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Abstract—An iterative selection hyper-heuristic
method controls and mixes a set of low-level heuristics
while solving a given problem. A low-level heuris-
tic is selected and employed for improving a (set
of) solution(s) at each step. This study investigates
the influence of different heuristic selection meth-
ods within a population based incremental learning
algorithm and hyper-heuristic based hybrid multi-
phase framework for solving dynamic environment
problems. Even though the hybrid method delivers a
good overall performance, it is superior in cyclic en-
vironments. The empirical results show that a heuris-
tic selection method that relies on a fixed permuta-
tion of the underlying low-level heuristics, combined
with a strategy that guarantees diversity when the
environment changes is more successful than the
learning approaches across different cyclic dynamic
environments produced by a well known benchmark
generator.

I. INTRODUCTION

In some difficult optimisation problems, environ-
ment changes over time while the optimisation process
is in progress. These types of problems are referred to
as dynamic environment problems. When performing
a search for the best solution in such environments,
the dynamism is often ignored and traditional optimi-
sation methodologies are employed. However, the key
to success for an optimisation algorithm in dynamic
environments is the capability of adapting itself with
respect to the changes. There are many approaches in
literature that are used for solving dynamic environ-
ment problems [1]-[3]. It has been observed that differ-
ent approaches handle different types of dynamism in
the environment better comparably. This implies that
the properties of the dynamism needs to be known
beforehand to be able to choose the most appropriate
optimisation approach, however, this may not be the
case given a dynamic environment problem.

Statistical Model-based Optimization Algorithms
are adaptive in nature and are expected to be able
to track the changes in the search space, if it occurs.
Hence, they are potentially good approaches for solving

dynamic environment problems. The use of such algo-
rithms has been growing in recent years. Probabilistic
model-based techniques, for example Estimation of
Distribution Algorithms (EDAs) are among the most
common ones used within these approaches. In EDAs,
the probabilistic distribution model, learned based on
the current best candidate solutions, are used to create
new candidate solutions. Univariate marginal distri-
bution algorithm (UMDA) [4], Bayesian optimization
algorithm (BOA) [5] and population based incremental
learning (PBIL) [6] are among the most commonly
used EDAs in literature. There have been some studies
also that apply improved EDAs in dynamic environ-
ments [7]-{13].

Heuristic and meta-heuristic approaches mostly uti-
lize problem domain specific information and operate
directly on the solution space. An EDA is a type
of meta-heuristic approach which conducts popula-
tion based search over the space of solutions. Hyper-
heuristics [14] are more general methods designed
for solving different computationally difficult problems
even from different domains. They perform search
over the space formed by a set of low-level heuristics
which perturb or construct a (set of) candidate solu-
tion(s) [15], [16]. Hyper-heuristics operate at a higher
level communicating with the problem domain through
a domain barrier as they perform search over the
heuristics. Any type of problem specific information
is filtered through the domain barrier. Due to this
feature, a hyper-heuristic can be directly employed
in various problem domains without requiring any
change, of course, through the use of appropriate do-
main specific low-level heuristics. This gives hyper-
heuristics an increased level of generality. There are
two main types of hyper-heuristics; methodologies that
generate and select heuristics. This study focuses on
the selection hyper-heuristic methodologies. An iter-
ative selection hyper-heuristic consists of a heuristic
selection and move acceptance components. A (set of)
current solution(s) is modified by application of a



heuristic to a solution in hand which is chosen by
the heuristic selection method at each step. Then the
new (set of) solution(s) is accepted or rejected using
the move acceptance method. This process continues
until the termination criteria are satisfied. More on
hyper-heuristics including different heuristic selection
and move acceptance components in literature can
be found in [14]. There is strong empirical evidence
showing that selection hyper-heuristics are able to
quickly adapt without any external intervention in a
given dynamic environment providing effective solu-
tions [17]-[19].

In order to exploit the advantages of approaches
with learning and those with model-building features
in dynamic environments, we proposed a hybridization
of EDAs with hyper-heuristics in the form of a multi-
phase framework in [20]. In this study, we extend our
previous studies and perform exhaustive tests to em-
pirically analyze and explain the behavior of such an
EDA and hyper-heuristic hybrid and try to determine
a selection method which performs well within the
previously proposed framework.

The rest of the paper is organized as follows. Sec-
tion II describes the proposed multi-phase hybrid ap-
proach which combines selection hyper-heuristics and
multi-population EDAs. The empirical analysis of this
hybrid approach over a set of dynamic environment
benchmark problems and the experimental design are
provided in section III. Finally, section IV discusses the
conclusion and future work.

II. A PBIL AND HYPER-HEURISTIC HYBRID

In our previous study we proposed a hybrid frame-
work [20], which combined aspects of hyper-heuristics
and multi-population EDA approaches. The proposed
framework can combine any multi-population EDA
with various selection hyper-heuristics. In our prelim-
inary study, we hybridised a two population PBIL ap-
proach with hyper-heuristics. We called this approach
HH-PBIL2. HH-PBIL2, which is inspired by SPIL2
introduced in [12], consists of two phases

In the first phase, probability vectors Plist corre-
sponding to a set of different environments are learned
in an offline manner using standard PBIL (SPBIL).
Then, those learned probability vectors are stored for
later use in the second phase of HH-PBIL2. In SPBIL,
a posterior probability distribution model of promising
solutions is built using statistical information obtained
from the population of solution candidates. Two main
steps, learning and sampling are used in SPBIL. SP-
BIL algorithm is initialized with the central prob-
ability vector that creates the initial populatlon by
sampling. The real-valued probability vector P( ) =
{p1,p2, ..., o} (L is the blnary-encoded length) is learned
by using the best sample(s) B( ) at each ¢t iteration as
pi(t+1):= (1 —a)pi(t) +aB;(t), i={L1,2,..,1}, where

a is the learning rate. A bitwise mutation is applied
to the probability vector for conserving the diversity.
Then a set S(¢) of n candidate solutions are sampled
from the updated probability vector.

In the second phase, the probability vectors serve
as the low-level heuristics the hyper-heuristic man-
ages. Figure 1 shows a simple diagram 1llustrat1ng
the execution of HH-PBILZ2. As seen in Figure 1, Plist
represents the probability vectors learned during the
offline learning phase.

learning

1 .
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pop2

best k solution candidates

HH Select

Figure 1: The framework of HH-PBIL2

The second phase of HH-PBIL2 framework uses a
multi-population scheme for SPBIL named SPBILZ2.
The population is divided into two sub-populations and
two probability vectors, one for each sub-population,
are used in parallel. As seen in Figu_r}e 1, popl rep-
resents the first sub-population and P is its corre-
sponding probability_yector, pop2 represents the second
sub-population and P, is its corresponding probability
vector. The pseudocode of the proposed HH-PBIL2 is
shown in Algorithm 1.

In HH-PBIL2, the first probability vector P1 is
initialized to the central probablhty vector, and the
1n1t1al second probability vector P2 is selected from the
Plist randomly. Initial sub-populations are sampled
independently from their own probability vectors and
their sizes are equal. After the fitness calculation,
the sub-population sample sizes are slightly adjusted
within the range [0.3_) * n, 0.7 % n] according to their
best fitness values. P; is learned towards the best
solution candidate(s) in _t)he ii)rst sub-population and
mutation is applied to P;. P 1s selected using the
heuristic selection methods from Plist. Then, two sub-
populations are sampled based on their respective
probability vectors. The approach repeats the cycle
until some termination criteria are met. In the HH-
PBIL2 framework, different heuristic selection meth-
ods can be used for selecting the second probability
vector from Plist.

There are many heuristic selection methods pro-
posed in literature [15], [16]. Some of these methods
include Simple Random (SR), Random Descent (RD),



Algorithm 1 Pseudocode of the proposed HH-PBIL2
approach
1: t:=0
2: initialize P1(0) = 0.5 _
: Po(0) is selected_f>r0m Plist _
S51(0) := sample(P1(0)) and S2(0) := sample( P 2(0))
while (termination criteria not fulfilled) do
evaluate Si(t) and evaluate S (_t)) -
adjust next population sizes for P (¢) and P2(¢) Lespectively
place k best samples from S;(¢) and S2(t) into B (t)
send best fitness from whole/second population to heuristic
selection methods _,
10:  learn PLgt) toward B (t)
11: rgutate Pi(t)
12: P(t) is selected using heuristic selection
13:  Si(t) == sample(P1(t)) and Sa(t) := sample( Pa(t))
14: t:=t+1
15: end while
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Random Permutation (RP), Random Permutation De-
scent (RPD), Reinforcement Learning (RL), Greedy
selection (GR), and Choice Function (CF). SR, ran-
domly selects a low-level heuristic and applies it to
the candidate solution. RD applies a randomly selected
heuristic to the current candidate solution repeatedly
as long as solution improves, otherwise another low-
level heuristic is selected randomly. RP randomly or-
ders all low-level heuristics and applies each heuris-
tic in turn. RPD selects a low-level heuristic in the
same way as RP, but it applies the selected heuris-
tic repeatedly as long as the solution improves. In
RL, each low-level heuristic has a utility score. The
scores of each heuristic are initialized to the same
value and updated during the search process based on
its performance. At each step, the low-level heuristic
with the maximum score is selected. If the selected
heuristic produces a better solution than the previous
one, it is rewarded by increasing its score, otherwise
it is penalized by decreasing its score. The scores are
restricted to vary between predetermined lower and
upper bounds. These heuristic selection methods can
be used for hybridization in HH-SPBIL2.

GR applies all low-level heuristics one by one to the
candidate solution and the best new solution and so
the heuristic is selected. For HH-PBIL2, this means
that a whole sub-population will be sampled for each
vector and the resulting individuals will be evaluated
to select the best low-level heuristic. In CF, when
scoring a heuristic, the difference between the fitness
values of the offspring and the current candidate solu-
tion is taken into account. In a dynamic environment
setting, this means that whenever a change occurs, the
current candidate solution has to be re-evaluated in
the new environment. For HH-PBILZ2, this involves re-
evaluating all the candidate solutions in the current
population. Both GR, in its basic form as explained
above, and CF are computationally inefficient when

used in HH-PBIL2. Therefore, we do not employ these
two heuristic selection methods in the rest of the
study.

III. EXPERIMENTS

In this study, we perform experiments in two parts.
First, we conduct a series of tests to do a comprehen-
sive performance analysis for explaining the behavior
of HH-PBILZ2. Then, we experiment with a set of selec-
tion heuristics to analyze their behavior and determine
the one that performs best when used within HH-
PBIL2. In some of the tests, SPBIL, SPBIL2 and HH-
PBIL2 will be used for comparisons.

In order to generate dynamic environments, we use
the XOR generator [6], [21]. In the offline learning
stage, first a set of M XOR masks are randomly gen-
erated. Then, for each mask (i.e. environment), SPBIL
is executed for 100 independent runs where each run
consists of 10,000 generations. During offline learning,
each environment is stationary. At the end, the prob-
ability vector producing the best solution found 50 far
over all runs for each environment, is stored in Plist.

We use three Decomposable Unitation-Based Func-
tions (DUFs) [12] together with the XOR generator.
All DUFs are composed of 25 copies of 4-bit building
blocks. Each building block is denoted as a unitation-
based function u(x) which gives the number of ones in
the corresponding building block. Its maximum value
is 4. The fitness of a bit string is calculated as the
sum of the u(x) values of the building blocks. The
optimum fitness value for all DUFs is 100. DUF1 is
the OneMax problem whose objective is to maximize
the number of ones in a bit string. DU F'2 has a unique
optimal solution surrounded by four local optima and
a wide plateau with eleven points having a fitness of
zero. DUF2 is more difficult than DUF1. DUF3 is
fully deceptive. The mathematical formulations of the
DUFS, as given in [12], can be seen below.

four1 = u(z) (1)
4 ,ifu(z)=4
foura =4 2 ,ifu(z)=3 (2)
0 ,ifu(z)<3
[ 4 ,ifu(x) =4
fours = { 3—u(z) . ifu(z) <4 3)

SPBIL, SPBIL2 and HH-PBIL2 share some common
settings which are used as suggested in [12]. The prob-
lem consists of 25 building blocks of length 4, therefore
solution candidates are of length 100. Mutation shift
is taken as 0.05 and 3 best candidate solutions are
used in the online learning of probability vectors. The
population size is set to 100. Both in SPBIL2 and HH-
PBIL2, each sub-population size is initialized as 50 and
they are allowed to vary between 30 and 70.



In the first phase of HH-PBIL2, probability vectors
corresponding to a set of different environments are
learned offline using SPBIL. During this phase, muta-
tion rate and learning rate are taken as 0.02 and 0.25
respectively.

We experiment with two main types of dynamic
environments: randomly changing environments and
cyclic environments. To generate dynamic environ-
ments showing different dynamism properties, we con-
sider different change frequencies 7, change sever-
ities p and cycle lengths CL. The values used in
the experiments for these parameters are determined
through a set of preliminary experiments. In the cyclic
environments, we assume that the environments re-
turn to their exact previous locations. We determined
the change periods to correspond to low frequency
(LF), medium frequency (MF) and high frequency
(HF) changes as 50 generations, 25 generations and
5 generations respectively for DUF1 and DUF2 and
as 100 generations, 35 generations and 10 generations
respectively for DUF3. In convergence plots, these
settings for LF, MF and HF correspond respectively
to stages where the algorithm has been converged for
some time, where it has not yet fully converged and
where it is very early on in the search. In randomly
changing environments, for change severities, 0.1, 0.2,
0.5 and 0.75 are chosen to denote low severity (LS),
medium severity (MS), high severity (HS) and very
high severity (VHS) changes respectively, for random
dynamic environments. These are determined based
on the definition of the XOR generator. For cyclic
environments, the cycle lengths C'L are selected as 2,
4 and 8.

For each run of the algorithms, 128 changes oc-
cur after the initial environment. Therefore, the to-
tal number of generations in a run is calculated as
maxGenerations = changeFrequency * changeCount. In
order to compare the performance of the algorithms,
the results are reported in terms of offline error [1],
which is calculated as the cumulative average of the
differences between the best values found so far and
the optimum value at each time step.

Lz
TZ‘Optt_et*‘ (€))
t=1

exy = max(er,eri1, ..., €4)

where T is the total number of evaluations and 7 is
the last time step (7 < t) when change occurred.
Fitness values are calculated using the correspond-
ing DUF definitions given above. In all our experi-
ments, while the location of the global optimum may
change, its fitness value remains the same and is
always 100. The main aim in the optimisation here is
to minimize the offline error. All reported results are

averages of final offline errors achieved at the end of
the runs, over 100 independent runs.

One-way ANOVA and Tukey HSD tests at a 95%
confidence level are performed to observe whether
the pairwise performance variations between the ap-
proaches are statistically significant or not. Where
statistical significance tests are reported, the following
notation is used: Given A vs B, s+ (s—) denotes that A
(B) is performing statistically better than B (A), while
A > B (A < B) indicates that A (B) performs slightly
better than B (A) and this performance difference is
not statistically significant.

In the first set of experiments, we investigate the
effect of the number of low-level heuristics, i.e. the
learned probability vector counts. In our previous
study [20], we compared two variants of HH-PBIL2
denoted RL-PF and RL-P2 with the SPBIL and SP-
BIL2 approaches proposed in [12]. In the RL-PF vari-
ant, the RL heuristic selection method is used for
hybridization, and the best performing candidate so-
lution(s) from the whole population, i.e. from the two
populations combined, are used to update the score.
In the RL-P2 variant, the best performing solution
candidate(s) from only the second population is used
to update the score. The results showed that the RL-
P2 variant outperforms the others. Therefore, for this
experiment we only used the RL-P2 variant. As the
number of low-level heuristics, we test the following
values: 8,16, 32, 64. For this experiment, mutation rate
P,, and learning rate « are taken as 0.02 and 0.25 re-
spectively. The RL settings are taken as recommended
in [22]. The results of the ANOVA and Tukey’s HSD
tests for statistical significance are reported in Table I.
In the table, each entry shows the total number of
times the corresponding approach achieves the corre-
sponding significance state (s+, s—, > and <) over
the others on the three DUFs for different change
severity and frequency settings in randomly changing
environments and for different cycle length and change
frequency settings in cyclic environments. From the
table, we can see that M = 8 is better. So, for the rest
of the experiments, the number of low-level heuristics,
i.e. learned probability vector counts, is taken as 8.

Table I: Overall counts for the RL-P2 approach.

[ M | s+ [ s— [ > [ <]
8 79 57 20 33
16 66 59 37 27
32 71 56 36 26
64 37 81 32 39

In the second set of experiments, we explore the
performance of the RL-PF, RL-P2, SPBIL, and SPBIL2
approaches with different combinations of restart
schemes. All restart schemes are scored according to
the Formula 1 scoring system. For each algorithm, the



median offline error value of 100 runs is calculated.
Then, the results are ordered by median values and
the top 8 algorithms are assigned a score of 10, 8, 6, 5,
4, 3, 2 and 1 point respectively [23]. Considering both
random and cyclic environments there are 63 different
problems, therefore, the maximum overall score that
an algorithm can get is 630.

For HH-PBIL2 the following restart schemes are
used. The original scheme (there is no restart) is
denoted as Case0. In the Casel scheme, only the first
probability vector and in the Case2 scheme, only the
second probability vector is reset to the central prob-
ability vector when environmental change is detected.
In the Case3 scheme, the second probability vector is
initialized to the central probability vector at the be-
ginning of the run but is not reset when change occurs.
In the Case4 scheme, like in the previous case, the
second probability vector is initialized to the central
probability vector at the beginning of the algorithm.
However, here, the central probability vector is also
included in the list of low-level of heuristics Plist. For
SPBIL, the probability vector is reset to the central
probability vector when change is detected. This is
denoted as Casel. For SPBIL2, when environmental
change is detected, in the Casel scheme, only the
first probability vector is reset to the central proba-
bility vector and in the Case2 scheme, only the second
probability vector is initialized randomly. In the Case3
scheme, the first probability vector is restarted with
the central probability vector and the second probabil-
ity vector is initialized randomly when environmental
change is detected.

A total of 16 different schemes are scored, but due
to lack of space, only the best 8 schemes according to
the ranking results are shown in Table II. In [23], the
scoring was only done based on a ranking performed
using the median values. To give a better idea of the
behavior of the approaches, here, we calculate three
scores based on the median values, the best values
and the average values. In all rankings, even though
the ordering may be slightly different, the first 8
approaches were the same. Looking at the results in
the table we can see that the first 6 schemes achieved
much better scores than the others. Therefore, for the
next step of the experiments, we will only consider
these 6 schemes.

After performing the ranking, we also counted the
overall significance states (s+, s—, > and <) as be-
fore, on the three DUFs for different change severity
and frequency settings in randomly changing envi-
ronments and for different cycle length and change
frequency settings in cyclic environments for the best
6 schemes. According to the results in Table II, the
RL-P2-Casel scheme outperforms the others.

In all approaches (SPBIL, SPBIL2, HH-PBILZ2),
there are two important parameters, which may affect

Table II: The best 8 schemes according to the Formula
1 ranking based on median, best and average offline
error values.

[ Algorithms [ Median [ Best [ Average |
RL-P2-Casel 386 363 378
SPBIL-Casel 368 333 369
RL-PF-Casel 282 294 289
RL-P2-Case3 222 218 212
SPBIL2-Case2 218 205 220
RL-P2-Case0 201 222 206
SPBIL2-Casel 165 150 165
RL-P2-Case4 146 156 148

Table III: Overall (s+, s—, > and <) counts for the 6
selected schemes

[ Algorithms [ s+ [ s— [ > T <]
RL-P2-Casel 185 64 24 42
SPBIL-Casel 174 116 21 4
RL-PF-Casel 131 125 29 30

SPBIL2-Case2 108 160 23 24
RL-P2-Case0 93 159 29 34
RL-P2-Case3 92 159 36 28

the performance of the algorithms: the mutation rate
P,, and the learning rate «. In order to investigate the
effects of the selection of these parameters, different
P, values are tested in combination with different
« values for the RL-P2-Casel scheme. For these set
of experiments, {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1} values and {0.10, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80,
0.85, 0.90, 0.95} values are tested for P,, and for « re-
spectively. The experiments are performed for medium
severity (MS) and medium frequency (MF) settings for
randomly changing environments and changes at a
cycle length of CL=4 and medium frequency (MF) for
cyclic environments. Figure 2 and Figure 3 show the
plots for the offline error values versus the different o
values with different P,, values in randomly and cyclic
changing environments respectively for only DUF2.
For lack of space, the results for the other DUFs are
not given, however, they show similar tendencies. The
plots show that, the best P,, and o« combination is 0.1
for P,, and 0.35 for a. However, it can also be seen
that the setting of P,, is not very critical, especially
in the cyclic environments. For a good setting of «, all
P,, values give similar results. The setting of « seems
to be more effective in performance, however, the plots
show that it is not very sensitive, i.e. values between
0.2 and 0.6 produce acceptable results.

In the final set of experiments, we explore the effects
of the heuristic selection methods on performance us-
ing the results obtained in the previous set of exper-
iments. For these tests, we use 0.1 for P,, and 0.35
for o as selected in the previous tests. We experiment
with five heuristic selection methods SR, RD, RP, RPD,
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RL for the XX-P2-Casel hyper-heuristic scheme (XX
stands for the heuristic selection method). For each
heuristic selection scheme, we looked at the offline
errors achieved at the end of a run, averaged over 100
runs, for all DUFs.

The results for randomly changing environments are
provided IV. For randomly changing environments, all
heuristic selection schemes performed well and there
were no statistically significant differences between
the results.The results for the cyclic environments are
summarized in Table V. For each column, the best
scheme is highlighted. The results show that for DUF1
and DUF2, in the tested cyclic environments, RP per-
forms the best as a heuristic selection method in the
HH-PBIL2 framework. For DUF3, RPD seems to pro-
duce better results than RP, however, when the actual
values are observed, it can be seen that they are very
close. This result was contrary to our initial intuition
that a heuristic selection scheme with learning would
be better, especially in cyclic environments. However,
this is not surprising. In the cases where the period
of the change is larger than the number of heuristics,
the RP approach becomes equivalent to GR, since each
heuristic is applied to each environment at least once,

regardless of the permutation. Therefore, the heuristic,
i.e. the probability vector that was specifically learned
for that environment, ends up being applied at least
once in that environment. As the offline error calcu-
lation considers the improving results at each step,
the offline error produced by the heuristic trained
specifically for that environment, which is expected
to be very low, gets included. Thus, the final offline
error at the end of the run is lower. This confirms
our findings in [19] that the best heuristic selection
mechanism that works with the acceptance scheme
that accepts all moves! is GR. This is also supported
by the fact that, in the table the results for LF and
MF cases produce very low offline error values, but
the values become high for HF. In the experiments
for DUF1 and DUF2, 50 generations, 25 generations
and 5 were used for LF, MF and HF changes. For the
HF case, the environment changes every 5 iterations,
which is lower than the number of heuristics (M = 8).
So for some environments the corresponding heuristic
may not get applied.

Based on the offline errors achieved at the end of a
run, averaged over 100 runs, we also counted the over-
all significance states (s+, s—, > and <) as before, on
the three DUF's for different change severity and fre-
quency settings in randomly changing environments
and for different cycle length and change frequency
settings in cyclic environments, for the different hyper-
heuristics incorporating different heuristic selection
schemes. The results are given in Table VI. The re-
sults show that, overall, the hyper-heuristic, in which
Random Permutation is used as the heuristic selection
mechanism is statistically significantly better than the
others in a much higher number of cases.

Table VI: Overall (s+, s—, > and <) counts for the dif-
ferent hyper-heuristics incorporating different heuris-
tic selection schemes.

[ Algorithms [ s+ | s— | > [ < ]
RP 113 20 65 54
RPD 78 29 82 63
SR 57 55 59 81
RD 30 81 69 72
RL 18 111 59 64

IV. CONCLUSION AND FUTURE WORK

In this study we explored the effects of heuristic
selection methods to determine the best one for the
HH-PBIL2 framework which was proposed earlier in
[20]. We performed an analysis of our approach under
different parameter settings first, to achieve this goal.
We looked at the effects of the number of low-level

10ur proposed approach does not use any acceptance scheme
within the HH framework. This is equivalent to accepting all moves.



Table IV: Offline errors generated by each heuristic selection methods averaged over 100 runs, on the three
DUFs for different change severity and frequency settings in randomly changing environments.

Al LF MF HF
g LS [ MS | HS | VHS LS [ MS | HS | VHS IS [ MS | HS | VHS
[ DUF1 \
SR-P2 0.06 | 0.06 | 0.08 | 0.09 017 | 025 | 0.85 | 098 || 21.98 | 2364 | 26.78 | 28.29
RD-P2 0.06 | 0.06 | 0.08 | 0.09 017 | 025 | 089 | 1.05 || 21.97 | 2363 | 26.83 | 28.42
RP-P2 006 | 0.06 | 008 | 008 || 017 | 026 | 086 | 099 | 21.99 | 2361 | 26.78 | 28.25
RPD-P2 || 0.06 | 0.06 | 0.08 | 0.09 017 | 026 | 088 | 105 || 21.96 | 23.60 | 26.80 | 28.38
RL-P2 0.06 | 0.06 | 0.08 | 0.09 017 | 026 | 0.89 | 1.04 || 21.93 | 23.61 | 26.85 | 28.42
[ DUF2 |
SR-P2 012 | 016 | 052 | 056 043 | 085 | 413 | 460 | 4289 | 4581 | 5093 | 52.08
RD-P2 012 | 015 | 053 | 062 042 | 085 | 433 | 491 || 4298 | 45.79 | 50.93 | 53.13
RP-P2 012 | 016 | 049 | 052 043 | 0.84 | 411 | 457 || 42.89 | 4586 | 50.90 | 52.97
RPD-P2 || 012 | 0.15 | 053 | 0.61 042 | 085 | 436 | 497 || 42.84 | 45.79 | 50.89 | 53.10
RL-P2 012 | 016 | 055 | 061 042 | 085 | 436 | 499 || 42.98 | 45.78 | 51.03 | 53.23
[ DUF3 \
SR-P2 1938 | 18.38 | 16.07 | 14.18 || 19.86 | 18.98 | 17.27 | 1550 || 38.30 | 39.86 | 41.06 | 4050
RD-P2 19.26 | 18.35 | 16.05 | 14.16 || 19.70 | 18.84 | 17.24 | 1552 || 38.29 | 39.64 | 40.66 | 40.23
RP-P2 19.39 | 18.35 | 16.07 | 14.21 || 19.80 | 18.96 | 17.29 | 15.48 || 38.42 | 39.97 | 41.38 | 40.68
RPD-P2 || 19.33 | 18.27 | 16.03 | 14.19 || 19.73 | 18.99 | 17.25 | 15.56 || 38.40 | 39.77 | 40.79 | 40.33
RL-P2 19.25 | 18.30 | 16.00 | 14.15 || 19.58 | 18.89 | 17.28 | 1553 || 38.16 | 39.44 | 40.54 | 40.01

Table V: Offline errors generated by each heuristic selection methods averaged over 100 runs, on the three
DUFs for different cycle length and change frequency settings in cyclic environments.

Al LF MF HF
g CL=2 | CL=4 [ CL=8 || CL=2 | CL=4 | CL=8 || CL=2 [ CL=4 | CL=8

l DUF1 |
SR-P2 0.03 0.03 0.03 0.10 0.08 0.09 15.09 | 15.00 | 15.29
RD-P2 0.04 0.04 0.04 0.15 0.12 0.14 1572 | 1557 | 15.85
RP-P2 0.02 0.02 0.02 0.05 0.05 0.04 14.25 | 13.83 | 13.87
RPD-P2 || 0.03 0.03 0.03 0.06 0.06 0.06 1476 | 1471 | 14.40
RL-P2 0.03 0.04 0.03 0.21 0.16 0.19 16.09 | 17.17 | 16.85

| DUF2 \
SR-P2 0.06 0.06 0.05 023 0.20 0.24 2893 | 20.05 | 29.59
RD-P2 0.07 0.07 0.07 0.42 0.38 0.42 29.19 | 2952 | 29.05
RP-P2 0.04 0.04 0.04 0.09 0.08 0.09 27.37 | 27.02 | 27.24
RPD-P2 || 0.06 0.06 0.05 0.11 0.11 0.12 27.75 | 2861 | 25.59
RL-P2 0.07 0.07 0.07 0.61 0.52 0.57 29.90 | 32.44 | 31.29

l DUF3 |
SR-P2 10.16 | 1136 | 1135 11.09 | 1213 | 1215 || 2414 | 2425 | 2440
RD-P2 1021 | 11.37 | 11.37 11.26 | 1214 | 12.17 || 2353 | 2436 | 23.93
RP-P2 1009 | 11.36 | 11.33 || 10.35 | 11.60 | 1158 | 2274 | 2259 | 23.05
RPD-P2 | 10.11 | 11.33 | 11.32 || 10.36 | 11.50 | 11.49 | 21.23 | 22.22 | 21.42
RL-P2 1043 | 1151 | 1149 || 1201 | 1298 | 12.82 || 24.03 | 28.84 | 26.96

heuristics (number of probability vectors), the muta-
tion rate and the learning rate. The results showed
that the approach is not very sensitive to the mutation
and learning rate. The choice of the number of low-
level heuristics also isn’t very sensitive, however, the
best performance is achieved when the change period,
i.e. the number of iterations between the changes,
is greater than or equal to the number of low-level
heuristics.

Then we introduced the resetting of probability vec-
tors into the hybrid algorithm. We experimented with
several versions where different resetting schemes are
used when the environment changes. The tests show
that this mechanism is important for the approach

to be successful in all types of dynamic environments
we experimented with. This suggests that diversity is
one of the key factors for an improved performance.
However, since SPBIL and SPBIL2 that use the same
resetting mechanisms are not the winners in our ex-
periments considering their overall performances, it is
observed that the hybridization with a hyper-heuristic
approach is beneficial.

Even though the hybrid method provides good per-
formance overall, it generates an outstanding per-
formance particularly in cyclic environments. This is
somewhat expected, since the hybridization technique
acts similar to a memory scheme, which is already
known to be successful in cyclic dynamic environments



[12]. Using the results of the previous experiments,
our final set of tests focused on the effect of the
heuristic selection methods.The results revealed that,
contrary to our initial intuition, the heuristic selection
mechanism with learning isn’t the most successful one
for the HH-PBIL2 framework. The selection scheme
that relies on a fixed permutation of the underlying
low-level heuristics (RP) is the most successful one.
For the cases when the change period is long enough to
allow all the vectors in the permutation to be applied
at least once, the RP heuristic selection mechanism
becomes equivalent to Greedy Selection. In HH-PBIL2,
the move acceptance stage of a hyper-heuristic is not
used. This is the same as using the Accept All Moves
strategy. This move acceptance scheme is known to
perform best with the Greedy Selection method [19].

As future work, we will experiment with other types
of more complex EDA based methods within the HH-
PBIL2 framework. We will also verify our findings in a
real-world problem domain, for example the dynamic
vehicle routing problem.
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