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Abstract

Hyper-heuristics have emerged as automated high level search methodologies

that manage a set of low level heuristics for solving computationally hard prob-

lems. A generic selection hyper-heuristic combines heuristic selection and move

acceptance methods under an iterative single point-based search framework. At

each step, the solution in hand is modified after applying a selected heuristic and

a decision is made whether the new solution is accepted or not. In this study,

we represent the trail of a hyper-heuristic as a third order tensor. Factorization

of such a tensor reveals the latent relationships between the low level heuristics

and the hyper-heuristic itself. The proposed learning approach partitions the

set of low level heuristics into two equal subsets where heuristics in each subset

are associated with a separate move acceptance method. Then a multi-stage

hyper-heuristic is formed and while solving a given problem instance, heuris-

tics are allowed to operate only in conjunction with the associated acceptance

method at each stage. To the best of our knowledge, this is the first time tensor

analysis of the space of heuristics is used as a data science approach to improve

the performance of a hyper-heuristic in the prescribed manner. The empirical

results across six different problem domains from a benchmark indeed indicate

the success of the proposed approach.
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Preprint submitted to Journal of Information Sciences December 23, 2014



Keywords: Hyper-heuristic, Data Science, Machine Learning, Move

Acceptance, Tensor Analysis, Algorithm Selection

1. Introduction

Hyper-heuristics have emerged as effective and efficient methodologies for

solving hard computational problems. They perform search over the space

formed by a set of low level heuristics, rather than solutions directly [49]. Burke

et al. [13] defined a hyper-heuristic as a search method or learning mechanism

for selecting or generating heuristics to solve computational search problems.

Hyper-heuristics are not allowed to access problem domain specific information.

It is assumed that there is a conceptual barrier between the hyper-heuristic

level and problem domain where the low level heuristics, solution representa-

tion, etc. reside. This specific feature gives hyper-heuristics an advantage of

being more general than the existing search methods, since the same hyper-

heuristic methodology can be reused for solving problem instances even from

different domains. More on hyper-heuristics can be found in [12, 16, 49]. The

focus of this paper is on selection hyper-heuristics which, often operate under a

single point based search framework by improving an initially created solution

iteratively, exploiting the strengths of multiple low level heuristics. At each

step, a complete solution is updated forming a new solution using a selected

heuristic and this new solution is considered for use in the next step via a move

acceptance method.

There are some recent studies indicating the effectiveness and potential of

mixing multiple move acceptance methods under a selection hyper-heuristic

framework. Kheiri and Özcan [28] described a bi-stage hyper-heuristic which

allows improving and equal moves only in the first stage while a naive move

acceptance method allows worsening moves in the following stage. Özcan et

al. [47] recently combined different move acceptance methods and tested dif-

ferent group decision making strategies as a part of selection hyper-heuristics.

One of the rare theoretical studies reveal that mixing move acceptance within a
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selection hyper-heuristic framework could yield a better running time on some

benchmark functions [36]. Machine learning techniques, such as reinforcement

learning and learning classifier systems have been used as a component of se-

lection hyper-heuristics since the early ideas have emerged [23]. In this study,

we propose a multi-stage selection hyper-heuristic, hybridizing two simple move

acceptance methods, which is significantly improved by the use of a machine

learning technique, namely tensor analysis [40].

In the proposed approach, we represent the trail of a selection hyper-heuristic

as a 3rd order tensor. Tensor analysis is performed during the search process to

detect the latent relationships between the low level heuristics and the hyper-

heuristic itself. The feedback is used to partition the set of low level heuristics

into two equal subsets where heuristics in each subset are associated with a sep-

arate move acceptance method. Then a multi-stage hyper-heuristic combining a

random heuristic selection with two simple move acceptance methods is formed.

While solving a given problem instance, heuristics are allowed to operate only

in conjunction with the corresponding move acceptance method at each alter-

nating stage. This overall search process can be considered as a generalized and

a non-standard version of the iterated local search [38] approach in which the

search process switches back and forth between diversification and intensifica-

tion stages. More importantly, the heuristics (operators) used at each stage are

fixed before each run on a given problem instance via the use of tensors. To

the best of our knowledge, this is the first time tensor analysis of the space of

heuristics is used as a data science approach to improve the performance of a

selection hyper-heuristic in the prescribed manner. The empirical results across

six different problem domains from a benchmark indicate the success of the

proposed hyper-heuristic mixing different acceptance methods.

This paper is organized as follows. An overview of hyper-heuristics, together

with the description of the benchmark framework used in this paper is given

in Section 2. Section 3 includes a description of the data analysis method we

have used in our study. Section 4 discusses a detailed account of our framework

while experimental design issues as well as the results are discussed in Section
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5. Finally, conclusion is provided in Section 6.

2. Selection Hyper-heuristics

A hyper-heuristic either selects from a set of available low level heuristics

or generates new heuristics from components of existing low level heuristics

to solve a problem, leading to a distinction between selection and generation

hyper-heuristic, respectively [13]. Also, depending on the availability of feedback

from the search process, hyper-heuristics can be categorized as learning and no-

learning. Learning hyper-heuristics can be further categorized into online and

offline methodologies depending on the nature of the feedback. Online hyper-

heuristics learn while solving a problem whereas offline hyper-heuristics process

collected data gathered from training instances prior to solving the problem.

The framework proposed in this paper is a single point based search algorithm

which fits best in the online learning selection hyper-heuristic category.

A selection hyper-heuristic has two main components: heuristic selection

and move acceptance methods. While the task of the heuristic selection is to

choose a low level heuristic at each decision point, the move acceptance method

accepts or rejects the resultant solution produced after the application of the

chosen heuristic to the solution in hand. This decision requires measurement

of the quality of a given solution using an objective (evaluation, fitness, cost,

or penalty) function. Over the years, many heuristic selection and move ac-

ceptance methods have been proposed. A survey on hyper-heuristics including

their components can be found in [12, 49].

2.1. Heuristic Selection and Move Acceptance Methodologies

In this section, we describe some of the basic and well known heuristic selec-

tion approaches. [20, 21] are the earliest studies testing simple heuristic selection

methods as a selection hyper-heuristic component. One of the most basic and

preliminary approaches to select low level heuristics is the Simple Random (SR)

approach requiring no learning at all. In SR, heuristics are chosen and ap-

plied (once) at random. Alternatively, when the randomly selected heuristic
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is applied repeatedly until the point in which no improvement is achieved, the

heuristic selection mechanism is Random Gradient. Also, when all low level

heuristics are applied and the one producing the best result is chosen at each

iteration, the selection mechanism is said to be greedy. The heuristic selection

mechanisms discussed so far do not employ learning. There are also many se-

lection mechanisms which incorporate learning mechanisms. Choice Function

(CF) [20, 22, 51] is one of the learning heuristic selection mechanisms which has

been shown to perform well. This method is a score based approach in which

heuristics are adaptively ranked based on a composite score. The composite

score itself is based on few criteria such as: the individual performance profile

of the heuristic, the performance profile of the heuristic combined with other

heuristics and the time elapsed since the last call to the heuristic. The first two

components of the scoring system emphasise on the recent performance while

the last component has a diversifying effect on the search.

In [43], a Reinforcement Learning (RL) approach has been introduced for

heuristic selection. Weights are assigned to heuristics and the selection process

takes weight values into consideration to favour some heuristics to others. In

[14], the RL approach is hybridized with Tabu Search (TS) where the tabu list

of heuristics which are temporarily excluded from the search process is kept

and used. There are numerous other heuristic selection mechanisms. Interested

reader can refer to [12] for further detail.

As for the move acceptance component, currently, there are two types of

move acceptance methods: deterministic and non-deterministic [12]. The de-

terministic move acceptance methods make the same decision (as for accep-

tion/rejection of the solution provided by a heuristic) irrespective of the de-

cision point. In contrast to deterministic move acceptance, non-deterministic

acceptance strategies incorporate some level of randomness resulting in different

decisions for the same decision point. The non-deterministic move acceptance

methods almost always are parametric, utilizing parameters such as time or

current iteration.

Initial studies on selection hyper-heuristics focused on some simple move
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acceptance methods, such as Improvement Only (IO), Improvement and Equal

(IE) and Naive Acceptance (NA) [20]. The IO acceptance criteria only accepts

solutions which offer an improvement in the current objective value. The IE

method accepts all solutions which result in objective value improvement. It

also accepts solutions which do not change the current objective value. Both

IO and IE strategies are deterministic strategies. The NA strategy is a non-

deterministic approach which accepts all improving and equal solutions by de-

fault and worsening solutions with a fixed probability of α. Although there

are more elaborate move acceptance methods, for example, Monte-Carlo based

move acceptance strategy [7], Simulated Annealing [10], Late Acceptance [11],

there is strong empirical evidence that combining simple components under a

selection hyper-heuristic framework with the right low level heuristics could still

yield an improved performance. [46] shows that the performance of a selection

hyper-heuristic could vary if the set of low level heuristics change, as expected.

[29] describes the runner up approach at a high school timetabling competition,

which uses SR as heuristic selection and a move acceptance method with 3 differ-

ent threshold value settings. Moreover, there are experimental and theoretical

studies showing that mixing move acceptance can yield improved performance

[28, 36, 47]. Hence, in this study, we fix the heuristic selection method as SR and

propose an online learning method to partition the low level heuristics, predict-

ing which ones would perform well with a naive move acceptance method and

assigning the others to IE. Then we mix the move acceptance methods under

a multi-stage selection hyper-heuristic framework invoking only the associated

heuristics when chosen.

2.2. HyFlex and the First Cross-Domain Heuristic Search Challenge (CHeSC

2011)

Hyper-heuristics Flexible Framework (HyFlex) [44] is an interface to sup-

port rapid development and comparison of various hyper/meta-heuristics across

various problem domains. The HyFlex platform promotes the reusability of

hyper-heuristic components. In HyFlex, hyper-heuristics are separated from
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the problem domain via a domain barrier [19] to promote domain-independent

automated search algorithms. Hence, problem domain independent information,

such as the number of heuristics and objective value of a solution, is allowed to

pass through the domain barrier to the hyper-heuristic level (Figure 1). On the

other hand, pieces of problem dependent information, such as, representation

and objective function are kept hidden from the higher level search algorithm.

Restricting the type of information available to the hyper-heuristic to a domain

independent nature is considered to be necessary to increase the level of gen-

erality of a hyper-heuristic over multiple problem domains. This way the same

approach can be applied to a problem from another domain without requiring

any domain expert knowledge or intervention.

 Hyper-heuristic 

 Select a heuristic (��) based on a 

selection method and apply it to a given 

solution (��), creating a new solution (��). 

Domain Barrier 

 

 

 

Problem Domain 

Accept or reject the new/resultant 

solution (��) based on an acceptance 

method. 

• Low level heuristics (��, … , �
), 
• Solution representation (list of 

solutions – (��, … , ��)), 
• Objective function (f(.)),     etc... 

e.g., [�, �, �] e.g., [�����, �(��)] 

�� �� �
 

�� �� �� �� 

��(��) 

Figure 1: A selection hyper-heuristic framework [19].

HyFlex v1.0 is implemented in Java respecting the interface definition and

was the platform of choice at a recent competition referred to as the Cross-

domain Heuristic Search Challenge (CHeSC 2011) 1. The CHeSC 2011 compe-

tition aimed at determining the state-of-the-art selection hyper-heuristic judged

by the median performance of the competing algorithms across thirty problem

instances, five for each problem domain. Formula 1 scoring system is used to

1http://www.asap.cs.nott.ac.uk/external/chesc2011/
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assess the performance of hyper-heuristics over problem domains. In formula

1 scoring system, for each instance, the top eight competing algorithms receive

scores of 10, 8, 6, 5, 4, 3, 2 or 1 depending on their rank on a specific instance.

Remaining algorithms receive a score of 0. These scores are then accumulated to

produce the overall score of each algorithm on all problem instances. The com-

peting algorithms are then ranked according to their overall score. The number

of competitors during the final round of the competition was 20. Moreover, a

wide range of problem domains is covered in CHeSC 2011. Consequently, the

results achieved in the competition along with the HyFlex v1.0 platform and

the competing hyper-heuristics currently serve as a benchmark to compare the

performance of novel selection hyper-heuristics.

The CHeSC 2011 problem domains include Boolean Satisfiability (SAT),

One Dimensional Bin Packing (BP), Permutation Flow Shop (FS), Personnel

Scheduling (PS), Travelling Salesman Problem (TSP) and Vehicle Routing Prob-

lem (VRP). Each domain provides a set of low level heuristics which are clas-

sified as mutation (MU), local search (LS)(also referred to as hill climbing),

Ruin and Re-create (RR) and crossover (XO) heuristics (operators). Each low

level heuristic, depending on it’s nature (i.e. whether it is a mutational or a

local search operator) comes with an adjustable parameter. For instance, in

mutational operators, the mutation density determines the extent of changes

that the selected mutation operator yields on a solution. A high mutation den-

sity indicates wider range of new values that the solution can take, relevant to

its current value. Lower values suggest a more conservative approach where

changes are less influential. As for the depth of local search operators, this value

relates to the number of steps completed by the local search heuristic. Higher

values indicate that local search approach searches more neighbourhoods for

improvement. Table 1 summarizes the low level heuristics for each domain of

CHeSC 2011 and groups them according to their type (e.g. MU, RR, XO and

LS).

The description of each competing hyper-heuristic can be reached from the

CHeSC 2011 website. The ranking of twenty CHeSC 2011 participants is pro-
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Table 1: The number of different types of low level heuristics {mutation (MU), ruin and

re-create heuristics (RR), crossover (XO) and local search (LS)} used in each CHeSC 2011

problem domain.

Domain MU RR XO LS Total

SAT 6 1 2 2 11

BP 3 2 2 1 8

PS 1 3 5 3 12

PFS 5 2 4 4 15

TSP 5 1 3 4 13

VRP 3 2 3 2 10

vided in Table 2. The top three selection hyper-heuristics that generalize well

across the CHeSC 2011 problem domains are multi-stage approaches of AdapHH

[41], VNS-TW [27] and ML [33].

3. Tensor Analysis

Tensors are multidimensional arrays and the order of a tensor indicates its

dimensionality. Each dimension of a tensor is referred to as a mode. In our

notation, following [31], a boldface Euler script letter, boldface capital letter

and boldface lower-case letter denote a tensor (e.g., T ), matrix (e.g., M) and

vector (e.g., v), respectively. The entries of tensors, matrices and vectors (and

scalar values in general) are indexed by italic lower-case letters. For example,

the (p, q, r) entry of a 3rd−order (three dimensional) tensor T is denoted as tpqr.

3.1. Tensor Decomposition (Factorization)

Tensor decomposition (a.k.a tensor factorization) is used in many research

fields to identify the correlations and relationships among different modes of

high dimensional data. The tensor decomposition methods are mainly gener-

alizations of the Singular Value Decomposition (SVD) to higher dimensions.

Higher Order SVD (HOSVD) [35], Tucker decomposition [55], Parallel Factor
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Table 2: Rank of each hyper-heuristic (denoted as HH) competed in CHeSC 2011 with respect

to their Formula 1 scores.

Rank HH Score Rank HH Score

1 AdapHH 181 11 ACO-HH 39

2 VNS-TW 134 12 GenHive 36.5

3 ML 131.5 13 DynILS 27

4 PHUNTER 93.25 14 SA-ILS 24.25

5 EPH 89.75 15 XCJ 22.5

6 HAHA 75.75 16 AVEG-Nep 21

7 NAHH 75 17 GISS 16.75

8 ISEA 71 18 SelfSearch 7

9 KSATS-HH 66.5 19 MCHH-S 4.75

10 HAEA 53.5 20 Ant-Q 0

(a.k.a PARAFAC or CANDECOMP or CP) [26] and Non-negative Tensor Fac-

torization (NTF) [50] are among numerous factorization methods proposed by

researchers. Tucker decomposition has applications in data compression [57],

dimensionality reduction [56] and noise removal [42] among others. Also CP

decomposition has been used for noise removal and data compression [24]. In

addition, it has a wide range of applications in many scientific areas such as

Data Mining [8] and telecommunications [34]. There are few other factoriza-

tion methods which mainly originate from CP and/or Tucker methods. Each of

these methods (such as INDSCAL, PARAFAC2 and PARATUCK2) are widely

known in specific fields such as chemometrics or statistics. For more details on

these methods the reader is referred to [31]. Also, the studies in [2] and [1]

provide very detailed comparison between factorization methods.

In this study, we have used the CP decomposition method. Furthermore,

we focus on 3rd-order tensors. Assume that we have such tensor denoted by T

with a size P ×Q×R. CP decomposition utilizes the Alternating Least Square
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(ALS) algorithm [15, 25], in which tensor T is approximated by another tensor

T̂ as in Equation 1.

T̂ =
K∑

k=1

λk ak ◦ bk ◦ ck (1)

λk ∈ R+, ak ∈ RP , bk ∈ RQ and ck ∈ RR for k = 1 · · ·K, where K is the

number of desired components. Each summand (λk ak ◦ bk ◦ ck) is called a

component while the individual vectors are called factors. λk is the weight of

the kth component. Note that “◦” is the outer product operator. The outer

product of three vectors produces a 3rd-order tensor. For instance, given K = 1,

Equation 1 reduces to T̂ = λ a ◦b ◦ c, in which T̂ is a 3rd-order tensor which is

obtained by the outer product of three vectors a, b and c. Subsequently, each

tensor entry, denoted as t̂pqr is computed through a simple multiplication like

apbqcr.

The outer product ak ◦bk in Equation 1 quantifies the relationship between

the object pairs, i.e., score values indicating the “level of interaction” between

object pairs in component k [31]. The purpose of the ALS algorithm is to

minimize the error difference between the original tensor and the estimated

tensor, denoted as ε as follows:

ε =
1

2
||T − T̂ ||

2

F (2)

where the subscript F refers to the Frobenious norm. That is:

||T − T̂ ||
2

F =
P∑

p=1

Q∑
q=1

R∑
r=1

(
tpqr − t̂pqr

)2
(3)

After applying the factorization method, in addition to the CP model, a

measure of how well the original data is described by the factorized tensor can

be obtained. This measure (model fitness), denoted as ϕ, is computed using the

following equation:

ϕ = 1−
||T − T̂ ||F

||T ||F
(4)
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where the value ϕ is in the range [0, 1]. The ϕ value is an indicator which shows

how close the approximated tensor is to the original data. In other words, it

measures the proportion of the original data represented in the approximated

tensor T̂ . A perfect factorization (where T = T̂ ) results in ϕ = 1, while a

poor factorization results in ϕ = 0, hence as the ϕ value increases, so does the

factorization accuracy. More on tensor decompositions and their applications

can be found in [31].

As well as representing data in a concise and more generalizable manner

which is immune to data anomalies (such as missing data), tensor factorization

methods offer additional interesting utilities. Those methods allow partitioning

of the data into a set of more comprehensible sub-data which can be of specific

use depending on the application according to various criteria. For example, in

the field of computer vision, [30] and [32] separately show that factorization of

a 3rd-order tensor of a video sequence results in some interesting basic factors.

These basic factors reveal the location and functionality of human body parts

which move synchronously.

3.2. Motivation: Inspirations From Applications of Tensor Analysis

Many problems produce data of a nature which is best described and repre-

sented in high dimensional data structures. However, for the sake of simplicity,

the dimensionality of data is often deliberately reduced. For instance, in face

recognition, the set of images of various individuals constitutes a three dimen-

sional data structure where the first two dimensions are the x and y coordinates

of each pixel in each image and the third dimension is the length of the dataset.

This is while, in classical face recognition (like the eigenface method), each face

image is reduced to a vector by concatenating the pixel rows of the image. Con-

sequently, the dataset, which is 3D (or maybe higher) in nature, is reduced to a

2D dataset for further processing. However, [56] shows that by sticking to the

original dimensionality of the data and representing the dataset as a 3rd-order

tensor, better results are achieved in terms of the recognition rate. This is due

to the fact that collapsing the naturally 3D data into a matrix results in loss of
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information regarding the dependencies, correlation and useful redundancies in

the feature space [39]. On the other hand, representing the data in its natural

high dimensional form helps with preserving the latent structures in the data.

Employing tensor analysis tools helps in capturing those latent relationships

([4], [5]). Similar claims have been registered in various research areas such

as human action recognition in videos [32], hand written digit recognition [59],

image compression [60], object recognition [58], gait recognition [54], Electroen-

cephalogram (EEG) classification [37], Anomaly detection in streaming data

[52], dimensionality reduction [39], tag recommendation systems [48] and Link

Prediction on web data [3].

The search history formed by a heuristic, metaheuristic or hyper-heuristic

methodology constitutes a multi-dimensional data. For example, when popu-

lations of several generations of individuals in a Genetic Algorithm (GA) are

put together, the emerging structure representing the solutions and associated

objective values changing in time is a 3rd-order tensor. Similarly, the interaction

between low level heuristics as well as the interaction between those low level

heuristics and the acceptance criteria under a selection hyper-heuristic frame-

work are a couple of examples of various modes of functionality in a hypothetical

tensor representing the search history.

Some selection hyper-heuristics, such as reinforcement-based hyper-heuristics

or hyper-heuristics embedding late acceptance or tabu search components do

use some of the search history selectively. Their performance is usually con-

fined with memory restrictions. Moreover, the memory often contains raw data,

such as objective values or visited states and those components ignoring the

hidden clues and information regarding the choices that influences the overall

performance of the approach in hand.

In this study, we use a 3rd-order tensor to represent the search history of

a hyper-heuristic. The first two modes are indexes of subsequent low level

heuristics selected by the underlying hyper-heuristic while the third mode is the

time. Having such a tensor filled with the data acquired from running the hyper-

heuristic for a short time and decomposing it, hopefully reveals the indices of low
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level heuristics which are performing well with the underlying hyper-heuristic

and acceptance criteria. This is very similar to what has been done in [32],

except that, instead of examining the video of human body motion and looking

for different body parts moving in harmony, we examine the trace of a hyper-

heuristic (body motion) and look for low level heuristics (body parts) performing

harmoniously. Naturally, our ultimate goal is to exploit this knowledge for

improving the search process.

4. A Tensor-based Selection Hyper-Heuristic Approach Hybridizing

Move Acceptance

The low level heuristics in HyFlex are divided into four groups as described in

Section 2. The heuristics belonging to the mutational (MU), ruin-recreate (RR)

and local search (LS) groups are unary operators requiring a single operand.

This is while, the crossover operators have two operands requiring two candi-

date solutions to produce a new solution. In order to maintain simplicity as

well as coping with the single point search nature of our framework, crossover

operators are ignored in this study and MU, RR and LS low level heuristics

are employed. The set of all available heuristics (except crossover operators)

for a given problem domain is denoted by a lower-case bold and italic letter h

throughout the paper. Moreover, from now on, we refer to our framework as

Tensor Based Hybrid Acceptance Hyper-heuristic (TeBHA-HH) which consists

of five consecutive phases: (i) noise elimination (ii) tensor construction, (iii) ten-

sor factorization, (iv) tensor analysis, and (v) hybrid acceptance as illustrated in

Figure 2. The noise elimination filters out a group of low level heuristics from h

and then a tensor is constructed using the remaining set of low level heuristics,

denoted as h−. After tensor factorization, sub-data describing the latent rela-

tion between low level heuristics is extracted. This information is used to divide

the low level heuristics into two partitions: hNA, hIE . Each partition is then

associated with a move acceptance method, that is naive move acceptance with

α = 0.5 (NA) or improving and equal moves (IE) respectively. This is equiv-
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alent to employing two selection hyper-heuristics, Simple Random-Naive move

acceptance (SR-NA) and Simple Random-Improving and Equal (SR-IE). Each

selection hyper-heuristic is invoked in a round-robin fashion for a fixed duration

of time (ts) using only the low level heuristics associated with the move accep-

tance component of the hyper-heuristic at work (hNA and hIE , respectively)

until the overall time limit (Tmax) is reached. This whole process is repeated at

each run while solving a given problem instance. All the problems dealt with

in this study are minimizing problems. A detailed description of each phase is

given in the subsequent sections.

Figure 2: The schematic of our proposed framework.

4.1. Noise Elimination

We model the trace of the hyper-heuristic as a tensor dataset and factorize

it to partition the heuristic space. Tensor representation gives us the power to

analyse the latent relationship between heuristics. But this does not mean that

any level and type of noise is welcome in the dataset. The noise in the dataset

may even obscure the existing latent structures. Thus, reducing the noise is

a necessary step in constructing datasets. Under the selection hyper-heuristic

15



framework in which a low level heuristic is chosen randomly, if a heuristic per-

turbs a solution and consistently generates highly worsening solutions, then such

a heuristic is considered as a poor heuristic, causing partial re-starts which is

often not a desirable behaviour. Hence, the tensor dataset produced while such

a heuristic is used can be considered noisy (noise is generally defined as unde-

sired data) and that heuristic can be treated as source of the noise. Identifying

such heuristics at the start and eliminating them results in a less noisy dataset.

The type of noise happens to be very important in many data mining tech-

niques and tensor factorization is not an exception. CP factorization method

which is one of the most widely used factorization algorithms, assumes a Gaus-

sian type noise in the data. It has been shown that CP is very sensitive to

non-Gaussian noise types [18]. In hyper-heuristics, change in the objective value

after applying each heuristic follows a distribution which is very much depen-

dent on the problem domain and the type of the heuristic, both of which are

unknown to a hyper-heuristic and unlikely to follow a Gaussian distribution.

To the best of our knowledge, while there are not many factorization methods

which deal with various types of noise in general, there is no method tailored

for heuristics. Thus, it is crucial to reduce the noise as much as possible prior

to any analysis of the data. This is precisely the aim of the first phase of our

approach.

Excluding the crossover heuristics leaves us with three heuristic groups (MU,

RR and LS). A holistic strategy is used in the noise elimination phase for get-

ting rid of poor heuristics. An overall pre-processing time, denoted as tp is

allocated for this phase. Except the LS group, applying heuristics belonging to

all other groups may lead to worsening solutions. Hence, the worst of the two

remaining heuristic groups (MU and RR) is excluded from the subsequent step

of the experiment. In order to determine the group of low level heuristics to

eliminate, SR-NA is run using the MU and LS low level heuristics for a duration

of tp/2, which is followed by another run using RR and LS low level heuristics

for the same duration. Performing the pre-processing tests in this manner also

captures the interaction between perturbative and local search heuristics under

16



the proposed framework for improvement. During each run, the search process

is initiated using the same candidate solution for a fair comparison. The quality

of the solutions obtained during those two successive runs are then compared.

Whichever group of low level heuristics generates the worst solution under the

described framework gets eliminated. The remaining low level heuristics, de-

noted as h− is then fed into the subsequent phase for tensor construction.

4.2. Tensor Construction and Factorization

We represent the trail of SR-NA as a 3rd-order tensor T ∈ RP ×RQ×RR in

this phase, where P = Q = |h−| is the number of available low level heuristics

and R = N represents the number of tensor frames collected in a given amount

of time. Such a tensor is depicted in Figure 3. The tensor T is a collection of two

dimensional matrices (M) which are referred to as tensor frames. A tensor frame

is a two dimensional matrix of heuristic indices. Column indices in a tensor

frame represent the index of the current heuristic whereas row indices represent

the index of the heuristic chosen and applied before the current heuristic.

Figure 3: The tensor structure in TeBHA-HH. The black squares (also referred to as active

entries) within a tensor frame highlight heuristic pairs invoked subsequently by the underlying

hyper-heuristic.

The tensor frame is filled with binary data as demonstrated in Algorithm 1.

The bulk of the algorithm is the SR-NA hyper-heuristic (starting at the while

loop in line 4). Iteratively, a new heuristic is selected randomly (line 12) and
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applied to the problem instance (line 14). This action returns a new objective

value fnew which is used together with the old objective value fold to calcu-

late the immediate change in the objective value (δf ). The algorithm then

checks if δf > 0 indicating improvement, in which case the solution is accepted.

Otherwise, it is accepted with probability 0.5 (line 21). While accepting the

solution, assuming that the indices of the current and previous heuristics are

hcurrent and hprevious respectively, the tensor frame M is updated symmetri-

cally: mhprevious,hcurrent = 1 and mhcurrent,hprevious = 1. The frame entries with

the value 1 are referred to as active entries. At the beginning of each iteration,

the tensor frame M is checked to see if the number of active entries in it has

reached a given threshold of ⌊|h |/2⌋ (line 5). If so, the frame is appended to

tensor and a new frame is initialized (lines 6 to 9). This whole process is re-

peated until a time limit is reached which the same amount of time allocated

for the pre-processing phase; tp (line 4).

While appending a frame to the tensor, each tensor frame is labelled by the

∆f it yields, where ∆f is the overall change in objective value caused during the

construction of the frame. ∆f is different from δf in the sense that the former

measures the change in objective value inflicted by the collective application of

active heuristic indexes inside a frame. The latter is the immediate change in

objective value caused by applying a single heuristic.

The aforementioned process constructs an initial tensor which contains all

the tensor frames. However, we certainly do want to emphasize on intra-frame

correlations as well. That is why, after constructing the initial tensor, the tensor

frames are scanned for consecutive frames of positive labels(∆f > 0). In other

words, a tensor frame is chosen and put in the final tensor only if it has a

positive label and has at least one subsequent frame with a positive label. The

final tensor is then factorized using the CP decomposition to the basic frame

(K = 1 in Equation 1). The following section illustrates how the basic frame is

used in our approach.
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Algorithm 1: The tensor construction phase

1 In: h = h−;

2 Initialize tensor frame M to 0;

3 counter = 0;

4 while t < tp do

5 if counter = ⌊|h |/2⌋ then

6 append M to T ;

7 set frame label to ∆f ;

8 Initialize tensor frame M to 0;

9 counter = 0;

10 end

11 hprevious = hcurrent;

12 hcurrent = selectHeuristic(h);

13 fcurrent = fnew;

14 fnew =applyHeuristic(hcurrent);

15 δf = fcurrent − fnew;

16 if δf > 0 then

17 mhprevious,hcurrent = 1;

18 counter ++;

19 else

20 if probability > 0.5 then

21 mhprevious,hcurrent
= 1;

22 if δf = 0 then

23 mhcurrent,hprevious = 1;

24 end

25 counter ++;

26 end

27 end

28 end
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4.3. Tensor Analysis: Interpreting The Basic Frame

Following the tensor factorization process, the tensor is decomposed into

basic factors. K = 1 in our case, thus, the Equation 1 reduces to the following

equation:

T̂ = λ a ◦ b ◦ c (5)

The outer product in the form a ◦ b produces a basic frame which is a

matrix. Assume that, in line with our approach, we have constructed a tensor

from the data obtained from the hyper-heuristic search for a given problem

instance in a given domain which comes with 8 low level heuristics, 5 of them

being mutation and 2 of them being local search heuristics. Moreover, the

factorization of the tensor produces a basic frame as illustrated in Figure 4. The

values inside the basic frame are the scores of each pair of low level heuristics

when applied together. Since we are interested in pairs of heuristics which

perform well together, we locate the pair which has the maximum value (score).

In this example, the pair (LS0, LS1) performs the best since the score for that

pair is the highest. We regard these two heuristics as operators which perform

well with the NA acceptance mechanism under the selection hyper-heuristic

framework. The heuristics in the column corresponding to this maximum pair

are then sorted to determine a ranking between the heuristics. Since heuristics

LS0 and LS1 are already the maximizing pair, they are considered to be the top

two elements of this list. In the basic frame of Figure 4 the sorted list is then

(LS0,LS1,MU3,MU2,MU5,MU4,MU1,MU0). The top/first ⌊|h |/2⌋ elements

of this list is then selected as those heuristics which perform well under NA

acceptance mechanism (hNA). The remaining low level heuristics including the

eliminated heuristics (e.g., RR heuristics) are associated with IE (hIE).

4.4. Final Phase: Hybrid Acceptance

Selection hyper-heuristics have been designed mainly in two ways: ones

which require the nature of low level heuristics to be known, while the oth-

ers discard that information. For example, VNS-TW [27] and ML [33] assume
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Figure 4: A sample basic frame. Each axis of the frame represents heuristic indexes. Higher

scoring pairs of heuristics are darker in color.

that whether a given low level heuristic is mutational (or ruin-recreate) or local

search is known, since they use only the relevant heuristics to be invoked at

different parts of those algorithms. On the other hand, AdapHH [41] operated

without requiring that information. Our hyper-heuristic approach is of former

type. Additionally, we ignore the crossover heuristics as many of the other

previously proposed hyper-heuristics.

In this paper, we have considered a multi-stage selection hyper-heuristic

which uses simple random heuristic selection and hybridizes the move accep-

tance methods, namely NA and IE. These selection hyper-heuristic components

with no learning are chosen simply to evaluate the strength of the tensor based

approach as a machine learning technique under the proposed framework. This

is the first time the proposed approach has been used in heuristic search as a

component of a selection hyper-heuristic. In this phase, the best solution found

so far is improved further using the proposed hyper-heuristic which switches

between SR-NA and SR-IE. Since the same simple random heuristic selection

method is used at all times, the proposed selection hyper-heuristic, in a way, hy-

bridizes the move acceptance methods under the multi-stage framework. Each

acceptance method is given the same amount of time; ts to run. SR-NA operates

using hNA, while SR-IE operates using hIE as the low level heuristics. This
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search process continues until the time allocated to the overall hyper-heuristic

(Algorithm 2) expires.

There are many cases showing that explicitly enforcing diversification (ex-

ploration) and intensification (exploitation) works in heuristic search. For exam-

ple, there are many applications indicating the success of iterated local search

(ILS) [38] and memetic algorithms (MAs) [17, 45]. Those metaheuristic ap-

proaches explicitly enforce the successive use of mutational and local search

heuristics/operators in an attempt to balance diversification and intensification

processes. The choice of NA and IE is also motivated by the reason that under

the proposed framework, SR-NA can be considered as a component allowing

diversification, while SR-IE focuses on intensification. Similar to ILS and MAs,

the proposed approach also explicitly maintains the balance between diversifica-

tion and intensification with the differences that SR-NA and SR-IE is employed

in stages (not at each iteration) for a fixed period of time during the search

process and the best subset of heuristics/operators that interact well to be used

in a stage is determined through learning by the use of tensor analysis. Putting

low level heuristics performing poorly with SR-NA under SR-IE somewhat en-

sures that those low level heuristics cause no harm misleading the overall search

process.

5. Experimental Results

The experiments are performed on an Intel i7 Windows 7 machine (3.6 GHz)

with 16 GB RAM. This computer was given 438 seconds (corresponding to 600

nominal seconds on the competition machine) as the maximum time allowed

(Tmax) per instance by the benchmarking tool provided by the CHeSC 2011

organizers. This is to ensure a fair comparison between various algorithms. We

used the Matlab Tensor Toolbox [9] 2 for tensor operations. The HyFlex, as

well as the implementation of our framework is in Java. Hence, subsequent to

2http://www.sandia.gov/~tgkolda/TensorToolbox/
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Algorithm 2: Tensor Based Hyper-heuristic with Hybrid Acceptance

Strategy

1 let h be the set of all low level heuristics;

2 let t be the time elapsed so far;

3 h−
x = exclude XO heuristics;

4 h− = preProcessing(tp,h
−
x );

5 T = constructTensor(tp,h
−);

6 a,b, c = CP(T ,K = 1) , B = a ◦ b;

7 x, y = max(B);

8 hs = sort(Bi=1:|h−|,y);

9 hNA = (hs)i=1:⌊|hs|/2⌋ , hIE = h−
x − hNA;

10 while t < Tmax do

11 if acceptance = NA then

12 h = selectRandomHeuristic(hNA);

13 else

14 h = selectRandomHeuristic(hIE);

15 end

16 snew, fnew = applyHeuristic(h, scurrent);

17 δ = fold − fnew;

18 updateBest(δ,fnew);

19 if acceptanceT imer ≥ ts then

20 toggle acceptance mechanism;

21 end

22 if switch = true then

23 snew, sold =NA(snew, fnew, scurrent, fcurrent) ;

24 else

25 snew, sold =IE(snew, fnew, scurrent, fcurrent);

26 end

27 end
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tensor construction phase, Matlab is called from within Java to perform the

factorization task. Throughout the paper, whenever a specific setting of the

TeBHA-HH framework is applied to a problem instance, the same experiment

is repeated for 31 times, unless mentioned otherwise.

5.1. Experimental Design

One of the advantages of the TeBHA-HH framework is that it has consid-

erably few parameters. To be more precise there are two parameters governing

the performance of our tensor based hybrid acceptance approach. The first pa-

rameter is the time allocated to pre-processing and tensor construction phases.

This time boundary is equal for both phases and is denoted as tp. The second

parameter is the time allowed to an acceptance mechanism in the final phase.

During the final phase, the proposed selection hyper-heuristic switches between

the two move acceptance methods (and their respective heuristic groups). Each

move acceptance method is allowed to be in charge of solution acceptance for a

specific time which is the second parameter and is denoted as ts.

Note that all our experiments are conducted on the set of instances provided

by CHeSC 2011 organizers during the final round of the competition. HyFlex

contains more than a dozen of instances per problem domain. However, during

the competitions 5 instances per domain were utilized. These are the set of

instances which were employed in this paper.

A preliminary set of experiments are performed in order to show the need for

the noise elimination phase and more importantly to evaluate the performance

of Automatic Noise Elimination (AUNE) in relation to the factorization process

fixing tp and ts values. This preliminary experiment along with experiments

involving evaluation of various values of parameters tp and ts are only conducted

on the first instance of each problem domain. After this initial round of tests

in which the best performing values for the parameters of the framework are

determined, a second experiment, including all the competition instances is

conducted and the results are compared to that of the CHeSC 2011 competitors.

Regarding the parameter tp, values 15, 30 and 60 seconds are tested. For ts,
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values nil (0), 500, 1000 and 1500 milliseconds are experimented.

5.2. Pre-processing Time

The experiments in this section concentrates on the impact of the time (tp)

given to the first two phases (noise elimination and tensor construction) on the

performance of the overall approach. During the first phase in all of the runs,

the RR group of heuristics have been identified as source of noise for Max-SAT

and VRP instances. This is while, MU has been identified as source of noise

for BP, FS and TSP instances. As for the PS domain, due to small number of

frames collected (which is a result of slow speed of heuristics in this domain),

nearly half of the time RR has been identified as the source of noise. In the

remaining runs MU group of heuristics are excluded as noise. Our experiments

show that for a given instance, the outcome of the first phase is persistently

similar for different values of tp.

The tp value also determines the number of tensor frames recorded during the

tensor construction phase. Hence, we would like to investigate how many tensor

frames are adequate in the second phase. We expect that an adequate number

of frames would result in a stable partitioning of the heuristic space regardless

of how many times the algorithm is run on a given instance. As mentioned

in Section 5.1, three values (15, 30 and 60 seconds) are considered. Rather

than knowing how the framework performs in the maximum allowed time, we

are interested to know whether different values for tp result in tremendously

different heuristic subsets at the end of the first phase. Thus, in this stage of

experiments, for a given value of tp, we run the first two phases only. That is, for

a given value of tp we run the simple noise elimination algorithm. Subsequently,

we construct the tensor for a given instance. At the end of these first two phases,

the contents of hNA and hIE are recorded. We do this for 100 runs for each

instance. At the end of the runs for a given instance, a histogram of the selected

heuristics is constructed. The histograms belonging to a specific instance and

achieved for various values of tp are then compared to each other. Figures 5

compare the histograms of three different tp values for the first instances of the
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6 problem domains in HyFlex.

The histograms show the number of times a given heuristic is chosen as hNA

or hIE within the runs. For instance, looking at the histograms corresponding

to the Max-SAT problem (Figures 5(a), 5(b) and 5(c)), one could notice that

the heuristic LS1 is always selected as hNA in all the 100 runs. This is while

RR0 is always assigned to hIE . The remaining heuristics are assigned to both

sets although there is a bias towards hNA in case of heuristics MU2,MU3 and

MU5. A similar bias towards hIE is observable for heuristics MU0,MU1,MU4

and LS0. This shows that the tensor analysis together with noise elimination

adapts its decision based on the search history for some heuristics while for

some other heuristics definite decisions are made. This adaptation is indeed

based on several reasons. For one thing, some heuristics perform very similar to

each other leading to similar traces. This is while, their performance patterns,

though similar to each other, varies in each run. Moreover, there is an indication

that there is no unique optimal subgroups of low level heuristics under a given

acceptance mechanism and hyper-heuristic. There indeed might exists several

such subgroups. For instance, there are two (slightly) different NA subgroups

(hNA = {MU2,MU5, LS0, LS1} and hNA = {MU2,MU3, LS0, LS1}) for the

Max-SAT problem domain which result in the optimal solution (f = 0). This

is strong evidence supporting our argument about the existence of more than

one useful subgroups of low level heuristics. Thus, it only makes sense if the

factorization method, having several good options (heuristic subsets), chooses

various heuristic subsets in various runs.

Interestingly, RR0 and LS1 are diversifying and intensifying heuristics re-

spectively. Assigning RR0 to hIE means that the algorithm usually chooses

diversifying operations that actually improves the solution. A tendency to such

assignments is observable for other problem instances, though not as strict as

it is for BP and Max-SAT problem domains. While this seems to be a very

conservative approach towards the diversifying heuristics, as we will see later

in this section, it often results in a good balance between intensification and

diversification during the search.
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(a) Max-SAT, tp = 15sec
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(b) Max-SAT, tp = 30sec
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(c) Max-SAT, tp = 60sec
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(d) BP, tp = 15sec
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(e) BP, tp = 30sec
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(f) BP, tp = 60sec
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(g) PS, tp = 15sec
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(h) PS, tp = 30sec
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(i) PS, tp = 60sec

MU0 MU1 MU2 MU3 MU4 RR0 RR1 LS0 LS1 LS2 LS3
0

20

40

60

80

100

120

heuristic index

n
u

m
b

er
 o

f 
ru

n
s

 

 

NA
IE

(j) FS, tp = 15sec
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(k) FS, tp = 30sec
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(l) FS, tp = 60sec
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(n) VRP, tp = 30sec
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(o) VRP, tp = 60sec
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(p) TSP, tp = 15sec
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(q) TSP, tp = 30sec
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Figure 5: Histograms of heuristics selected as hNA and hIE for various tp values across all

CHeSC 2011 problem domains.

In summary, the histograms show that the partitioning of the heuristic space

is more or less the same regardless of the time allocated to tp for a given problem

instance. This pattern is observable across all CHeSC 2011 problem domains as

illustrated in Figure 5. Longer run experiments, in which all the phases of the

algorithm are included and the framework is allowed to run until the maximum

allowed time is reached, confirms the conclusion that TeBHA-HH is not too

sensitive to the value chosen for tp. In Figure 6 a comparison between the three

values for tp is shown. The asterisk highlights the average performance. A

comparison based on the average values shows that tp = 30 is slightly better

than other values.

Additionally, to quantify and evaluate the effectiveness of the proposed

noise elimination strategy, we have performed further experiments and investi-

gated into four possible scenarios/strategies for noise elimination: i) Automatic

Noise Elimination (AUNE) (as described in Section 4) ii) No Noise Elimination

(NONE) in which the first phase of our algorithm is entirely ignored iii) RR-LS
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Figure 6: Comparing the performance of TeBHA-HH on the first instance of various domains

for different values of tp. The asterisk sign on each box plot is the mean of 31 runs.

in which ruin and recreate and Local Search heuristics only are participated in

tensor construction and iv) MU-LS where mutation and local search heuristics

are considered in tensor construction. Each scenario is tested on all CHeSC

2011 instances and during those experiments tp is fixed as 30 seconds. After

performing the factorization, the ϕ value (Equation 4) is calculated for each

instance at each run. Figure 7 provides the performance comparison of different

noise elimination strategies based on the ϕ values averaged over 31 runs for each

instance. It is desirable that the ϕ value, which expresses the model fitness, to

be maximized in these experiments. Apart from the PS and FS domains, our

automatic noise elimination scheme (AUNE) delivers the best ϕ for all other

instances from the rest of the four domains. In three out of five FS instances,

AUNE performs the best with respect to the model fitness. However, AUNE

seems to be under-performing in the PS domain. The reason for this specific

case is that the heuristics in this domain are extremely slow and the designated

value(s) for tp does not give the algorithm sufficient time to identify the source

29



of noise properly and consistently. This is also the reason for the almost ran-

dom partitioning of the heuristic space (figures 5(g), 5(h) and 5(i)). The low

running speed of low level heuristics leads to a low number of collected tensor

frames at the end of the second phase (tensor construction). Without enough

information the factorization method is unable to deliver useful and consistent

partitioning of the heuristic space (like in other domains). That is why, the

histograms belonging to the PS domain in Figure 5 demonstrate a half-half dis-

tribution of heuristics to hNA and hIE heuristic sets. Nevertheless, the overall

results presented in this section supports the necessity of the noise elimination

step and illustrates the success of the proposed simple strategy.
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Figure 7: Comparing the model fitness in factorization, ϕ (y axis of each plot), for various

noise elimination strategies. Higher ϕ values are desirable. The x-axis is the ID of each

instance from the given CHeSC 2011 domain.

5.3. Switch Time

The value assigned to ts determines the frequency based on which the frame-

work switches from one acceptance mechanism to another during the search pro-

cess in the final phase. Four values: nil, 500, 1000 and 1500 milliseconds have

30



been considered in our experiments. For ts = nil, randomly chosen low level

heuristic determines the move acceptance method to be employed at each step.

If the selected heuristic is a member of hNA or hIE , NA or IE is used for move

acceptance, respectively. The value for tp is fixed at 30 seconds and AUNE is

used for noise elimination during all switch time experiments.

0

1

2

3

4

5

6

nil 500 1000 1500

(a) SAT

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

nil 500 1000 1500

(b) BP

14

16

18

20

22

24

26

28

30

nil 500 1000 1500

(c) PS

6280

6290

6300

6310

6320

6330

6340

nil 500 1000 1500

(d) FS

5.8

5.85

5.9

5.95

6

6.05

6.1

6.15

6.2

6.25

6.3
x 10

4

nil 500 1000 1500

(e) VRP

4.82

4.825

4.83

4.835

4.84

4.845

4.85

4.855

4.86

4.865

x 10
4

nil 500 1000 1500

(f) TSP

Figure 8: Comparing the performance (y axis) of TeBHA-HH on the first instance of various

domains for different values of ts (x axis). The asterisk sign on each box plot is the mean of

31 runs.

A comparison between various values considered for ts is given in Figure 8.

Judging by the average performance (shown by an asterisk on each box), ts =

500 msec performs slightly better than other values. Figure 9 shows the impact

of the time allocated for the final phase on two sample problem domains and the

efficiency that early decision making brings. ts = nil is also under performing.

Similar phenomena are observed in the other problem domains.

5.4. Experiments on the CHeSC 2011 Domains

After fixing the values for parameters tp and ts to best achieved values (30

seconds and 500 milliseconds, respectively) and using AUNE for noise elimina-
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Figure 9: Average objective function value progress plots on the (a) BP and (b) VRP instances

for three different values of ts where tp = 30 sec.

tion, we run another round of experiments testing the algorithm on all CHeSC

2011 instances. Table 3 summarises the results obtained using TeBHA-HH. The

performance of the proposed hyper-heuristic is then compared to that of the two

building block algorithms, namely SR-NA and SR-IE. Also, the current state-of-

the-art algorithm, AdapHH [41] is included in the comparisons. Table 4 provides

the details of the average performance comparison of TeBHA-HH to AdapHH.

Clearly, TeBHA-HH outperforms AdapHH on PS and Max-SAT domains. A

certain balance between the performance of the two algorithm is observable in

VRP domain. In case of other problem domains, AdapHH manages to outper-

form our algorithm. The major drawback that TeBHA-HH suffers from is its

poor performance on the FS domain. We suspect that ignoring heuristic pa-

rameter values such as depth of search or the intensity of mutation is one of the

reasons.

The interesting aspect of TeBHA-HH is that, generally speaking, it uses a

hyper-heuristic based on random heuristic selection, decomposes the low level

heuristics into two subsets and again applies the same hyper-heuristic using

two simple move acceptance methods. Despite this, the TeBHA-HH manages

to perform significantly better than its building blocks of SR-IE and SR-NA

as illustrated in Figure 10 on all almost all domains. The same behaviour is
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Table 3: The performance of the TeBHA-HH framework on each CHeSC 2011 instance over

31 runs, where µ and σ are the mean and standard deviation of objective values. The bold

entries show the best produced results compared to those announced in the CHeSC 2011

competition.

Instances

Problem 1 2 3 4 5

SAT

µ : 1.9 4.0 1.3 3.8 7.4

min : 0 1 0 1 7

σ : 2.3 3.5 1.0 3.0 0.8

BP

µ : 0.0116 0.0086 0.0107 0.1087 0.0173

min : 0.0083 0.0035 0.0058 0.1083 0.0114

σ : 0.0013 0.0032 0.0027 0.0007 0.0069

PS

µ : 20.8 9618.1 3241.8 1611.2 349.1

min : 13 9355 3141 1458 310

σ : 4.3 129.5 59.7 101.2 23.9

FS

µ : 6310.9 26922.2 6372.5 11491.3 26716.2

min : 6289 26875 6364 11468 26606

σ : 11.3 27.1 5.8 16.1 37.5

VRP

µ : 59960.6 13367.9 148318.6 20862.3 147540.2

min : 57715.2 13297.9 143904.5 20656.2 145672.5

σ : 30.7 5.3 44.8 20.0 31.1

TSP

µ : 48274.2 20799913.7 6874.7 66812.4 53392.0

min : 48194.9 20657952.5 6851.1 66074.7 52661.2

σ : 6.9 442.1 3.2 17.5 25.7
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Table 4: Average performance comparison of TeBHA-HH to AdapHH, the winning hyper-

heuristic of CHeSC 2011 for each instance. Wilcoxon signed rank test is performed as a

statistical test on the objective values obtained over 31 runs from TeBHA-HH and AdapHH.

≤ (<) denotes that TeBHA-HH performs slightly (significantly) better than AdapHH (within

a confidence interval of 95%), while ≥ (>) indicates vice versa. The last column shows the

number of instances for which the algorithm on each side of ”/” has performed better.

Instances

Problem 1 2 3 4 5 TeBHA-HH/AdapHH

Max-SAT < < < ≤ ≤ 5/0

BP < > > > > 1/4

PS < ≤ < ≤ > 4/1

FS > > > > > 0/5

VRP < ≤ > > ≥ 2/3

TSP > ≥ > > ≥ 0/5

observed across the rest of the CHeSC 2011 instances.

5.4.1. Performance comparison to the competing algorithms of CHeSC 2011

The results obtained from the experiments as described in the previous sec-

tion, are then compared to the results achieved by all CHeSC 2011 contestants.

We used the Formula 1 scoring system provided by the organizers to determine

the rank of our hyper-heuristic among all other competitors. Table 5 provides

the ranking of all CHeSC 2011 hyper-heuristics including ours. Since Ant-Q

received a score of 0, that hyper-heuristic is ignored. The details of ranking per

domain, and the succeeding/preceding algorithms are shown in Figure 11. The

TeBHA-HH ranks first in Max-SAT and VRP domains. It ranks 2nd in BP and

3rd in PS domains while it’s ranking on the TSP domain is 4th. Our algorithm

gained no score on the FS domain (a score of 0 equal to 10 other algorithms).

Overall, TeBHA-HH ranks the second with a total score of 148 after AdapHH.

As it is evident in Table 3, we produce the best results (compared to the results

announced after the CHeSC 2011 competition) for the first instances of the BP
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Figure 10: Box plots of objective values (y axis) over 31 runs for the TeBHA-HH with AdapHH,

SR-NA and SR-IE hyper-heuristics on a sample instance from each CHeSC 2011 problem

domain.

and VRP domains as well as the best result for the second instances of the TSP

domain (the bold entries in Table 3).

5.4.2. An Analysis of TeBHA-HH

In this section, an analysis of the TeBHA-HH algorithm is performed to

gain some insight into its behaviour during the search process. The objective

value progress plots in almost all cases look the same, hence we have chosen an

instance of the BP problem from CHeSC 2011 for which the TeBHA-HH demon-

strates a good performance, while it consistently produces the same heuristic

space partitioning in the tensor analysis stage. It is clear from Figure 5(e)

that heuristics MU1 and LS1 are always assigned to the set hNA while the

rest of the heuristics (excluding the crossover heuristics) are assigned to the

set hIE . In each previous experiment, we run our algorithm on the BP in-

stance for 31 runs. The plot in Figure 12(a) shows how the average objective

value changes (decreases) in time during the search process. We have divided
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Figure 11: Ranking of the TeBHA-HH and hyper-heuristics which competed at CHeSC 2011

for each domain.
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Table 5: Ranking of the TeBHA-HH among the selection hyper-heuristics that were competed

in CHeSC 2011 with respect to their Formula 1 scores.

Rank Name Score Rank Name Score

1 AdaptHH 162.83 11 HAEA 45

2 TeBHA-HH 148 12 ACO-HH 37

3 VNS-TW 118.83 13 Gen-Hive 32.5

4 ML 117.5 14 DynILS 22

5 P-Hunter 84.75 15 SA-ILS 18.75

6 EPH 83.25 16 AVEG-Nep 18.5

7 NAHH 68.5 17 XCJ 17.5

8 HAHA 65.58 18 GISS 13.25

9 ISEA 62.5 19 MCHH-S 3.25

10 KSATS-HH 52 20 Self Search 3

the progress of the algorithm into 3 distinct stages which represent the early,

medium and late stages of the search, respectively (not to be confused with

algorithm phases/stages, this is simply dividing the run-time into 3 periods).

Figure 12(b) shows a close-up of the same plot achieved for a single run within

the early stage. The dark rectangle shapes correspond to the times when naive

acceptance is in charge. It is obvious that an extensive diversification process

takes place in the vicinity of the current objective value when NA is at work. It

also seems that during the time when the IE acceptance mechanism is in charge,

intensification is in order. This leads to the conclusion that the hybrid accep-

tance scheme approximates the actions of a higher level iterated local search

while maintaining a balance between intensification and diversification. This is

in-line with extracting domain independent domain knowledge as discussed in

[53] where the knowledge encapsulates the heuristic indexes assigned to each ac-

ceptance mechanism. We have seen in Section 5.3 that the value ts = 500 msec,

results in slightly better objective function values, especially when compared to
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ts = nil. The analysis given here clarifies this issue. When ts = nil, less time

remains for both diversification and intensification processes, hence leading to

a poor interaction/balance between the two acceptance mechanisms.

Furthermore, regardless of the type of acceptance mechanism, the algorithm

manages to update the best values as is shown in Figure 12(c). The share

of each heuristic in updating the best-so-far solution is also demonstrated in

Figure 12(c). Interestingly, while the local search heuristic LS1 is responsible

for most of improvements when NA is at work, a mutation operator (MU1)

increasingly produces most of the improvements when IE is operational. In a

way, hyper-heuristic using IE operates like a random mutation local search.
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Figure 12: The interaction between NA and IE acceptance mechanisms: (a) The search

process is divided into three sections, (b) a close-up look on the behaviour of the hybrid ac-

ceptance mechanism within the first section in (a), (c) the share of each acceptance mechanism

in the overall performance stage-by-stage.
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6. Conclusions

Machine learning is an extremely important component of the adaptive

search methodologies, such as hyper-heuristics. The use of a learning mecha-

nism becomes even more crucial considering that hyper-heuristics aim to “raise

the level of generality” by their design and implementation which is expected be

applicable to different problem domains, rather than a single domain. Reinforce-

ment learning, learning automata, genetic programming and classifier systems

are some of the online and offline learning techniques that have been used within

or as hyper-heuristics [12]. In this study, we have introduced a novel selection

hyper-heuristic embedding a tensor-based approach as a machine learning tech-

nique and combining random heuristic selection with the naive (NA), and im-

proving and equal (IE) move acceptance methods. The tensor-based approaches

have been successfully applied in other areas of research, such as computer vision

[56], but they have never been used in heuristic search, previously.

In the proposed approach, tensors represent the interaction between low level

heuristics in time under a certain selection hyper-heuristic framework. Then the

gained knowledge is used to improve the overall search process later by hybridiz-

ing move acceptance methods in relation to the low level heuristics. In order to

be able to evaluate the behaviour of the proposed approach, we have ensured

that the building blocks of the framework are in their simplest forms. For exam-

ple, the default settings for the HyFlex low level heuristics are used and NA and

IE are employed as move acceptance components. Nevertheless, the proposed

tensor-based framework proved to be very powerful demonstrating an outstand-

ing performance. Using NA and IE move acceptance in a multi-stage manner

switching between them enforces diversification and intensification balance. De-

spite all the simplicity of its components, our hyper-heuristic ranked the second

among the contestants of the CHeSC 2011 across six problem domains, even

beating the average and best performance of the winning approach in some

problem instances, particularly from bin packing, maximum satisfiability and

the vehicle routing problem.
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There is further space for future work. Similar to the work in [6], appren-

ticeship learning approach could be used in combination with tensor analysis

to shed light on the mechanisms with which a given (hyper-)heuristic discov-

ers the interaction between algorithm components. In addition to this, we will

investigate into different ways of employing and exploiting tensors in heuristic

search and optimization as well as improving the performance of the proposed

framework even further.
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