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Abstract—A constraint satisfaction problem (CSP) is a combi-
natorial optimisation problem with many real world applications.
One of the key aspects to consider when solving a CSP is the
order in which the variables are selected to be instantiated. In
this study, we describe a genetic programming hyper-heuristic
approach to automatically produce heuristics for CSPs. Human-
designed ‘standard’ heuristics are used as components enabling
construction of new variable ordering heuristics which is achieved
through the proposed approach. We present empirical evidence
that the heuristics produced by our approach are competitive
considering the cost of the search when compared to the standard
heuristics used to obtain the components for the new heuristics.
The proposed approach is able to produce specialised heuristics
for specific classes of instances that outperform the best standard
heuristics for the same instances.

Index Terms—Constraint Satisfaction, Heuristics, Genetic Pro-
gramming

I. INTRODUCTION

In practice, many combinatorial optimisation problems re-
quire heuristic solutions. Considering the large size of the
space of solutions, it is often infeasible to perform an exhaus-
tive search. Thus, heuristics are used to guide the search to the
promising areas where a solution to the problem is expected to
be found. In this study, we analyse the constraint satisfaction
problem (CSP) as one of the those combinatorial problems
because of its many practical applications (see for example [1],
[2], [3]).

A CSP is defined by a set of n variables with each
variable having a domain of m possible values, and also a
set of constraints with each constraint restricting the values
the variables can take simultaneously. To solve a CSP requires
either to find one possible assignment of values for all the
variables and that satisfies all the constraints or else to prove
that no such assignment exists. CSPs can be approached
by local search algorithms, that do not guarantee to find a
solution [4]; or by complete methods, that guarantee to find
a solution if it exists [5]. In this research, we will focus on
complete algorithms for CSPs, which explore the search tree of
the possible values for each of the variables of the problem [5].
Complete algorithms start from an empty variable assignment
that is extended until obtaining a complete assignment that
satisfies all the constraints in the problem [6]. It is a common
practice to use depth first search (DFS) to solve CSPs [7],
where every variable represents a node in the search tree and
the deeper we go in that tree, the larger the number of variables
that have already been assigned a feasible value. When a
value assigned to one variable breaks one or more constraints,
the instantiation must be undone, and another value must
be considered for that variable. If there are no more values

available, the value of the previous instantiated variable must
be changed; this technique is known as backtracking [8]. The
order in which the variables are considered for instantiation
determines the form of the search tree. Different orderings
to instantiate the variables produce different search trees, and
different search trees represent different costs. Regarding the
cost, this research treats the CSP as a combinatorial problem,
not as an optimization one. There is no cost associated to the
solution itself, but the cost of the search may be different for
two distinct solutions. Thus, when we refer to the cost, we
mean the cost of reaching a solution or proving that none
exists. In this investigation, we do not intend to measure
how good or bad a solution is. We will use the number
of consistency checks as an estimation of the cost of the
search. Every time a constraint is revised to see whether it
is satisfied or not, a consistency check occurs. The smaller the
number of consistency checks, the better the performance of
the algorithm.

This investigation provides evidence that it is possible to
delegate, at least in some tasks, the generation of heuristics to
an automatic process. We have selected features that are ‘old
heuristics’ derived from the state of the variables and used a
genetic programming hyper-heuristic to combine these features
into ‘new heuristics’ for variable ordering within CSPs. The
potential advantage of this re-use of existing heuristics is
that they are likely to encapsulate significant human-derived
expertise and yet such recombinations may still improve them.
The approach is designed for problems where search is needed
to find a solution (a similar approach for local search can
be found in [9]). The approach is tested in the domain of
constraint satisfaction, but it may be applied to other domains
that also use heuristics to guide the search.

Hyper-heuristics are motivated with the goal of automating
the design of heuristic methods to solve hard computational
search problems [10]. Although ‘hyper-heuristic’ is a relatively
new term [11], the idea of automating the design/selection
of heuristics can be traced back to the early 1960’s, when
Fisher and Thompson [12] and Crowston [13] suggested that
combining priority dispatching rules would produce a superior
performance than using any of the rules in isolation. According
to Burke et al. [14], hyper-heuristics can be divided into two
main categories: methodologies that select from a fixed set
of heuristics and generate new heuristics. Regarding hyper-
heuristics that select among existing heuristics, they produce
a mapping between the states of the problem and a feasible
heuristic. These methodologies maintain a set of heuristics
and then, as the problem changes, decide which heuristic



to apply. Examples of these methodologies (although not
all of them use the term ‘hyper-heuristic’ to refer to their
approaches) include dynamic algorithm portfolios like CP-
Hydra [15], [16], ACE [17] and [18], [19]. On the other hand,
hyper-heuristics that produce heuristics identify critical parts
of existing heuristics to create new ones [20], [21]. This study
focusses on a genetic programming approach as a generation
hyper-heuristic which produces new constructive heuristics
based on components of the existing heuristics [22].

This paper is organized as follows. An overview of previous
works related to this research are discussed in Sec. II. Sec-
tion III provides a description of the features used to character-
ize the variables and how those features are used by some well
known variable ordering heuristics. In Sec. IV we describe the
model proposed and how it is used to produce variable ordering
heuristics. The experiments and main results are discussed in
Sec. V. Finally, Sec. VI presents the conclusion and future
directions of this research.

II. BACKGROUND

Genetic programming [23] is an evolutionary algorithm-
based methodology that borrows ideas from the theory of
natural evolution to produce a program. These programs are
represented by tree-based data structures. In the standard for-
mulation, the methodology uses a specialized genetic algorithm
that combines and modifies the programs through three genetic
operators: selection, crossover and mutation. A fitness function
is used to evaluate all the programs and then, the programs with
a higher fitness are more likely to survive to future generations.
Genetic programming has been widely used in investigations
related to automated heuristic generation.

A. Hyper-heuristics for Heuristic Generation

Hyper-heuristics for heuristic generation have successfully
been applied to various problem domains, for example, pro-
duction scheduling [24], [25], cutting and packing [26], [27],
satisfiability [28], [29], travelling salesman problem [30],
vehicle routing problem [31] and timetabling and schedul-
ing [32], [33]. In the domain of production scheduling, ge-
netic programming has been used to evolve dispatching rules.
Genetic programming has also been successfully applied to
produce heuristics for one-dimensional bin packing [34], two-
dimensional strip packing [35] and three-dimensional knap-
sack packing [36]. In the domain of satisfiability, Fukunaga
describes ‘CLASS’ (Composite Leaned Algorithms for SAT
Search), an automated genetic programming heuristic dis-
covery system for SAT. Fukunaga states that, because of
the number of possibilities involved, the task of combining
heuristic components to produce effective heuristics is difficult
to humans but suitable for an automated system.

Genetic programming is not the only methodology to
produce hyper-heuristics for heuristic generation. Özcan and
Parkes introduced a policy matrix hyper-heuristic for one-
dimensional online bin packing [26]. In their approach, an of-
fline genetic algorithm is used to evolve matrices that represent
constructive heuristics.

Most of the work on hyper-heuristics for heuristic gener-
ation has explored the generation of constructive heuristics
–heuristics that start with an empty assignment and try to
iteratively construct a solution to the problem, one step at
the time. Recent work by Burke et al. [37] investigated the
generation local search heuristics by exploring the space of
neighbourhood move operators that can be specified by a
grammar and producing high quality operators through a
grammatical evolution technique. Hong et al. [38] generated
mutation operators based on different probability distributions
for evolutionary programming to solve families of functions.

B. Automated Heuristic Generation for CSP

Related to CSPs, the first ideas on the automated generation
of heuristics were presented in late 90’s [39]. According to the
authors, MULTI-TAC, is described as “an expert system for op-
erationalizing the generic heuristics”. MULTI-TAC produced
programs that represented heuristics designed for systematic
algorithms. More recently, Bain et al. [9], [40] proposed the use
of a genetic programming approach to generate new heuristics
for CSPs. The authors proposed a representation that allows the
generation of heuristics by combining individual functions and
terminals that required some existing heuristics to be broken
down into their component parts. Their approach can be used to
both local search and complete methods but the experimental
set was only conducted on local search algorithms. The main
difference between their work and the one presented in this
document is the set of functions and terminals used to construct
the tree-based data structures. We consider our representation
to be a much simpler one, which makes it easier to understand
and interpret what the heuristics produced are doing. Also,
there are significant differences in the way the heuristics are
interpreted. For example, the approach described by Bain et
al [9], [40] considers that each tree-based structure is by itself,
a heuristic. Our approach provides a second level of generality,
that considers the structures produced by the genetic algorithm,
functions to be evaluated by a generic interpreter. Each one
of these functions can indeed be seen as a heuristic (because
they define the strategy for variable ordering) but the generic
interpreter that evaluates the functions and decides how to use
that evaluation allows more complex behaviours that may be
useful for future studies.

III. FEATURES AND HEURISTICS

There are many heuristics for variable ordering within
CSPs. In a general way, we can see these heuristics as
procedures that receive a set of uninstantiated variables X
and a heuristic function f(x), and return the variable with the
smallest (or largest) f(x). As we will explain in the following
lines, maximization or minimization can be represented by
changing the sign of the value returned by f(x). Thus, we
can assume that the generic interpreter always deals with a
minimization problem (see Algorithm 1). For example, the
DOM heuristic [41] prefers the variable with the minimum
domain size. Its function is f(x) = dom(x). Thus, DOM
will select the variable that minimizes f(x). If we decide to



select the variable that maximizes f(x) we obtain a different
heuristic (the inverse of DOM); but based on the same feature,
the domain size. By using the generic interpreter described in
Algorithm 1, the inverse of DOM would be represented by the
function f(x) = −dom(x). Similar functions can be defined
for any variable ordering heuristic by considering additional
features.

Algorithm 1 Generic interpreter
Require: X = {x0, x1, . . . , xn}, f(x)
[value, index]← min(f(x0), f(x1), . . . , f(xn)))
return xindex

The features considered to characterize the variables within
the CSP instances are described in the following lines.
• Degree, deg(x). The degree of a variable is defined as

the number of constraints with uninstantiated variables in
which the variable participates. If we select the variable
with the largest degree we obtain the DEG heuristic [42].

• Number of conflicts, conflicts(x). A conflict is a pair
of values 〈a, b〉 that is not allowed for two variables at
the same time. The higher the number of conflicts among
the constraints the variable is involved, the more unlikely
that a variable can be instantiated without breaking any
constraint. Thus, the heuristic that instantiates first the
variable with the largest number of conflicts will be
referred to as the MXC heuristic.

• Domain size, dom(x). As mentioned before, selecting the
variable that minimizes dom(x) gives place to the DOM
heuristic [41].

• Kappa, κ(x). Inspired in the κ factor that estimates how
restricted a problem is [43] we propose a similar measure
to be used for each variable. κ(x) is calculated as:

−
∑

cj∈Cx
log2(1− pcj )

log2(dom(x))
(1)

where cj is a constraint where x is involved and prohibits
a fraction pcj of tuples in the constraint. If we prefer the
variable that maximizes the value of κ(x) we obtain the
KAPPA heuristic [43].

Thus, four standard variable ordering heuristics are used
in this investigation: DEG [42], MXC, DOM [41] and
KAPPA [43]. In addition to these variable ordering heuristics,
the values are ordered according to the min-conflicts heuristic
(MNC) [44]. Once a variable is selected for instantiation, the
first value to be tried is the one more likely to success, the
one that participates in the fewest conflicts (forbidden pairs of
values between two variables). In all cases, lexical ordering is
used to break ties.

IV. GENERATION OF NEW HEURISTICS FOR CSPS

This study proposes a method for automatically producing
heuristics for variable ordering within CSPs. The method is
composed by two stages. In a first stage, the main components
of existing heuristics are identified. In the next stage, a genetic

algorithm evolves combinations of the components obtained
in the first stage (in functions represented by tree-based data
structures) to obtain new heuristics.

The main component of any variable ordering heuristic
is the way it decides which variable should be tried before
the others. This component consists of an evaluation of the
variables according to some metric to rank the variables. For
the evaluation of the variables we require the use of features
that are derived from the context of each variable with respect
to the other variables (see Sec. III).

A genetic algorithm is used to produce functions that can be
used as inputs of the generic interpreter shown in Algorithm 1.
These functions combine the features that describe the vari-
ables and allow the heuristics to order them. It is important to
mention that the functions produced by the genetic algorithm
cannot directly be mapped to the cost of the search for a given
instance. The functions are used by the generic interpreter to
order the variables and that order is what will determine the
cost of the search. Then, the functions produced by the genetic
algorithm indirectly determine the cost of the search. Because
the functions produced by the genetic algorithm represent the
core of the new heuristics, we will refer to them only as
heuristics, even though we know that they are always evaluated
by a generic interpreter like the one described in Algorithm 1.

A. Functions and Terminals

The genetic programming approach requires that we define
a function set and a terminal set. The function set provides the
operations allowed in the heuristic function while the terminals
represent the parameters for such functions.

The function set includes only four operations: addition (+),
subtraction (-), multiplication (*) and protected division (%) (if
the divisor is zero no division is performed and the function
returns 1). All these functions receive two arguments. At the
moment, these four simple operations have been sufficient
to produce competitive heuristics. We consider adding more
functions as part of the future work of this investigation.

One of the most interesting and challenging parts in this
research, and where preliminary investigation was needed, was
the definition of the set of terminals. The approach requires
a set of terminals that is capable of describing the current
problem state for the heuristic to provide good advice. Because
we are proposing an approach for generating variable ordering
heuristics, it seemed reasonable for us to focus on features
that describe such variables. The set of terminals contains
all the features described in Sec. III. All these features are
normalized in the range [0, 1] to avoid that some features
contribute more than others when evaluating the functions.
The reader may have noticed that even though we refer to
these features as terminals, they are also functions that receive
a variable and return an evaluation of the variable with respect
to some specific feature. Along with the features that describe
the variables, we have also included a terminal r that randomly
produces a real number in the range [−1, 1] the first time it
is invoked by a heuristic function. Because r may appear in
different functions, its values are randomly chosen for each



〈S〉 → O F O
| O → T | F
| F → + | - | * | %
| T → deg(x) | conflicts(x) | dom(x) | κ(x) | r

Fig. 1. Grammar proposed

function the first time it is called and kept the same for the
rest of the run.

We have proposed a grammar to define all the valid
structures that can be formed by using the functions and
terminals provided. This grammar is shown in Figure IV-A. All
the structures created during the initialization of the genetic
algorithm are randomly generated by following these rules.
As it is defined now, the grammar does not allow simple
structures formed by only one terminal. This was done to
prevent new heuristics from behaving exactly as any of the
standard heuristics.

Figure 2 provides a simple example to show how the
tree-based structures are defined and how they should be
interpreted. The structure represents the function ((r−p1(x))+
dom(x)) ∗ κ(x). The first time the function is evaluated, the
value of r is randomly defined as explained before. Thus, it
will represent a constant for the rest of the evaluations of
this function. Each time the function is evaluated, the values
of the features p1(x), dom(x) and κ(x) change for each
variable, what produces different outputs of the evaluation
of the function for different variables. As we can observe, a
tree-based data structure can represent a wide variety of valid
functions as long as we respect the grammar defined before.

Fig. 2. An example of a tree-based data structure that represents the function
((r − p1(x)) + dom(x)) ∗ κ(x)

B. The Genetic Programming Hyper-heuristic

Our genetic programming hyper-heuristic requires a genetic
algorithm to run to construct tree-based data structures that
represent new heuristics. The genetic algorithm used is a
generational one with memory. The memory guarantees that
if an exceptional good individual is found and later lost by

the evolutionary process, we still can recall it and return it
as the best heuristic function, even if it is not present in the
last population. The parameters for the genetic algorithm for
all the experiments were set as follows. A population size
of 30 was used, and a maximum depth of four was used
for the generation of the initial trees. For initialization, the
grow method was used as described in [23]. Each run of
the genetic algorithm consisted of 50 generations. Tournament
selection of size two is used to select to parents for crossover.
Once the parents have been selected, there is a probability
of 0.9 that they are combined. If crossover takes place, the
parents are combined by using a standard one-point crossover
operator for genetic programming and the new individuals are
included in the new population. If crossover does not occur,
the parents are incorporated to the new population without any
changes. The mutation operator selects one node in the tree-
based data structure at random (each node in the tree has the
same probability of being chosen) and it produces a new sub-
tree with root on the node to be mutated. Because this operator
is more disruptive than the crossover operator, it is applied with
a probability of 0.05, which is significantly smaller than the
probability of crossover.

To estimate the fitness of the solutions, we use the following
algorithm. Each of the m instances in the training set is solved
with the n individuals in the population (heuristic functions).
The quality of each individual i on instance j is estimated as:

q(i, j) =
1

cost(i, j)
(2)

where cost(i, j) is the cost of the search required by individual
i on instance j. The cost of the search is estimated by the
number of consistency checks required by the search.

Then, for each instance j in the training set, we normalise its
quality by dividing the quality of each individual on instance j
over the maximum quality among all the individuals for such
instance:

q̂(i, j) =
q(i, j)

max (q(1, j), q(2, j), . . . , q(n, j))
(3)

Thus, the best individual for each instance will receive a
normalised quality of 1.0. Finally, the fitness of each individual
i is calculated as the sum of all the normalised qualities among
the m instances within the training set:

f(i) =

m∑
j=1

q̂(i, j) (4)

This fitness function is the result of preliminary studies
on similar experiments. One simple approach for estimating
the fitness of an individual is to sum the qualities (before
normalisation), but this leads to over-fitted heuristics, which
are rarely useful for unseen instances. Another drawback of
such approach is that if one instance results in a very expensive
search with respect to other instances in the training set, one
heuristic that performs well on that instance will receive a
high evaluation, regardless of a poor performance on the rest



of the instances in the training set. The fitness function in
this investigation estimates the performance of each heuristic
with respect to the performance of the others. If one instance
is extremely hard the performance of one heuristic in such
instance will always lie in a fixed range, [0, 1], regardless of
how expensive the search is. In general, the fitness function
used in this investigation guides the evolutionary process to
heuristics that are good on many instances of the training set.
In other words, the genetic algorithm is looking for general
heuristics instead of very specialized ones.

V. EXPERIMENTS AND RESULTS

In this section, we describe the instances used in this inves-
tigation, the experiments conducted and the results obtained.
As an overview, the first set of experiments produces and
analyses heuristics on seen and unseen instances of the same
class that was used for training. The second experiment tests
the heuristics obtained in the first experiment on a set of real
instances to prove their generality. The final part of this section
presents the analysis of two of the heuristics obtained through
the approach proposed.

The CSP solver used for this investigation incorporates
constraint propagation by using the AC3 algorithm [45] and
also implements backjumping [46]. All the experiments were
conducted on a 3.6 Ghz. 8-core processor Windows 7 machine
with 16 GB of RAM.

A. Description of the Instances Used

For this study, we have only considered those CSPs in which
the domains are discrete, finite sets and the constraints involve
only one or two variables (binary constraints). Rossi et al. [47]
proved that for every general CSP there is an equivalent binary
CSP. Thus, all general CSPs can be reduced into a binary
CSP. All the random instances used in this investigation were
produced with model F. In model F [48], we select uniformly,
independently and with repetitions, a proportion p1 × p2
conflicts out of the m2n(n− 1)/2 possible. We then generate
a constraint between each pair of connected variables in the
graph until we have exactly p1×n×(n−1)/2 edges and throw
out any conflicts that are not between connected variables in
this graph. Model F has proved to be one of the most robust
random CSPs generators because it is a generalization of the
well studied model E [49]. The values of p1 and p2 used for
the generation of the instances should not be confused with
the features p1(x) and p2(x). In model F, p1 and p2 determine
the constraint density and tightness of the instance generated,
while the features described in Sec. III provide information
regarding each variable.

With model F, we produced two simple classes of random
instances based on the constraint density (sparse or dense)
and tightness (high or low) of the whole instance. All the
instances have 25 variables and 10 values in their domains.
The values of p1 and p2 were randomly selected according to
one of the following: set A (sparse constraints, low tightness)
p1 = [0.2, 0.3], p2 = [0.2, 0.3] and set B (dense constraints,
high tightness) p1 = [0.7, 0.8], p2 = [0.7, 0.8]. Set A contains

TABLE I
CONSISTENCY CHECKS SAVED BY THE HEURISTICS PRODUCED FOR SETS
A WHEN COMPARED AGAINST THE BEST HEURISTIC FOR THESE SETS AND

THE MEDIAN COST OF THE FOUR STANDARD HEURISTICS.

Heuristic Training set Test set
BEST MEDIAN BEST MEDIAN

HA01 4.56% 13.73% 4.58% 11.73%
HA02 2.41% 11.79% 1.73% 9.09%
HA03 2.41% 11.79% 1.73% 9.09%
HA04 2.41% 11.79% 1.73% 9.09%
HA05 3.30% 12.60% 1.89% 9.24%
HA06 1.35% 10.83% 2.08% 9.42%
HA07 3.73% 12.99% 4.73% 11.87%
HA08 1.67% 11.12% 2.46% 9.77%
HA09 1.95% 11.37% 3.80% 11.01%
HA10 2.93% 12.27% 4.67% 11.81%

only satisfiable instances, while set B contains only unsatisfi-
able ones. For each class we produced two sets, one for training
the new heuristics and the other used exclusively for testing
purposes. Each set is named according to the class of instances
it contains. Thus, we produced four instance sets: training sets
A and B; and test sets A and B. Each training set contains
25 instances while the test sets contain 500 instances each.
Thus, a total of 1050 random instances were generated for
this research.

Along with the sets of random instances, a small set of
real instances was also analysed in this investigation. These
instances are analysed to prove that the heuristics produced can
also be applied on structured instances with acceptable perfor-
mance. The set of real instances corresponds to the set ‘driver’
that can be downloaded from http://www.cril.univ-artois.fr/
∼lecoutre/research/benchmarks/driver.tgz. The seven instances
are satisfiable and are considerably larger than the random
instances generated in this investigation by using model F.

B. Generation of New Heuristics

A new heuristic is the result of each run of the genetic
programming hyper-heuristic. The heuristic function (coded in
a tree-based data structure) with the largest fitness obtained
during the evolutionary process is returned as the resulting
heuristic. For each class of instances we produced 10 new
heuristics. Thus, 20 runs of the genetic algorithm were con-
ducted and 20 different heuristics were obtained. In this first
experiment we tested the quality of the heuristics produced
on the sets corresponding to the class they were trained for.
Tables I and II present the results of this experiment.

We can observe that all the heuristics produced reduce the
cost obtained by the best standard heuristic for each class.
Although there is no statistical evidence that suggests that the
real means of the heuristics produced and the best standard
heuristics for each set are different (with 5% of significance),
the savings obtained are indeed, significant in practice. The
heuristics produced are able to reduce the cost of the search
compared to the best standard heuristics on each set, which
provides evidence that the approach is able to evolve heuristics
that specialize for the classes provided as input during the
training process. We also compared the heuristics produced
against the median cost of the four heuristics. In practice, we



TABLE II
CONSISTENCY CHECKS SAVED BY THE HEURISTICS PRODUCED FOR SETS
B WHEN COMPARED AGAINST THE BEST HEURISTIC FOR THESE SETS AND

THE MEDIAN COST OF THE FOUR STANDARD HEURISTICS.

Heuristic Training set Test set
BEST MEDIAN BEST MEDIAN

HB01 5.90% 11.17% 4.33% 9.64%
HB02 1.09% 6.64% 0.12% 5.66%
HB03 5.90% 11.17% 4.26% 9.57%
HB04 5.90% 11.17% 4.23% 9.55%
HB05 6.12% 11.38% 4.30% 9.61%
HB06 6.13% 11.40% 4.20% 9.52%
HB07 5.90% 11.17% 4.44% 9.74%
HB08 4.31% 9.67% 3.92% 9.25%
HB09 4.80% 10.14% 4.39% 9.69%
HB10 5.90% 11.17% 4.31% 9.62%

may not be interested in finding a heuristic that is always better
than a specialized method (the cost of producing such method
may not be feasible), but a general heuristic that performs
acceptably on most of the instances. When the new heuristics
are compared against the median cost of the four standard
heuristics, important savings of more than 9% consistency
checks are achieved by the new heuristics in almost all the
cases (the performance of HB02 will be discussed later).

Regarding how well these heuristics generalize to unseen
instances, for both classes of instances, competitive heuristics
produced for the training sets are also competitive on the test
sets (see for example HA01, HA07, HB05 and HB06). Thus, the
evidence suggests that the approach produces heuristics which
are specialized for the class of instances used for training, but
not over-fitted for such training set. The heuristics produced
are capable of being used on unseen instances of the same
class used for training and still be competitive with respect to
the best standard heuristic for that class of instances.

C. Testing the Heuristics on Real Instances

We tested the 20 heuristics produced in Sec. V-B on a set
containing real instances. In general, the heuristics perform
well when compared against the median result of the four
standard heuristics. In all cases, the heuristics produced save
more than 73% of the consistency checks with respect to
the median cost of the standard heuristics. Nevertheless, the
results are not that encouraging when the heuristics produced
are compared against the best heuristic for the set; in this
case, KAPPA. Only two of the heuristics produced with our
methodology were able to reduce the cost produced by KAPPA
on the set of real instances. HA09 and HB02 proved to be very
competitive heuristics for this set, saving 33% and 71.31%
consistency checks with respect to KAPPA, respectively. Al-
though the large reduction in the number of consistency checks
achieved by HB02, the statistical evidence suggests, with 5% of
significance, that both HB02 and KAPPA may not be different.
It is important to remark that all the instances in this set are sat-
isfiable. Table I shows that HA09 achieved a high performance
on instances from class A (that also contains only satisfiable
instances). HA09 was trained for satisfiable instances, then it is
not surprising that it is able to generalize well on the instances
in the set of real satisfiable instances. On the contrary, the

performance of HB02 on instances from class B is below the
one of the other heuristics trained for unsatisfiable instances
(sets B contain only unsatisfiable instances). HB02 is not as
competitive as other heuristics on instances from class B but
it results in the best heuristic for the set of real instances. It is
not as specialized for instances from class B as others, but it
generalizes well to a completely different type of instances.

Trying to understand what these heuristics are doing, we
present the heuristic functions obtained for HA09 and HB02:

HA09 = (0.2592− dom(x))p1(x) + p2(x) + 0.1637
HB02 = 2.1127− κ(x) (5)

The reader must recall that, because of the generic in-
terpreter used, the variables that minimise the output of the
heuristic function are instantiated first. Also, all the features
that describe the variables are normalized in the range [0, 1].
The analysis of HB09 is straight forward: the new heuristic has
defined a threshold on when to rely on the feature κ(x). For
κ(x) > 2.1127, the evaluation of heuristic function will return
negative numbers, and because the generic interpreter selects
first the variable that minimises the value of the heuristic
function, the variable with the largest κ(x) will be tried first
(just as the standard KAPPA heuristic). On the other hand,
when κ(x) ≤ 2.1127, the evaluation of the heuristic function
will return only positive numbers and then, it will prefer the
variable with the smallest κ(x). The function will always try
first those variables with large values of κ(x), because any
κ(x) ≥ 2.1127 will produce a result which is always smaller
than any other produced by the evaluation of the heuristic
function when κ(x) ≤ 2.1127. Then, HB09 is a revised version
of KAPPA that only prefers variables with small values of κ(x)
when the maximum κ(x) is less or equal than 2.1127 among all
the remaining variables. This small change produces important
savings in the number of consistency checks in the set of real
instances.

The case of HA02 is not as direct to interpret. HA02 is
a combination of three features that describe the variables:
dom(x), p1(x) and p2(x). Only variables with small domain
sizes will make 0.2592 − dom(x) > 0. For variables with
large domain sizes the result will be a negative number that,
when multiplied by p1(x), will produce a larger negative
number. Thus, if a variable has a large domain size, the
first part of the heuristic function will produce only negative
numbers. Variables with small domains (below 0.2592) will
make (0.2592− dom(x))p1(x) to be grater than zero and the
smaller the value of p1(x), the more likely that the generic
interpreter prefers such variable. On the contrary, variables
with large domains will always produce negative numbers and
the larger the value of p1(x), the more likely it is that such
variable is selected first. In HA02, small values of p2(x) are
always preferred and the constant 0.1637 works as a bias, in
the same way we analysed HB09.

At this point we consider important to mention that the
approach proposed sometimes produces functions that can be
simplified into trivial expressions. For example, Fig. 3 shows



Fig. 3. A heuristic function that can be reduced into a trivial expression

heuristic HB07. As we can observe, HB07 apparently considers
two features: the domain size of the variable and its constraint
density. But, the heuristic function described by the tree-based
data structure dom(x)(p1(x)−p1(x))−p1(x) will be reduced
to −p1(x). In fact, HB07 is a trivial heuristic but not a bad
one for instances from class B.

The same problem can occur in other cases. For example,
it may be the case that one operation in the heuristic function
involves two constants. In that case, it is clear that it should be
useful to reduce that operation to a single node with the result
of the operation between the two constants. We are aware that
as part of the future research, we need to implement a module
to optimise and reduce the expressions coded in the tree-based
data structures to avoid cases like the one in these examples.

VI. CONCLUSION AND FUTURE WORK

We have presented an approach for the automated gen-
eration of new heuristics for CSPs. Different heuristics use
different features to rank the variables and decide which one
will be instantiated next. Our approach assumes that a good
heuristic requires more than one feature to make its decisions.
The problem is that, there are so many ways in which the
different features can be combined. Our genetic programming
hyper-heuristic explores the space of combinations of features
and finds functions, represented as tree-based data structures,
that correctly rank the variables. The orderings produced by
the new heuristics represent important savings in the cost with
respect to the best standard heuristic in each class.

The use of a generic interpreter provides a second level
of generality. Similar functions produced by our genetic pro-
gramming hyper-heuristic may be improved by just changing
the interpreter. For example, a change from minimization to
maximization inside the interpreter produces the inverse of
the original heuristic. The exploration of the benefits of the
interpreter is a whole new area of research. For example,
we can make any decision with the rankings returned by the
evaluation of the function inside the interpreter. What would be
the impact in the cost if we change from selecting the minimum
or the maximum f(x) and select the second minimum or the

second maximum? How can the performance of the heuristic
be affected if the interpreter prefers the variable which f(x) is
close to the mode or the median of all the values in f(x)? We
expect to extend our research into this direction in the future.

As part of the future work we will include new operations
to the function set. Also, more features will be included in
the terminal set. We have the belief that if we include more
descriptive features, the approach will be able to provide better
results. Of course, it may be the case that some of the features
are redundant or useless, in which case their incorporation to
the model will only produce noise. A deeper analysis about the
features used to characterize the variables is to be conducted
as part of the future work.
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