Steady State Memetic Algorithm for Partial
Shape Matching

Ender Ozcan and Chilukuri K. Mohan
eozcan/mohan@top.cis.syr.edu

2-120 Center for Science and Technology
Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, NY 13244-4100, U.S.A.

Abstract. Shape matching techniques are important in machine intel-
ligence, especially in applications such as robotics. Currently, there are
three major approaches to shape recognition: statistical, syntactic and
neural approaches. This paper presents a fourth approach: evolutionary
algorithms. A steady state memetic algorithm is shown to be successful
in matching shapes even when they are partially obscured, and even in
the presence of noise in the input image.

1 Introduction

Many intelligent applications, such as VLSI design and part inspection, use shape
matching algorithms to identify the model shapes whose instances are present
in an nput shape . This task is computationally expensive when objects in
the input image overlap, touch, or occlude one another. Existing approaches to
solve the shape recognition problem ([3, 1, 4, 7, 8, 18, 17]) do not perform well
in such situations. We show that appropriate evolutionary algorithms perform
extraordinarily well for such problems.

In related work, Bala and Wechsler [2] apply genetic algorithms (GAs) to
develop morphological operators for shape classification, not directly for shape
matching. Di Tanni [6] uses genetic algorithms (GAs) for matching shapes but
the results obtained were not encouraging, possibly because of using raw pixel
arrays for the representation of shapes rather than image features.

In our earlier work, we obtained preliminary results on a small set of shapes,
showing that GAs can be used for shape matching[11], and that they perform
better than than simulated annealing[12]. This paper shows that even better
results are obtained using a steady state algorithm: we present results for a
large set of shapes, and with noisy perturbation of input shapes. Our algorithm
gave robust matching results for the test shapes, providing translation, rotation
and size independence. The new algorithm is introduced in Section 2. Section 3
describes experimental results, and the conclusions are presented in Section 4.



2 Steady State Memetic Algorithm for Shape Matching

2.1 Memetic Algorithms

Evolutionary algorithms are population-based search procedures drawing inspi-
ration from the biological processes of genetics and evolution. Many researchers,
such as Moscato [9] and Radcliffe et al. [13] have pointed out the usefulness of
hill climbing and local search operators in evolutionary algorithms. Our research
applies such a Memetic Algorithm (MA) that invokes hill climbing after gen-
erating offspring using evolutionary operators. This approach has already been
applied successfully to several problems such as the Traveling Salesman Problem
(Moscato et al. [9]).

Dawkins [5] coined the word meme to refer to a “contagious” piece of in-
formation. If a person is infected by a meme, that person processes the meme;
understands it, adapts it and passes it on, whereas genes get inherited unchanged.
This adaptation process resembles local refinement, hence the use of the term
“memetic algorithm” for evolutionary algorithms that make extensive use of
local search.

2.2 Features

The results of shape matching depend significantly on the features chosen to
represent the shapes. For specialized problems such as face recognition, problem-
specific features may lead to best results. For the general problem, however, we
need a description of each shape in terms of generic features (such as line seg-
ments), that are also easy to extract using well-known algorithms. Furthermore,
the choice of the representation is crucial if size-invariant and rotation-invariant
shape recognition is desired.

To meet these requirements, we have chosen attributed strings[14, 15] to rep-
resent shapes. Each shape is considered to be a polygon, defined by a string
of features (z1,z3a,..., 2, ..., ). Each feature z; = ({;,6;) is a set of attributes
belonging to the it line segment on shape z: The length [; of the corresponding
line segment, and the relative angle (turn angle) 6; it forms with the preced-
ing line segment z;_1. The choice of these attributes provides invariance under
translation and rotation transformations. Normalization of lengths provides a
reliable scale invariant measure (Figure 1), and the following functions are used
by our algorithm:

W) =6 lioq, 0(6;) = 6;.

w4 Fig.1. After the normalization, the
3 4.2 quadrilateral representation becomes
o ((1.33,Z),(1.05, 2),(1.67, 2%),(0.43, Z)).
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2.3 Representation

In the MA for shape matching, each individual maps each input shape feature
to one of the model shape features. Each individual is represented as a list of
lists in which each entry has two slots, one showing the matching model shape
and the other showing its corresponding feature. We use the following notation:

— Input shape I = (I1, I, ..., I, ..., In). Size of input shape |I| = n, the number
of features in 1.

— The model shapes are My, M, ..., M, ..., M5, where M; = (M; 1,..., M; ;).
Size of the jth model shape |M;| = m;.

— Each individual P = (Py, Ps, ..., Py, ..., P,) corresponds to a mapping up
from input shape features to model shape features such that Py = pp(Jx) =
M;;, where 1 <k <n, 1<;j<S and 1 <@ <m;.

The initial population is a set of randomly chosen individuals. The shape
recognition problem now reduces to multiple substring matching. The search
space is immense, since multiple partial instances of the same model shape may
be present in the input shape

2.4 TFitness

The fitness of an individual describes how well each feature of the input shape
matches with the model shape feature to which it i1s matched. Fitness also de-
pends on the degree of consistency between model features to which neighboring
shape features (I;, I;41) are mapped.

Fitness is calculated by testing the compatibility of the input shape features
and the corresponding model features to which an individual maps them. The
difference (dissimilarity) between input shape feature I and model feature fi =
pp(Iy) is measured by means of a distance function d(Ix, pp(Ix)), defined below.

de (I, pp(Ix)) + di(Ix, pp(Ix)) if pp(Ix—2) = M; j-2,
pp(Ix—1) = M; ;_1,
/ip([k) = Miyj and
pp(Ipt1) = M; j41

d(Ix, pp(Ix)) = for some 1, j
do(Ix, pp(Ix)) if up(Ik—1) = M; ;1 and
pp(Ix) = M
for some 1, j
00 otherwise.

This measure has angle and length components. The first component, from
angle measurements, is defined as follows:

de (I, pp(Ii)) = co abs(0(1) — 0(up(Ix)))

The constant cg is chosen in our experiments so that differences up to 7/18
are considered negligible. For angle information (dg) to be useful, it is necessary



for two successive input shape features to be mapped to two successive features of
the same model shape. The length component of the distance measure compares
the normalized feature lengths as follows:

di(Iy, pp(Ix)) = |(U(Ik) — Upp (Ik))) / max(l(Ix), U(pp (k)]

This measure is invoked only if four successive input shape features to be mapped
to four successive features of the same model shape. This is because normalized
length information for the kth feature is reliable only if the (k — 1)th feature’ s
length is known, and the latter information is unreliable if the (£ — 2)th input
feature 1s not matched to the corresponding feature of the same model. Also
notice that overlapping may occur at kth feature, mapping the (k + 1)th input
feature to a different model shape feature, making the length information (d;)
unreliable. For example, a rectangle and a hexagon are overlapped to form an

Fig. 2. Overlapped rectangle and a hexagon as
an input shape.

input shape in Figure 2, whose features include w,z,y and z. For the most
appropriate matching, only dg must be used to calculate the distance of features
w and y, whereas both dy and d; can be used for z. Neither dy nor d; is reliable
for z, since z and its preceding feature ¢ belong to different model shapes.

The distance between two features is compared with a threshold value. If
the distance is small, then the corresponding primitive is marked as matched.
Otherwise, the features are not considered to have matched:

1if d(Ik, up(Ix))< threshold

0 otherwise

Matched (I, pp(Ix)) = {

The fitness function penalizes the number of partially matched objects in the
input shape to which features are mapped by an individual. Fitness is calculated
using the following formula:

Fitness = —(No. of partial shapes + No. of unmatched input shape features)

2.5 Selection and Crossover

Steady State evolutionary algorithms apply one crossover or recombination step
at a time, then apply selection. One point crossover (IPTX) was used in all
experiments reported in this paper. Experiments showed that 1PTX performs
as well as two point crossover. Each application of 1PTX produced two offspring
from two parents selected randomly for mating. The best two among these four
(parents and offspring) were chosen to survive in the population. This process
was iterated until either the population converges to a relatively unchanging
state, or until computational limitations were exceeded.



2.6 Mutation

Definition: An input shape feature and a model shape feature are considered
to be Similar when the error for each of the next two successive turn angles is
less than 7/18:

11f dg (Ik+1; /Jp([k+1)) and dy (Ik+2, ﬂp([k+2))<ﬂ'/18
Similar(Iy, pp(Ix)) = for some k
0 otherwise

Definition: Similarity List is an array of lists, where the size of the array
indicates the size of the input shape and each list consists of features of the
model shapes that are similar to each feature of the input shape.

We have used a mutation operator that replaces a subsequence with a fixed
length of 3, from an individual by an equally long model shape subsequence. Each
allele is mutated with a probability of 1/n The start feature for the subsequence
is chosen randomly from the similarity list.

2.7 Hill Climbing

Hill climbing is applied, primarily to improve the mappings obtained at the
borders between feature sequences mapped to different model shapes. Each hill
climbing step attempts to improve the fitness of an individual by shifting the “in-
tersection point” (between feature sequences mapped to different model shapes)
first in one direction, then in the opposite direction, replacing the relevant com-
ponent by the most appropriate feature from the model to which neighbor-
ing shape features are mapped. For instance (Figure 3), if pp(Ix) = M;; and

Mpa1 Mpg
OR e ket Fig. 3. Hill climbing in
action.
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pup(Ig41) = Mp 4, hill climbing first attempts to change pp(Ix) to My 4—1. If this
attempt does not improve the fitness, hill climbing attempts to change pp (7x41)
to M; ;4+1. The change is not implemented if the fitness does not improve.

3 Experimental Results

The matching threshold is a nonlinear function of ¢t = max({(1x),l(ppr(Ix))),
allowing less error for high values, e.g. 0.2 for ¢ > 0.5, and higher error for lower
values, e.g. 0.9 for £ < 0.005. In our MA experiments, we used a population size
twice the number of features of the input shape. Each MA run was terminated
when the correct solution was reached, or if the number of crossovers equals
500,000. Each test was repeated 100 times for all input shapes on a Sun work-
station. 100 model shapes were used (s0 — s99), subset of which are shown in



Figure 4. The rest of the model shapes can be found in [12]. All of the input
shapes(j0—j15) were obtained by overlapping two or more model shapes (Figure
5). In the tables, “fr.” refers to the frequency of matching, i.e., how often the
correct result was obtained.
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In the experiments reported here, we utilized steady state MA with the best
mutation operator from [10]. A larger database of model shapes was used for
steady state MA experiments. In the recent experiments, even though the total
number of model features increase by a factor of 3.41, hence expanding the search
space by a factor of 3.41™, the number of states visited increases at most 50%.

Initial experiments were conducted using j0 — j10 and s0 — s39 to determine
the efficacy of various operators. Performance became poorer if hill climbing
was omitted, i.e., when a GA was used instead of MA (Table 1). The algorithm
works best if all of the three operators (crossover, mutation and hill climbing)

are used.



Table 1. Steady state MA test results using mutation and crossover (without hill
climbing): Averages (u), and standard deviations (o) are based on over 100 experiments
for each input shape in which the correct solution is found within 500,000 attempts of
CTOSSOVETS.

Shape No. of attempts Time (sec.)

label || fr. 17 o 17 o
70 0.46(|110,614.44|130,619.29(| 61.79| 72.85
71 0.96|| 34,263.77| 83,897.43| 11.24| 27.49
72 0.001{{500,000.00 0.00{|293.05| 4.13
73 0.38(|196,686.42|145,355.65(|126.07| 93.51
74 0.73|| 37,469.96| 76,595.18| 17.66| 36.49
75 0.57|| 61,420.72|109,533.77| 24.09| 43.00
76 0.83|| 70,718.06| 97,432.07(|130.24{181.15
97 0.48|| 149558.77| 154531.94(|173.90{179.90
78 0.14|| 431837.66| 169001.91|606.30{237.35
79 0.02|| 24,053.00| 8,210.00| 25.77| 8.87
710 0.30(|165,728.73|132,817.56(|242.95({195.21

Table 2 shows the results obtained by applying the GA to noisy versions
of j4 against sO — s39. Locations of 5%-25% of the input image vertices were
randomly perturbed (higher noise levels may completely alter a shape). Our
algorithm successfully found the correct (expected) matching results in almost
all runs for all input shapes at different noise levels.

Table 2. Test results for input image j4: Success rates are averages of over 100 exper-
iments, for different noise levels (fraction of features perturbed).

Noise Levels [0.05(0.10(0.15(0.20(0.25
Success Rate|1.00(1.00(1.00(0.93(1.00

Definition: Visibility ratio (v.r.) is the ratio of total number of input shape
features and the total number of features of each composing shape.

Several experiments were conducted to observe the behavior of our algorithm
as the number of occluded features increases, using input shapes shown in Figure
6. Shapes s26 and s27 are overlapped forming r0 — r6 and shapes s21, s26 and
s27 are overlapped forming r7 — r15 with different visibility ratios. The last
shapes are overlapped keys where the number of partial shapes increases with
label number; the average visibility ratio is 0.89.

Visibility ratio test results (Table 3) show that decrease in the visibility ratio
causes a decrease in the number of states visited. Meanwhile as the number of



NIV Fig. 6. Overlapped shapes r0—r19 with
) 5 5 different visibility ratios.

partial shapes forming an input shape increases, the number of states visited
increases as well. Still, MA found the correct matching result for visibility ratio
tests in all runs. Experiments were performed using all operators and input and

Table 3. Steady state MA test results while varying visibility ratio

Shape No. of Crossovers||No. of HC steps||Time (sec.)
label ||v.r.|| fr. 17 o 17 o 17 o
r0 1.00{|1.00|| 537.96| 288.96((12.60 3.11|| 1.19] 0.50
rl 0.91(|1.00|| 783.08| 566.33(|10.61 3.15|| 1.45| 0.87
r2 0.77|1.00|| 189.69| 121.64(|16.71 6.81|| 0.42| 0.24
r3 0.64(|1.00|| 175.70| 106.82(|11.69 3.55|| 0.35| 0.19
r4 0.55(|1.00|| 192.48| 207.23||10.22 2.99|| 0.33| 0.29
rd 0.43((1.00]| 136.29 93.08|| 9.34 5.28|| 0.21] 0.13
r6 0.32{(1.00 85.10 59.12|| 7.70 2.47|| 0.11] 0.07
r7 1.00{|1.00|| &81.83| 387.98(11.98 2.36|| 2.43| 0.90
r8 0.93(|1.00((1,173.69| 665.35(|10.31 2.59|| 2.88| 1.40
r9 0.83||1.00|| 400.97| 136.11||/14.64 2.97| 1.10| 0.34
r10 0.73||1.00|| 478.96| 213.73||/10.93 1.84|| 1.18| 0.47
rll 0.66(|1.00|| 378.14| 246.28(|11.50 2.22]| 0.89| 0.48
rl12 0.58(|1.00|| 480.81| 237.88|| 8.73 1.45)| 0.98| 0.42
rl13 0.49(1.00|| 238.61| 131.05{{10.40 2.54|| 0.46| 0.22
rl4 0.46(|1.00|| 255.67| 148.78|| 9.34 2.31|| 0.47| 0.24
rl5 0.39(1.00|| 243.68| 132.39|| 8.19 1.88|| 0.41| 0.20
rl6 1.00{|1.00|| 716.62| 327.07{/12.91 2.06|| 2.57| 0.92
rl7 0.81/|1.00((1,617.98| 377.26(|11.07 1.35|| 7.60| 1.55
rl18 0.89(|1.00(|4,216.15| 1,742.46|| 9.96 1.07(27.74| 9.38
r19 0.881(1.001|4,539.13| 1,903.92|| 8.29 0.74||126.94| 9.62

model shape database, demonstrating the success of memetic algorithm (Table
4). The execution times were not affected by the enlargement of database. As
results show, steady state MA found the correct matching for all input shapes
(except j2 with fr. 0.99).



Table 4. Steady state MA test results using all operators: Averages (u), and standard
deviations (o) are based on over 100 experiments for each input shape in which the
correct solution is found within 500,000 crossovers.

4

Shape No. of crossovers |[No. of HC steps|| Time (sec.)
label || fr. 17 o 17 o 17 o
70 1.00 236.82 157.69((12.68 7.03|| 0.47| 0.25
71 1.00 55.45 32.26|(16.61 7.93|| 0.09| 0.04
72 0.99(|17,974.36|65,989.43|| 7.12 2.22((29.56(106.79
73 1.00 634.21 430.21(|10.18 2.54(| 1.40| 0.80
74 1.00 192.48 207.23((10.22 2.99( 0.33] 0.29
75 1.00 129.96 112.26({14.18 4.42|| 0.27] 0.19
96 1.00 722.80 268.93(|21.34 2.99|| 3.45| 0.97
97 1.00|| 3,860.49| 3,332.53|| 8.38 4.10|| 8.27| 6.64
98 1.00 353.71 101.68((25.40 3.62|| 1.54| 0.38
79 1.00 501.71 271.52((12.00 1.95|| 1.70| 0.74
710 1.00|| 2,290.88| 3,684.49|| 8.62 1.38|| 8.86| 11.46
711 1.00|| 8,188.33| 7,998.94|| 6.55 1.13((29.47| 26.15
712 1.00{| 1,381.74| 1,699.11(|15.05 3.22|| 8.23| 6.69
713 1.00|| 2035.80 642.78((16.44 2.71({18.95| 4.77
714 1.00|| 4,346.20| 3,751.22(|12.85 2.54((37.73| 23.5
715 1.00{| 7,145.50| 3,268.92(|10.65 1.68(|73.16| 25.45
Conclusions

We have used a steady state memetic algorithm for shape matching, utilizing
attributed string representations. Outline features of shapes are represented us-
ing attributed strings. Each line segment is associated with a feature of two
attributes: length and angle. Relative lengths and angles are used for size invari-
ance. The algorithms we propose have many advantages:

They are much more computationally efficient than exhaustive search algo-
rithms.

They are space-efficient compared to neural networks, with much smaller
memory requirements.

The algorithms are fast, and explore a relatively small number of elements
of the search space.

The results obtained are better than a traditional GA without hill climbing.
Operators used by MA help avoid getting stuck in locally optimal solutions.
Steady state MA performs better than transgenerational MA, even under
noise.

Steady state MA performs better than simulated annealing.

If multiple instances of the same model shape are overlapped to form an

input shape, or if two model shapes are almost identical, MA might get stuck in



a locally optimum solution as in the case of input shape j2. Overall, experimental
results show that the memetic algorithm is successful for partial shape matching,
even with a large database of shapes.
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