesting
aspect in [11] is that each part has its orientation previously op-
timised according to one of three criteria: height, volume of sup-
porting structures and surface roughness. This method, therefore,
uses basic information about the geometry of parts to improve the
overall results of the algorithm.

There are metaheuristic optimization methods which make
use of problem features for choosing and applying the best ap-
proach before or during the search process to solve a given prob-
lem instance [13, 4]. This line of studies on the application
of data science techniques to exploit richer information (e.g.,
problem instance/solution features) improving the learning pro-
cess leading to more effective solution methods in combinatorial
optimization has been growing [14, 15]. For example, hyper-
heuristics utilizing part characteristics have been successfully ap-
plied to regular packing [16, 17].

Existing Metrics
This section presents existing methodologies for evaluating

part complexity. The first is the Spies Ratio (SR) [18], which is
calculated by the dividing the volume of the geometry part by the
volume of the primitive that contains it. An interesting aspect of
the SR is the need to find the correct alignment of the part which
will minimise the primitive volume.

The second part complexity that we consider was presented
by Valentan et al. [19] and is a straightforward assessment of
part complexity which depends entirely on the number of facets
(f), the surface area (a) and the volume (v) of the used polygonal
model of part geometry. Its method of calculation is presented in
Table 1.

Finally, the mean connectivity value (MCV), proposed
by Psarra and Grajewski [5], assesses the complexity of two-
dimensional polygons (rather than three dimensional parts) by
considering the ‘connectivity’ between areas on the perimeter.
Additional supporting measures were introduced to evaluate the
variation of connectivity amongst the perimeter locations and the
fluctuation rate of connectivity values, which are the v-value and
h-value respectively. 6 This measure is the basis for the proposed
part complexity method in this paper, which extends the MCV
and the v-value to the three-dimensional context leaving the h-
value measure for future work. The MCV and the two part com-
plexity methods previously mentioned are summarised in Table
1.



Measure Formulation Range Interpretation

Spies
Ratio[18]

vpart

vprimitive

(0,1] Volume of the part
divided by the vol-
ume of the primitive

Valentan et
al.[19] f ∗a

v

(0,∞) Number of facets
times the surface
area divided by the
volume

Psarra and
Grajewski
[5]

n
∑

i=1

VCi
n

(0,1] Mean of connectiv-
ity values of the n
voxels on the sur-
face

Table 1: Summary of the three part complexity in literature.
Proposed Metrics

This section proposes new metrics for measuring the char-
acteristics of given 3D parts: a 3D version of MCV and v-
value as well as a practical approach to calculating SR. The
MCV measure, mentioned in the previous section, assesses two-
dimensional geometries by evaluating the connectivity between
areas on their perimeters [5]. This research extends [5] to a 3D
situation, considers the way in which the voxelisation can affect
the areas which are connected by the algorithm and the effects
of the granularity of the voxelisation upon the value of the met-
ric. Although not the main focus of this paper, an optimization
method for calculating the minimum bounding box of a part is
also proposed, to support the calculation of the Spies Ratio [18].

Calculation of MCV and v-value
The first step of the MCV calculation consists of the ras-

terization of the geometric model of the part into a 3D voxel
grid with an appropriate resolution from the viewpoint of perfor-
mance and execution time, a process called voxelization [20]. In
contrast to the original approach [5], which calculates the con-
nectivity between areas on the perimeter, this technique calcu-
lates the connectivity between voxels on the surface.

Figure 1. An example from the Baumers et al. [9] rasterized in resolutions

of 20, 100 and 200 voxels.

Following the discretization process, the connectivity value
(CV) of each voxel belonging to the surface of the part is calcu-
lated - which is the percentage of other surface voxels that can
be connected to the former one through a Bresenham’s line [21],
such that all voxels on that line belong to the interior of the shape.

The interpretation is that voxels with low CV have poor intercon-
nectivity to other portions of the part.

The MCV of a part is then formed by calculating the mean
of the CV values of all the surface voxels. For fully convex parts,
the MCV is equal to 1. Entrant features will reduce the MCV
value, so the more concave the shape, the closer MCV will be to
0.

The resolution of the voxelisation has a large effect upon
performance, in terms of both runtime and accuracy. To visu-
alise the differences, Figure 1 illustrates an example of part used
by Baumers et al. [9] voxelized using a grid of 20, 100 and 200
parts, respectively. It was found that low resolutions lead to fast
but imprecise MCV calculations, as perhaps expected from the
visualisation, however high resolutions result in computation-
ally expensive processing. For example, tests conducted on a
3.40GHz Intel PC with 8.00 GB RAM showed that resolutions
above 100 voxels result in MCV calculations which take over
five minutes per part.

The calculations of the CV and MCV metrics for voxel pairs
and parts, respectively, allow the extension of the auxiliary metric
v-value, which describes the variation of connectivity through the
surface of the part. It is obtained by taking the standard deviation
of the CV values of all of the voxels on the surface of the part.

Calculation of Spies Ratio

Algorithm 1: Pseudo-code of the Steepest Ascent Hill
Climbing with Random Restart.

1 currentSolution = randomSolution();
2 bestSolution = currentSolution;
3 while not termination criterion do
4 currentValue = evaluate(currentSolution);
5 bestNeighbour = NULL;
6 for each solution s in the neighbourhood of

(currentSolution) do
7 if evaluate(s)> evaluate(bestNeighbour) then
8 bestNeighbour = s;
9 end

10 end
11 if evaluate(bestNeighbour)<=

evaluate(currentSolution) then
12 if evaluate(currentSolution)>

evaluate(bestSolution) then
13 bestSolution = currentSolution;
14 end
15 currentSolution = randomSolution();
16 end
17 else
18 currentSolution = bestNeighbour;
19 end
20 end
21 return bestSolution;

Some non-trivial characteristics of a part, such as the vol-
ume of the minimum bounding box (MBB), the maximum and
minimum dimension in any of the axis, the projected area on
the building platform and the volume of supporting structures,
depend upon its orientation. This paper presents a practical ap-
proach to determining an orientation for calculating the Spies
Ratio (SR) [18], using the volume of MBB optimized by a lo-
cal search algorithm.

This study uses the Steepest Ascending Hill Climbing with



Random Restart (SAHC) [22]. This is a local search metaheuris-
tic that starts from a random solution, determines a neighbour-
hood around the solution (the set of solutions which can be
reached with a single change) and iteratively changes the cur-
rent solution to the best one in its current neighbourhood. Each
solution in the SAHC implementation is represented by an array
containing the rotation on x, y and z-axis. The neighbourhood
of a solution corresponds to a small variation of the angles in all
of the axes. The SAHC which is used is presented in Algorithm
1. The algorithm terminates after exceeding a certain number of
tested solutions.

Results and discussion
The proposed metrics were evaluated on a collection of 3D

datasets. The datasets which were used are discussed below, fol-
lowed by an analyses of the results.

Experimental Design
The following datasets, which have all been used in previ-

ous 3D printing publications and have been named according to
the publication which they appeared in, were evaluated: I97 from
Ikonen et al. [7]; S05 from Stoyan et al.[23]; C06 from Canellidis
et al. [11]; G08 from Gogate and Pande [8]; B13 from Baumers
et al. [9]; and W14 from Wu et al. [10]. The parts are shown in
the Figure 2. The calculated values of the MCV, the v-value, the
Spies Ratio [18], the metric proposed by Valentan et al. [19], the
volume and dimensions of the minimum bounding box achieved
by the SAHC, the number of facets, the surface area and volume
of the parts are all shown in Table 3 in the Appendix. The SAHC
which was used in these experiments was terminated after it had
visited 10,000 solutions, returning the best solution found so far
at that time.

Results
The results allowed for an improved understanding of the

correlations between different part complexity metrics. For ex-
ample, Figures 3(a) and 3(b) illustrate the relation between MCV
and v-value of a simple and complex part. The simple convex
part can be observed to have a high MCV and low v-value, while
the second part has low MCV and comparatively high v-value.
The other two pairs of figures (Figure 3(c) and 3(d), Figure 3(e)
and 3(e)) show parts with the same MCV and different v-values.
The part in Figure 3(c) has a lower v-value than the part in Fig-
ure 3(d), which means a smaller variation of connectivity over
the surface of the part and, consequently, a perception of lower
complexity. The same situation occurs for the parts shown in Fig-
ures 3(e) and 3(f), illustrating how the MCV and v-value metrics
can cooperate to indicate a higher degree of part complexity.

The second observation from the data in Table 3 is with re-
gard to the relationship between the MCV, the v-value, the ad-
ditional part complexity measurement techniques and the basic
characteristics of parts. The correlations between every pair of
features can be seen in Figure 4. Positive correlations are shown
as grey circles while negative correlations are represented by
dashed circles. The circles have a radius proportional to the ab-
solute value of the correlation.

It is possible to observe that the MCV measure presents a
low negative correlation to the metric used in Valentan et al. [19]
and a low negative correlation to the various more basic met-
rics, which present moderate to high positive correlations to each
other. The correlation values between the MCV and all the other
features are reported in the Table 2. The lack of a high (positive
or negative) correlation with another metric, with the possible ex-

Figure 2. Datasets I97[7], S05[23], C06[11], G08[8], B13[9] and W14[10].

ception of the Spies Ratio, indicates that the usage of the MCV
with this set of features does not result in data redundancy.

Despite the comparatively high correlation between the SR
and the MCV, the MCV appears to be more successful in express-
ing non-convexity. For illustrative purposes, Figure 5 shows two
pair of parts with similar values of SR but different MCV values.



(a) I97-1-1; MCV =
1.00; V-Value = 0.00

(b) C06-10. MCV = 0.22;
V-Value = 0.20

(c) I97-c2-4. MCV =
0.32; V-Value = 0.08

(d) C06-11. MCV = 0.32; V-Value =
0.23

(e) C06-13. MCV = 0.32;
V-value = 0.09

(f) C06-14. MCV = 0.32; V-
value = 0.20

Figure 3. Comparison between a part with high MCV and low v-value

to another with low MCV and comparatively high v-value; and comparisons

between parts sharing the same values of MCV but different v-values.

Figure 4. Correlations between every pair of features.

The parts in Figures 5(a) and 5(b) have a relatively low ratio be-
tween the volume and the minimum bounding box but the low
mean of connectivity on the surface and shape convexity is bet-
ter captured by the MCV, which is 1 for the convex part. The

Feature Correlation
Spies’ Ratio 0.75

Number of facets -0.25
Valentan -0.26

Volume of the MBB -0.27
Area of surface -0.38

Volume of the part -0.41
V-value -0.42

Table 2: The correlations between the MCV and the other fea-
tures of parts.

same applies to the second pair of parts, shown in Figures 5(c)
and 5(d).

(a) S05-2. SR = 0.17;
MCV = 1.00

(b) C06-2. SR = 0.17;
MCV = 0.43

(c) G08-3. SR
= 0.26; MCV =
1.00

(d) B13-4. SR = 0.25; MCV =
0.44

Figure 5. Comparison between parts with the same Spies Ratio but differ-

ent MCV values.

Conclusions and future work
This paper presented the Mean Connectivity Value (MCV),

a part complexity measure which was originally used for 2-
dimensional shapes and has now been extended to assess three-
dimensional geometries. It argues that the extended measure is
more successful in detecting concavities and complexities in ir-
regular parts than some previous measurement methods in the
literature. A practical approach to detecting the Spies Ratio [18]
was also presented.

These results show that the MCV and the extended v-value
work well in capturing the perception of higher complexity and
irregularity. Additionally, the results indicate that the combined
usage of the MCV along with existing metrics does not result
in data redundancy. This, therefore, provides new information
which can be of potential advantage to heuristic and hyper-
heuristic based packing methods that can potentially utilise in-
formation about the parts and state to improve the packing deci-
sions. It is expected that such improvements would further en-
hance the efficiency and cost performance of 3D Printing tech-
nologies.

Future work will consider the development of packing ap-
proaches which will intelligently use these metrics, with the aim
of improving the decision making during the packing. Other fu-



ture work will consider the extension and interpretation of the h-
value auxiliary metric which was presented for the 2-dimensional
context in [19].
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E. Özcan, and R. Qu, “Hyper-heuristics: A survey of the state of the
art,” Journal of the Operational Research Society, vol. 64, no. 12,
pp. 1695–1724, 2013.

[14] L. Kotthoff, “Algorithm selection for combinatorial search prob-
lems: A survey,” CoRR, vol. abs/1210.7959, 2012.
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Appendix

Part MCV V-value SR Valentan Vol. MBB Dim. MBB Facets Surface Volume

I97-1-1 1.00 0.00 1.00 48.00 4.00 1.00x2.00x2.00 12 16.00 4.00
I97-2-1 1.00 0.00 1.00 172.00 0.18 2.00x0.30x0.30 12 2.58 0.18
I97-2-2 0.75 0.10 0.56 148.35 5.19 1.20x1.73x2.50 24 17.81 2.88
I97-2-3 0.69 0.18 0.38 405.04 0.77 1.46x1.00x0.53 28 4.28 0.30
I97-2-4 0.36 0.08 0.39 489.01 5.73 2.00x1.86x1.54 52 20.88 2.22
I97-2-5 0.94 0.15 0.52 366.56 0.31 0.56x0.20x2.81 20 2.96 0.16
I97-2-6 0.74 0.15 0.42 411.10 0.58 0.45x0.51x2.50 20 5.00 0.24
I97-2-7 0.28 0.06 0.12 1061.21 10.50 1.00x3.00x3.50 48 27.71 1.25
S05-1 1.00 0.00 0.73 14.93 240.00 5.00x6.00x8.00 14 187.68 176.00
S05-2 1.00 0.01 0.17 10.33 429.63 2.64x9.83x16.55 4 192.88 74.67
S05-3 1.00 0.00 0.83 14.55 144.00 3.00x4.00x12.00 10 174.59 120.00
S05-4 1.00 0.00 0.65 21.83 192.00 3.00x4.00x16.00 16 170.11 124.67
S05-5 1.00 0.00 0.42 23.44 320.00 10.00x8.00x4.00 18 173.59 133.33
S05-6 1.00 0.00 0.50 10.42 294.00 6.00x7.00x7.00 8 191.40 147.00
S05-7 0.86 0.16 0.30 23.18 513.71 9.38x9.00x6.08 16 220.92 152.50
C06-1 0.19 0.08 0.14 18269.28 202730.78 35.50x46.96x121.60 17718 29440.74 28552.36
C06-2 0.43 0.11 0.17 10431.58 118113.17 44.84x127.62x20.64 10394 20624.27 20549.98
C06-3 0.43 0.11 0.17 10407.18 117966.54 127.46x44.84x20.64 10370 20624.30 20550.63
C06-4 0.56 0.11 0.02 297226.88 1945215.98 94.16x94.16x219.40 75432 131365.20 33338.64
C06-5 0.15 0.08 0.09 15633.79 131076.30 97.98x48.00x27.87 12498 14709.57 11759.15
C06-6 0.18 0.06 0.07 13990.58 27808.22 65.44x17.71x24.00 6552 4427.49 2073.46
C06-7 0.46 0.10 0.37 1733.93 1474.44 10.19x14.20x10.19 1420 659.05 539.73
C06-8 0.20 0.08 0.08 10245.34 345621.17 61.67x91.28x61.40 9698 29844.34 28249.97
C06-9 0.38 0.12 0.10 31920.49 666950.26 104.17x108.56x58.98 100948 20355.35 64373.44
C06-10 0.22 0.20 0.07 148936.88 82525.65 70.60x70.62x16.55 50910 16474.17 5631.24
C06-11 0.36 0.23 0.19 8323.79 486592.01 96.97x213.54x23.50 14353 52233.99 90068.93
C06-12 0.22 0.11 0.08 32060.56 640822.91 72.00x180.42x49.33 30004 57384.79 53703.78
C06-13 0.31 0.09 0.23 799.04 9953.23 30.00x18.48x17.95 620 2958.71 2295.75
C06-14 0.31 0.20 0.16 223892.84 490003.69 117.99x118.00x35.19 447578 40348.61 80659.79
G08-1 1.00 0.00 0.75 2454.55 27.91 2.00x1.99x7.00 1088 47.05 20.85
G08-2 0.66 0.16 0.28 2101.98 27.92 2.00x1.99x7.00 524 31.36 7.82
G08-3 1.00 0.00 0.26 866.84 27.62 7.06x1.98x1.98 250 25.32 7.30
G08-4 1.00 0.00 0.30 286.61 55.86 3.58x3.58x4.36 118 40.62 16.72
G08-5 1.00 0.00 1.00 72.00 1.00 1.00x1.00x1.00 12 6.00 1.00
G08-6 1.00 0.00 0.78 760.72 27.92 2.00x1.99x7.00 332 50.20 21.91
G08-7 1.00 0.00 0.78 596.59 19.94 2.00x1.99x5.00 248 37.65 15.65
G08-8 1.00 0.00 0.52 5215.85 26.79 3.00x2.99x2.99 2600 28.19 14.05
G08-9 1.00 0.00 0.50 70.63 1.00 1.00x1.00x1.00 8 4.41 0.50
B13-1 0.45 0.17 0.19 3806.47 504085.52 127.10x76.18x52.06 12712 28939.36 96645.28
B13-2 0.33 0.15 0.54 7768.05 30971.08 53.34x38.10x15.24 16000 8056.92 16594.99
B13-3 0.35 0.20 0.23 33761.81 7565.57 20.57x32.91x11.18 26892 2216.72 1765.66
B13-4 0.44 0.18 0.25 60785.56 81645.58 54.00x28.00x54.00 107806 11625.39 20618.17
B13-5 0.41 0.09 0.44 57649.74 3015.40 30.76x9.90x9.90 59294 1277.93 1314.38
W14-1 0.46 0.13 0.18 48919.81 11064.83 19.20x19.20x30.00 33520 2845.49 1949.74
W14-2 0.81 0.13 0.49 8162.00 13647.05 24.49x30.00x18.57 22776 2374.04 6624.74
W14-3 0.78 0.15 0.94 861.41 27000.00 30.00x30.00x30.00 3555 6148.68 25375.45
W14-4 0.91 0.15 0.41 4642.77 2876.30 30.00x7.99x12.00 7350 753.48 1192.83
W14-5 0.76 0.11 0.37 332.62 18124.40 26.23x26.37x26.20 706 3188.20 6767.17
W14-6 0.70 0.15 0.38 3582.17 17636.75 30.08x28.21x20.78 10960 2183.87 6681.77
W14-7 0.71 0.11 0.76 1255.94 26994.03 30.00x30.00x30.00 4730 5420.57 20414.48
W14-8 0.86 0.12 0.64 76.37 2814.30 12.51x30.00x7.50 124 1116.93 1813.62
W14-9 0.20 0.11 0.15 833.71 14272.39 24.91x22.73x25.21 892 1979.49 2117.90

W14-10 0.87 0.13 0.66 74.43 4724.65 21.00x30.00x7.50 144 1612.59 3119.68
W14-11 0.61 0.21 0.45 1973.88 5685.25 19.74x9.60x30.00 3172 1584.00 2545.48
W14-12 0.83 0.18 0.40 5474.86 3016.10 11.69x30.00x8.60 6966 951.77 1211.00

Table 3: Features of the parts from datasets I97[7], S05[23], C06[11], G08[8], B13[9] and W14[10].


