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Abstract. Hyperheuristics are single candidate solution based and simple to 
maintain mechanisms used in optimization. At each iteration, as a higher level 
of abstraction, a hyperheuristic chooses and applies one of the heuristics to a 
candidate solution. In this study, the performance contribution of hill climbing 
operators along with the mutational heuristics are analyzed in depth in four 
different hyperheuristic frameworks. Four different hill climbing operators and 
three mutational operators are used during the experiments. Various subsets of 
the heuristics are evaluated on fourteen well-known benchmark functions. 

1   Introduction 

The term hyperheuristics refers to a recent approach in search methodologies [2, 4, 5, 
7, 17, 23]. The hyperheuristic concept involves a higher level of abstraction than 
metaheuristic methods. This term describes an iterative search approach which con-
trols a set of heuristics. The method keeps track of the non problem-specific data such 
as the fitness change, the execution time and applies a heuristic at each iteration. 
Studies involving a number of heuristic selection and acceptance mechanism combi-
nations are reported in the literature [2, 3, 4, 7, 17]. A comprehensive study on the 
performance of different heuristic selection and move acceptance strategies is re-
ported in [3].  

In this paper, the synergy of various heuristics and their contribution to the per-
formance is evaluated on a set of benchmark functions. Furthermore, four different 
hyperheuristic frameworks that utilize a set of hill climbers as heuristics in addition to 
a set of mutational heuristics, are defined and assessed as well. The new frameworks 
are derived from the commonly used framework. The intention of this study is to 
answer the following questions: What type of heuristics is useful to be used in hyper-
heuristics? Do the hill climbers improve the performance if used within hyperheuris-
tics? Can we use only hill climbers as heuristics? At which stage(s) and how can hill 
climbers be used to improve the performance? Is it possible to identify the problem 
domains where a specific framework might perform better as compared to the others?  



2   Preliminaries 

In general, exhaustive methods are impractical for solving real world problems, 
whereas meta-heuristics provide better means by intelligently seeking optimal solu-
tions within a search space. For many practical problems meta-heuristics provide 
state-of-the-art solutions. Their success is due to the problem-specific implementa-
tions, which utilize knowledge about the problem domain and properties. The de-
ployment of meta-heuristics requires expert level knowledge and experience on the 
problem tackled. Furthermore, fine tuning might be required [4, 23]. Hyperheuristics 
are general search methods that can be applied to any optimization problem easily [7]. 
Hyperheuristics describe a set of strategies that are used to choose a heuristic from a 
set of low level heuristics as illustrated in Fig. 1. There are very simple strategies that 
can be coded easily. Yet, a meta-heuristic can be used as a heuristic underneath a 
hyperheuristic as well as a hyperheuristic itself within this framework.  
 
 
 
 
 
 
 

Fig. 1. Traditional hyperheuristic framework 

Hyperheuristics operate on the search space of heuristics instead of candidate solu-
tions. Non problem-specific data like heuristic execution time and changes in the 
fitness function can be used by hyperheuristics to select and apply a heuristic [2]. 
Although the methods of this type are reported in the literature before, the term hy-
perheuristic is first proposed by Cowling et al. [7] to name this approach. The early 
studies date back to Fisher and Thompson. They used a hyperheuristic based on 
probabilistic weighting of heuristics to solve the job-shop scheduling problem [12]. 
Kitano [19] used a genetic algorithm as a hyperheuristic for designing neural network 
topology. The hyperheuristic approach is utilized by Gratch et al. [15] to schedule 
earth-orbiting satellites and ground stations communications. Fang et al. [11] utilized 
this approach using the genetic algorithm to tackle the open-shop problem. Hart and 
Ross [17] tackled the dynamic job-shop problem with a similar approach. Hyperheu-
ristics are applied to university exam timetabling problems by Terashima-Marin et al. 
[25].  

A single iteration of a hyperheuristic method can be decomposed in two stages, 
heuristic selection and movement acceptance. In the previous studies, hyperheuristics 
might be named without discriminating between heuristic selection and acceptance 
criterion. Examples of heuristic selection methods are Simple, Greedy, Choice Func-
tion [7], Tabu-Search [5], and Case Based Heuristic Selection Methods [6]. Simple 
Hyperheuristics utilize randomized processes to select heuristics. Greedy Hyperheu-
ristic chooses the best performing heuristic at each iteration. Choice Function Hyper-
heuristic keeps track of previous performance of each heuristic and makes a choice 
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between them by evaluating their performance via a choice function. Two types of 
deterministic acceptance criteria are used in [5, 7]: All Moves Accepted (AM) and 
Only Improving Moves Accepted (OI). Non-deterministic acceptance criteria can be 
found in [2, 17]. Monte Carlo Hyperheuristic accepts all of the improving moves and 
the non-improving moves can be accepted based on a probabilistic framework [2]. 
Great Deluge Hyperheuristic utilizes the Great Deluge Algorithm as the acceptance 
criterion [17]. Monte Carlo and Great Deluge Hyperheuristics both use Simple Ran-
dom as heuristic selection method in [2, 17]. An experimental study on the perform-
ance of various heuristic selection and acceptance criterion combinations yielded that 
the combination of Choice Function, Improving and Equal Moves Accepted (IE) 
strategy and bit modifying heuristics performed the best on benchmark functions [3]. 
Hence, during the experiments this combination is used. 

2.1    Benchmark Functions  

A set of benchmark functions can be used to represent a broad range of optimization 
problems with various fitness landscapes. For the performance evaluation of different 
heuristic sets within different hyperheuristic frameworks, fourteen different bench-
mark functions are utilized. Characteristics of each benchmark function and the 
sources where they are obtained are summarized in Table 1. 

Table 1. Characteristics of benchmark functions: lb indicates lower bound, ub upper bound, 
opt optimum point, dim number of dimensions, bits number of bits per dimension, Conti. conti-
nuity, Cont. continuous, Disc. discrete, and Multi. multimodal 

Label         lb        ub opt  dim  bits Conti. Modality Source 
F1 -5.12 5.12 0 10 30 Cont. Unimodal [8] 
F2 -2.048 2.048 0 10 30 Cont. Unimodal [8] 
F3 -5.12 5.12 0 10 30 Cont. Unimodal [8] 
F4 -1.28 1.28 1 10 30 Cont. Multi. [8] 
F5 -65.536 65.536 0 2 30 Cont. Multi. [8] 
F6 -5.12 5.12 0 10 30 Cont. Multi. [15] 
F7 -500 500 0 10 30 Cont. Multi. [16] 
F8 -600 600 0 10 30 Cont. Multi. [12] 
F9 -32.768 32.768 0 10 30 Cont. Multi. [1] 
F10 -100 100 -1 10 30 Cont. Unimodal [1] 
F11 -65.536 65.536 0 10 30 Cont. Unimodal [8] 
F12 - - 0 8 8 Disc. - [14] 
F13 - - 0 30 3 Disc. - [10] 
F14 - - 0 6 4 Disc. - [18] 

2.2 Heuristics for Benchmark Function Optimization 

Heuristics are classified as mutational heuristics and hill climbers in this paper. Hill 
climbers generate a better output candidate solution as a local search component, 
after they are applied to an input candidate solution. Mutational heuristics do not 
necessarily generate a better output candidate solution. 4 hill climbing algorithms and 



3 mutational heuristics are implemented as heuristics to be used for solving binary 
encoded problems.  

Hill climbing algorithms are as follows: Davis’ Bit Hill Climbing Algorithm 
(DBHC) [8], Next Descent Hill Climbing Algorithm (NDHC) Random Bit Hill 
Climbing Algorithm (RBHC) and Steepest Descent Hill Climbing Algorithm (SDHC) 
[19]. All hill climbers make a set of modifications on a given candidate solution and 
each modification is accepted if there is an improvement in the generated solution. 
Assuming that a candidate solution is represented by a binary string, in each NDHC 
step a bit is inverted. The whole string is scanned bit by bit starting from the first until 
to the last. A DBHC differs from NDHC due to the scanning order. DBHC predeter-
mines a random sequence to apply a hill climbing step and scans through the candi-
date solution according to it. During each RBHC step a bit is selected randomly and 
inverted for a number of iterations. SDHC checks each single bit inversion variant of 
the input candidate and accepts the one with the best improvement.  

Mutational heuristics are Swap Dimension (SWPD), Dimensional Mutation 
(DIMM) and Hyper-mutation (HYPM). Swap Dimension heuristic randomly chooses 
two different dimensions in a candidate solution and swaps them. Dimensional Muta-
tion heuristic randomly chooses a dimension and inverts all bits in this dimension 
with a probability of 0.5. Hyper-mutation randomly inverts each bit in the candidate 
solution with a probability of 0.5. 

2.3 Hyperheuristic Frameworks 

Recent studies presented in [21] shows that in memetic algorithms, using a single 
efficient hill climber instead of using a set of hill climbers where the operator selec-
tion is carried out self adaptively, might yield better solutions. As a result, different 
frameworks based on the general hyperheuristic approach can be defined in order to 
make better use of hill climbers as heuristics. In this study, four different frameworks 
are used; FA, FB, FC and FD, as summarized in Fig. 2.  

FA is the traditional framework and the others are the newly proposed ones. Hill 
climbers are used together with the mutational hill climbers. In some situations, after 
applying a mutational heuristic a hill climbing might be desirable. For example, if IE 
is used in the hyperheuristic, then most of the mutational heuristic moves will be 
declined. To avoid this phenomenon and to make better use of diversity provided by 
mutational heuristics, a hill climber can be utilized additionally. FB represents such a 
framework. If the hyperheuristic chooses a mutational heuristic, then a predefined 
single hill climber is applied to the candidate solution. Notice that FB still uses all 
heuristics together. In FC, hill climbers are separated from the mutational heuristics. 
Hyperheuristic chooses only an appropriate mutational heuristic. Application of a 
selected heuristic to a candidate solution is followed by a hill climbing. A single hill 
climber is predefined by the user. FD is a more general form of FC. Two hyperheuris-
tic modules are used; one for selecting an appropriate mutational heuristic and one for 
selecting an appropriate hill climber. FD can be implemented in two ways. The accep-
tance mechanism of the hyperheuristic for hill climbers can get a feedback from the 



intermediate candidate solution (Fig. 2- FD, marked solid lines) or from the initial 
candidate solution (Fig. 2-FD, dashed line). 
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Fig. 2. Different hyperheuristic frameworks combining mutational heuristics and hill climbers. 
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3 Experiments 

The experiments are performed on Pentium IV, 2 GHz Linux machines with 256 Mb 
memory. Fifty runs are performed for each heuristic set and problem instance pair. 
For each problem instance, a set of fifty random initial candidate solutions are cre-
ated. Each run in an experiment is performed starting from the same initial candidate 
solution. The experiments are allowed to run for 600 CPU seconds. If the global op-
timum of the objective function is found before the time limit is exhausted than the 
experiment is terminated. 

3.1 Experimental Settings  

The candidate solutions are encoded as bit strings. The continuous functions in 
benchmark set are encoded in gray code. The discrete functions have their own direct 
encoding. Linear combinations of deceptive function variables are created to make 
them multidimensional. F5 has default dimension of 2. The default number of bits per 
dimension parameter is set to 8, 3, and 4 for the F12, F13, and F14 respectively. The 
rest of them have 10 dimensions and 30 bits are used to encode a variable (Table 1).  

Hyperheuristic pattern is defined as the set of heuristics and the framework util-
ized in a hyperheuristic algorithm. The experimental set consists of eleven different 
hyperheuristic patterns; H1-H11 (Table 2). The frameworks FA and FB are tested com-
bining hill climbers (HCs) with each mutational heuristic to observe the contribution 
of each one. If just hill climbers are used without having any mutational heuristics in 
the system, then both frameworks FB and FD reduce to FA and FC becomes local 
search. Hyperheuristic patterns are tested on 14 different benchmark functions. 
Choice Function and IE pair is used as a hyperheuristic during the experiments, ex-
cept for H11. This pair is used on hill climbers, while Simple Random and AM pair is 
used on mutational heuristics. The single hill climber within the frameworks FB and 
FC is chosen as DBHC during the experiments. 

3.2 Experimental Results 

The runs, where the global optimum is found before time limit is exceeded, are con-
sidered to be successful. Success rate, the ratio of successful runs to all runs, is used 
as a performance criterion. There exists at least one hyperheuristic pattern that obtains 
an optimal solution during the runs for each benchmark function, except F4, which 
represents a search space with noise.  

The average number of evaluations of the hyperheuristic patterns achieving full 
success during all runs on each benchmark function is depicted in Fig. 3. The tradi-
tional framework FA with hill climbers performed poorly on most of the benchmark 
functions. There is always a better framework than FA for all cases, except for F1. 
Even for F1, the performance of FA is not significantly better than the rest. The 
framework FB with all hill climbers and SWPD heuristic performed well on the 
benchmark functions F2, F9, and F11. These functions carry epistasis between di-



mensions. The experiments with FA, FB and each mutational heuristics showed that in 
some cases a good choice of mutational heuristics might yield a better performance. 
For example, DIMM provided a significantly better performance compared to the rest 
of the mutational heuristics in FA and FB for F6 and F11. Furthermore, in some cases, 
the framework might generate a synergy between operators providing an improved 
performance. For example, FB performed significantly better than FA when all hill 
climbers are used and SWPD in F2 and F8. 

Table 2. Heuristic set and the framework used in each hyperheuristic pattern; H1-H11, where + 
and * indicate that the corresponding heuristic is controlled by the same hyperheuristic and –  
points out the heuristic that is used as the single hill climber within the related framework 

Sets: H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 
NDHC + + + + + + + + +  + 
DBHC + + + + +/– +/– +/– +/– + – + 
RBHC + + + + + + + + +  + 
SDHC + + + + + + + + +  + 
SWPD  +   +   + + + * 
DIMM   +   +  + + + * 
HYPM    +   + + + + * 

Framework  FA  FA FA FA  FB  FB FB FB FA FC FD 

 
The framework FC with all mutational heuristics and DBHC hill climber performed 

well on F3, F6, F7, and F10 which are continuous benchmark functions either unimo-
dal or multimodal. Furthermore, FC yielded a significantly better performance in 
solving discrete deceptive problems as compared to the rest. FD was the only frame-
work generating full success in all the runs for F5. This framework also performed 
well on F8. Both functions represent continuous and highly multimodal search 
spaces.  
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 Fig. 3. Average number of fitness evaluations and their standard deviations for each hyperheu-

ristic pattern having full success in all the runs. 



4   Conclusion  

The traditional hyperheuristics framework is extended to embed hill climbers as heu-
ristics in various ways. Three different new frameworks are proposed and experi-
mented on a set of benchmark functions, together with the traditional framework.  
Additionally, in order to observe the effects of mutational heuristics combined with 
hill climbers, an extra set of experiments is arranged. 

The empirical results indicate that two of the newly proposed frameworks FB and 
FC have a better average performance than the traditional one. The third framework 
proposed turns out to be significantly successful for solving two highly multimodal 
benchmark functions compared to the rest. Furthermore, a hyperheuristic framework 
does not perform well, if it contains only hill climbers as heuristics. Obviously, most 
of the problems require utilization of a mutational heuristic in order not to get stuck at 
local optima. It has been observed that the choice of heuristics, whether it is a hill 
climber or a mutational heuristic determines the performance along with the choice of 
the framework. Exploitation and exploration capability of a hyperheuristic algorithm 
is determined by the heuristics used within. Mutational heuristics and hill climbers, 
combined underneath a decent framework might generate a synergy, yielding a better 
performance.  

It seems that the traditional perturbation approaches are appropriate to be used as 
mutational heuristics. For example, random perturbation of a locus in a candidate 
solution, similar to mutation in evolutionary algorithms seems to perform well. Di-
mensional or content swapping operators can be helpful. Even, a hypermutation like 
heuristic, generating a random candidate solution might become handy, especially, 
whenever a hill climber is invoked afterwards. In our experiments, SWPD was useful 
in the benchmark problems with interdimensional epistasis, while DIMM and HYPM 
were very useful in multimodal benchmark functions to escape from the local optima. 
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