
Group Decision Making in Selection
Hyper-heuristics
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Abstract—A hyper-heuristic is a high level methodology which
performs search over the space of heuristics each operating on
the space of solutions to solve hard computational problems.
This search process is based on either generation or selection
of low level heuristics. The latter approach is used in selection
hyper-heuristics. A generic selection hyper-heuristic has two main
components which operate successively: heuristic selection and
move acceptance methods. An initially generated solution is
improved iteratively using these methods. At a given step, the
most appropriate heuristic is selected from a fixed set of low level
heuristics and applied to a candidate solution producing a new
one. Then, a decision is made whether to accept or reject the new
solution. This process is repeated until the termination criterion
is satisfied. There is strong empirical evidence that the choice
of selection hyper-heuristic influences its overall performance.
This is one of the first studies to the best of our knowledge
that suggests and explores the use of group decision making
methods for move acceptance in selection hyper-heuristics. The
acceptance decision for a move is performed by multiple methods
instead of a single one. The performance of four such group
decision making move acceptance methods are analysed within
different hyper-heuristics over a set of benchmark functions.
The experimental results show that the group decision making
strategies have potential to improve the overall performance of
selection hyper-heuristics.

I. INTRODUCTION

Hyper-heuristics are high level methodologies that search
the heuristics-space rather than the solutions, directly in prob-
lem solving. One of the earliest studies on hyper-heuristics
aiming at exploiting the strengths of multiple neighbourhood
operators is provided in [15]. Since then there is a growing
interest in hyper-heuristics [5], [30], [4]. There are two main
classes of hyper-heuristics in the literature: methodologies
to generate heuristics and methodologies to select heuristics.
This study focusses on the latter type of methodologies. A
perturbative heuristic processes and returns a complete solu-
tion. Figure 1 illustrates a selection hyper-heuristic framework
performing a single point search based on perturbative low
level heuristics [9]. In this framework, the hyper-heuristic
layer interacts with the problem domain and heuristic layers
through problem independent measures, such as the quality
change in a candidate solution when the selected heuristic
is employed. [3], [27] identify two key stages in the hyper-
heuristic layer: heuristic selection and move acceptance. An

instance of a selection hyper-heuristic will be denoted by a pair
as “heuristic selection method” “move acceptance criterion”
from this point forward. A selection hyper-heuristic selects
a heuristic from a set of perturbative low level heuristics,
then applies the chosen heuristic to the candidate solution.
Afterwards, it decides whether to accept or reject the new
solution at each step. An initially generated solution goes
through this process repetitively until a set of termination
criteria is satisfied. Finally, the best solution at hand is returned
for a given problem.

 

1. generate initial candidate solution p 

2. best=p 

3. while (termination criteria not satisfied){ 

4.    select a heuristic h from {H1, ..., Hn} 

5.    generate a new solution s=h(p) 

        by applying h to p 

6.    decide whether to accept s or not 

7.    if (s is accepted) then 

8.         p=s;  

9.    if (p is better than best) then 

10.         best=p;  

11. } 

12. return best 

Hyper-heuristic Layer 

(Steps 4 & 6) 

Low level heuristics  H1 Hn 

Domain Barrier 

Problem Domain Layer  

(Steps 1 & 5) 

Fig. 1. Layers in a generic hyper-heuristic framework and pseudocode of a
selection hyper-heuristic

Most of the selection hyper-heuristics in the literature
feature a filter, referred to as domain barrier which does
not allow any domain specific information to be passed
from the problem domain layer to the hyper-heuristic layer
[9], [4]. Hence, selection hyper-heuristics, once implemented,
are reusable general methods, applicable to different unseen
instances from a specific domain as well as different domains.
Even the heuristic selection and move acceptance components
of hyper-heuristics are reusable. Although [8] implied that
hyper-heuristics are problem independent approaches, [27],
[3] showed that different combinations of hyper-heuristic
components, namely heuristic selection and move acceptance
methods might yield different performances even for different
problem instances. This observation is crucial, since it implies
that another level can be introduced on top of the hyper-
heuristics for managing them. Then the question arises: ”How
are we going to end this hierarchical growth in the levels?”.

There are successful approaches that adapt group decision



making models in different ways for solving engineering and
optimisation problems [24], [33]. In [11], ant colony optimiza-
tion approach for global optimisation was proposed. In the
approach, the ants leave pheromones on the trails that they pass
and strengthen link between two objects in the representation.
This process can be considered a voting mechanism. [16]
emphasised the role of combining decision rules within the
scatter search to derive additional trial solutions. Scatter search
is a different optimisation method using a single heuristic
as a neighbourhood operator and exploits adaptive memory.
In this study, four different move acceptance methods which
are derived from well known group decision making models
are investigated within the selection hyper-heuristics for the
first time in the literature. The proposed strategies combine
the decisions of a group of independent move acceptance
mechanisms while deciding to accept or reject a single solution
at each step. The use of a group decision making strategy
allows all member mechanisms to operate at the same level and
flattens the hierarchical growth in the hyper-heuristic levels for
the move acceptance.

Hyper-heuristics that combine seven heuristic selection
methods with the proposed move acceptance strategies are
tested over fourteen benchmark functions. Section II provides
an overview of the selection hyper-heuristics related to this
study. Section III explains group decision making and the pro-
posed hyper-heuristics. The benchmark functions and design
of selection hyper-heuristics are overviewed in Section IV. The
computational results are discussed in Section V. Section VI
concludes the study with a summary and discussion.

II. SELECTION HYPER-HEURISTICS

Many researchers and practitioners have been progressively
involved in hyper-heuristic studies for solving difficult real
world combinatorial optimisation problems. [9] investigated
most of the selection hyper-heuristic components. Simple
Random (SR) randomly chooses a low level heuristic based
on a uniform probability distribution at each step. Random
Descent (RD) selects the heuristic in the same manner as SR,
but applies it repeatedly until no improvement is achieved.
Random Permutation (RP) generates a random initial permu-
tation of the low level heuristics and at each step applies a
low level heuristic in the provided order sequentially. Random
Permutation Descent (RPD) processes the low level heuristics
in the same manner as RP, but proceeds in the same manner
as RD without changing the order of heuristics. The Greedy
(GR) method applies all heuristics to a given candidate so-
lution and selects the one that generates the most improved
solution. Choice Function (CF) uses a learning mechanism
that scores low level heuristics based on their individual
and pair-wise performances. The heuristic having the best
score is selected at each step and applied to the candidate
solution. Two naive acceptance criteria were used to combine
with the aforementioned heuristic selection mechanisms [9].
The All Moves (AM) acceptance criterion accepts all the
generated solutions, while Only Improving (OI) accepts only
better quality solutions. Improving and Equal (IE) accepts

non-worsening moves. The experimental results showed the
superior performance of the CF AM hyper-heuristic. [12]
presented a variant of CF.

[2] compared different Monte Carlo based move acceptance
criteria which allow the acceptance of non-improving moves
using different probability formula. These strategies are similar
to the simulated annealing move acceptance [21] yet without
a cooling schedule. The authors reported the success of the
Exponential Monte Carlo with Counter (EMCQ) with Simple
Random heuristic selection. EMCQ uses the probability of
e−|Deltaf×m/Q for accepting non-improving moves, where f
is the fitness change, m is the duration of the selected heuristic
execution and Q is the number of successive worsening moves.
Q is reset whenever there is an improvement.

[26], [27] compared the performance of many selection
hyper-heuristics and four different frameworks. It has been
observed that different combinations of heuristic selection and
move acceptance components yield different performances.
The hyper-heuristic using a simulated annealing move accep-
tance with a linear cooling rate performed the best (Equation
1), particularly when combined with the Choice Function
heuristic selection. This move acceptance will be denoted as
MC, respecting the notation in the study.

pt = e
− ∆f

∆F (1− t
T

) (1)

where ∆f is the fitness change at step t, T is the maximum
number of steps and ∆F is an expected range for the maxi-
mum fitness change.

[5] proposed a hyper-heuristic combining tabu search and
ranking as a heuristic selection mechanism (TABU IE). Tabu
search was used to avoid selecting poor performing heuristics
by maintaining a tabu list of heuristics. A reinforcement
learning based ranking strategy was employed to calculate and
update the heuristics’ ranks based on their performance. The
resulting ranks were then used to choose heuristics.

[20] experimented with a hyper-heuristic with the SR heuris-
tic selection method and the Great Deluge (GD) acceptance
criterion stochastic acceptance mechanism. GD is based on
a stochastic framework which allows improving moves by
default. Non-improving moves are accepted if the objective
value of the candidate solution is better or equal to an expected
objective value, named as level at each step. The objective
value of the first generated candidate solution is used as the
initial level. The level is updated at a linear rate towards a
final objective value as shown in Equation 2.

τt = f0 +∆f × (1− t

T
) (2)

where τt is the threshold level at step t in a minimisation
problem, T is the maximum number of steps, ∆F is an
expected range for the maximum fitness change and f0 is the
final objective value. Almost all move acceptance methods in
the literature, accept improving moves and they differ in how
they handle worsening moves. There is a growing number of
studies emphasizing the influence of move acceptance methods



in hyper-heuristics. [25] uses late acceptance strategy which
makes the acceptance decision comparing the quality of the
current solution to the quality of another solution, produced a
fixed number of steps earlier. The threshold move acceptance
methods, such as great deluge and adaptive iteration limited
list-based threshold accepting (AILLA) [22] showed success
within the selection hyper-heuristic framework. More on se-
lection hyper-heuristics can be found in [6], [7], [27], [5], [4].

III. GROUP DECISION MAKING HYPER-HEURISTICS

A. Group decision making

Group decision-making is defined as ”the process by which
a collective of individuals attempt to reach a required level
of consensus on a given issue” [14]. This process contains
two main phases; discussion between group members and
reaching a single group decision. The final outcome requires
an agreement based on a specified strategy as decision criteria
such as voting.

A decision making process [29] consists of a set of steps
to reach a choice. At first, the problem is identified. Then,
the factors expected to be influential on the decision are
listed. Each member of this list should be associated with a
specific weight according to its importance, that is, some kind
of priority should be established. After that, the alternatives
that can meet the requirements are considered. The effect and
performance of each alternative strategy are analysed. Among
all the alternatives, the best one is chosen and performed on
the given issue. During this process, three main circumstances
can be encountered; certainty, uncertainty and risk. From the
certainty perspective, all the possible effects of the decisions
are known. For uncertainty, information about the results of
alternatives is incomplete. Thus, a risk must be taken to get rid
of this uncertainty by associating some probabilistic values.

During the group decision making process, one of four
main decision making strategies as classified by [31] should
be chosen and applied depending on the characteristics of
a problem. One of them is the plop method. It works by
providing different ideas about a subject and arguing them,
then accepting one of them. It is very simple and commonly
used approach, but it is not appropriate for all types of group
decisions. The other one is group decision making under an
authority rule. It is a straightforward strategy depending on the
power. For instance, in a company, everyone provides some
ideas about a subject and discusses to reach a decision. The
final decision is made by an authorised person, such as, a
chairman. Another model for group decision is the minority
rule. Unlike the previous case, the discussion is rather shallow.
An authorised person asks whether the idea is accepted or not
and the silence of group members is considered the acceptance
of the proposed idea. It is also possible that everyone states an
allowed to state an opposing idea, but the final decision can be
given by a small group of people, such as, the shareholders of
a company without other board of members. The last and the
most known one is the majority rule. It can be exemplified with
two different approaches. One of them is a well known system,
i.e. voting. Everyone votes for a decision, and then the decision

received the majority of the votes is the final decision. The
other majority rule is pooling. In this case, voting is performed
twice. A discussion session is arranged in between them. If
the general opinion is the same as before the discussions, the
idea is accepted.

B. Group decision making move acceptance methods

Four different group decision making strategies are pro-
posed as a hyper-heuristic move acceptance mechanism: G-
AND, G-OR, G-VOT, G-PVO. Each one of these move ac-
ceptance mechanisms provides a decision whether a new can-
didate solution is accepted or not by evaluating the decisions
of their member move acceptance mechanisms. Generally
speaking, improvements are always accepted and a worsening
move subject to the group decision criteria. G-OR and G-AND
are biased strategies. G-OR makes an acceptance oriented
decision. If the members willing to admit the new solution are
in the minority, still, it is accepted. Even if there is a single
member that admits the new solution, that member acts as
an authority and makes the final decision. On the other hand,
G-AND makes a rejection oriented decision. All the member
move acceptance mechanisms must be in agreement so that the
new solution gets accepted. Even if the members that reject
the new solution are in the minority, it is rejected. G-VOT
and G-PVO are based on the majority rule. G-VOT is based
on the traditional voting scheme. If the number of members
that vote for acceptance of the new solution, it is accepted,
otherwise it is rejected. G-AND, G-OR and G-VOT act under
certainty, whereas G-PVO is modelled favouring uncertainty
to a degree using a probabilistic framework while making the
final decision. The probability of acceptance of a new solution
dynamically changes proportional to the number of members
that vote for acceptance within the group at each step in G-
PVO. For example, assuming that there are ten members in
the group and six of them accept the new solution at a step,
then this solution is accepted by G-PVO with a probability
of 0.6. None of the group decision making move acceptance
criteria requires odd number of members, but it is preferable
by G-VOT.

The proposed group decision making move acceptance
criteria can be represented by means of a more general model.
In this model, given k move acceptance methods, a move
is accepted if the inequality is satisfied by the Equation 3,
otherwise it is rejected. The contribution of each member
move acceptance mechanism towards a final decision for the
acceptance can be adjusted through a weight, referred to as
strength (si). Assuming that all si values are 1, the method
turns out to be G-AND for α = k and G-OR for =0.5. If
α = k/2 and all si values are 1, then the method becomes
G-VOT. If α = k × r, where r is a uniform random number
in [0,1] and all si values are 1/k, then the method becomes
G-PVO. More static, dynamic and adaptive group decision
making move acceptance strategies can be generated based
on this model, which is out of the scope of this paper.



k∑
i=1

si ×D(Mi) ≥ α (3)

where Mi denotes the ith group member (a move acceptance
mechanism), D(x) returns 1, if the strategy x accepts the new
solution and 0, otherwise, si is the strength of the decision
made by the ith member move acceptance mechanism and α
denotes a threshold value.

A move acceptance criterion used in a selection hyper-
heuristic is categorised as non-deterministic if the acceptance
decision depends on current time (iteration). If the acceptance
decision is the same for a given new and current solution at any
point during the search process, the move acceptance criterion
is considered as a deterministic criterion. Additionally, an
acceptance mechanism can be characterised as stochastic (non-
stochastic) if a probabilistic framework is (not) utilised while
accepting or rejecting a move. Existing move acceptance fall
in one of the three categories presented in Table I. A selection
hyper-heuristic using a move acceptance method based on a
group decision making model will be referred to as a group
decision making hyper-heuristic from this point on.

IV. GROUP DECISION MAKING HYPER-HEURISTICS FOR
BENCHMARK FUNCTION OPTIMISATION

Seven heuristic selection methods SR, RD, RP, RPD, CF,
GR, TABU are combined with four group decision making
move acceptance mechanisms G-AND, G-OR, G-VOT, G-
PVO, generating twenty eight hyper-heuristics. For example,
combining the SR heuristic method with the G-AND group
decision making move acceptance mechanism will be denoted
as SR G-AND. The move acceptance mechanisms embed
M1=IE, M2=MC and M3=GD as group members. These group
members were selected due to their high performance reported
in [27]. It should be also noted that each member falls into a
different category, previously mentioned in Table I.

A. Benchmark function test suite

Benchmark functions are excellent playgrounds for evalu-
ating a new approach and comparing with other approaches.
Fourteen well known selected benchmark functions including
the De Jong’s test suite [10] are used to investigate the
performance of group decision making hyper-heuristics. Table
II provides the characteristics of these functions. There are
eleven continuous (F1-F11) and three discrete functions (F12-
F14) in the test set. The discrete functions are deceptive
functions because of the large hamming distance between the
local optima and the global optimum. A unimodal benchmark
function contains a single optimum, whereas a multimodal
benchmark function has at least one local optimum that may
cause a search method getting trapped. Separability property
determines the dependency between the dimensional encoding
of solutions and ease of evaluating candidate solution. In a
separable function, the evaluation process can be divided into a
set of independent evaluations for each dimensional encoding.
This process allows delta evaluation in the case of a localised

change within a dimension eliminating the need for decoding
all dimensions to evaluate a given candidate solution.

B. Frameworks, low level heuristics and encoding for bench-
mark function optimisation

A hyper-heuristic framework (FA) without differentiating
the low level heuristics is presented in [5]. On the other
hand, [26] separate mutational heuristics and hill climbers
and propose three additional hyper-heuristic frameworks (FB ,
FC , FD). An improved or equal quality solution is expected
from a hill climber as a local search component, while a
mutational heuristic is a methodological random perturbation.
The best performing hyper-heuristic framework, FC , applies
a predetermined hill climber right after a mutational heuristic.
A similar idea is studied by memetic algorithms that hybridise
genetic algorithms and hill climbers.

The results provided by [27] show that a hyper-heuristic can
generate a matching performance to a memetic algorithm.

The low level heuristics for benchmark function optimisa-
tion includes three mutational heuristics and three hill climbers
[27]:

• H1: mutation (MUTN) flips a randomly selected bit.
• H2: dimensional mutation (DIMM) randomly selects

a dimension and flips a random bit.
• H3: swap dimension (SWPD) swaps all bits between

two randomly selected dimensions.
• H4: random mutation hill climber (RMHC) flips

a randomly selected bit. If the change improves the
solution, it is accepted (otherwise rejected). This process
is repeated n times, where n is the length of a candidate
solution (number of bits).

• H5: next gradient hill climber (NGHC) starts with the
first bit and flips it. If this change improves the solution,
it is accepted (otherwise rejected), and then the next bit
is considered until all the bits are processed.

• H6: Davis′s bit hill climber (DBHC) operates similar
to NGHC. The only difference is that DBHC uses a
random ordering of bits instead of starting from the first
bit and moving to the next one.

The traditional hyper-heuristic framework is investigated as
well as the FC framework for benchmark optimisation. Within
the FC framework, a hyper-heuristic controls three mutational
heuristics (H1, H2 and H3). DBHC (H6) is employed after
applying a mutational heuristic. Gray encoding is used to
represent the candidate solutions for the continuous functions.

V. COMPUTATIONAL RESULTS

Pentium IV 3 GHz LINUX machines having 2.00GB
memories are used for the benchmark function optimisation
experiments. Fifty runs are performed during each test. The
experiments are terminated if the execution time exceeds 600
CPU seconds or the expected global optimum is achieved.
Success rate, s.r., denotes the ratio of successful runs in
which the expected fitness is achieved to the total number
of runs. Expected fitness should be optimum, so success
rate = number of runs in which optimum is obtained/total



TABLE I
CATEGORIZATION OF SOME EXISTING MOVE ACCEPTANCE METHODS USED WITHIN THE SELECTION HYPER-HEURISTICS.

deterministic non-deterministic
stochastic - Simulated Annealing, SA with reheat-

ing, EMCQ
non-stochastic Accept all, Improving and Equal, Only

Improving
Great Deluge, Late Acceptance,AILTA

TABLE II
CHARACTERISTICS OF THE BENCHMARK FUNCTIONS
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Source
F1 Sphere [-5.12,5.12] 10 0 X x X [10]
F2 Rosenbrock [-2.048,2.048] 10 0 X x X [10]
F3 Step [-5.12,5.12] 10 0 X x X [10]
F4 Quartic with noise [-1.28,1.28] 10 1 X X X [10]
F5 Foxhole [-65.536,65.536] 2 1 X X x [10]
F6 Rastrigin [-5.12,5.12] 10 0 X X X [28]
F7 Schwefel [-500,500] 10 0 X X X [32]
F8 Griewangk [-600,600] 10 0 X X x [19]
F9 Ackley [-32.768,32.768] 10 0 X X x [1]
F10 Easom [-100,100] 6 -1 X x x [13]
F11 Schwefels Double Sum [-65.536,65.536] 10 0 X x x [32]
F12 Royal Road n/a 8 0 x n/a X [23]
F13 Goldberg n/a 30 0 x n/a X [17], [18]
F14 Whitley n/a 6 0 x n/a X [34]

number of runs. All twenty eight group decision making hyper-
heuristics are applied to the benchmark function optimisation
problems using the traditional hyper-heuristic framework (FA).
The results show that G-VOT as a group decision making
move acceptance mechanism performs the best considering the
average success rate over all test cases as illustrated in Figure
2. G-PVO, G-AND and G-OR follow G-VOT performance-
wise in that order. The performance variance between the
majority rule move acceptance mechanisms and G-OR is
significant based on the student’s two-tailed paired t-test within
a confidence interval of %97.
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Fig. 2. Average success rate (and the associated standard deviation) for each
group decision making acceptance mechanism over all benchmark function
experiments when used within the traditional hyper-heuristic framework FA

Table III provides the performance comparison of group de-

cision making hyper-heuristics using CF as heuristic selection
based on success rate. CF as a heuristic selection mechanism
performs slightly better than the rest of the heuristic selection
mechanisms with an average success rate of 0.78 over all
the experiments as illustrated in Figure 3. The student’s t-
test based on success rates over all benchmark functions and
move acceptance methods shows that the rest of the heuristic
selection methods have similar performances. The CF G-VOT
hyper-heuristic performs the best with an average success
rate of 0.92 over all benchmark functions, outperforming
each member hyper-heuristic when used as a single approach.
The experiments are repeated in the same environment with
the same settings using hyper-heuristics that combine CF
with the member move acceptance methods. CF IE, CF GD
and CF MC generate an average success rate of 0.69, 0.88
and 0.91, respectively. CF G-VOT performs slightly better
than CF G-PVO, CF GD and CF MC while its performance
variation is significantly better than CF IE, CF G-AND, and
CF G-OR based on a pairwise student’s t-test of success rates
over all benchmark functions.

CF G-VOT achieves a success rate that is greater or equal
to 0.96 for F4, F6 and F10 functions as shown in Table III.
The full success is obtained in locating the global optimum for
all functions, excluding F13. This hyper-heuristic is obviously
susceptible to deception. The global optimum is not found for
Goldberg’s deceptive function (F13) in none of the runs. On
the other hand, CF G-AND locates the global optimum for
F13 at least once when combined with any heuristic selection
method.



TABLE III
PERFORMANCE COMPARISON OF DECISION MAKING HYPER-HEURISTICS USING CHOICE FUNCTION, CF, AS A HEURISTIC SELECTION COMPONENT OVER

BENCHMARK FUNCTIONS BASED ON SUCCESS RATE.

label G-VOT G-PVO G-AND G-OR label G-VOT G-PVO G-AND G-OR
F1 1.00 1.00 1.00 1.00 F8 1.00 1.00 0.04 1.00
F2 1.00 1.00 0.00 1.00 F9 1.00 1.00 1.00 1.00
F3 1.00 1.00 1.00 0.78 F10 0.98 0.92 1.00 0.96
F4 0.96 0.92 0.54 0.64 F11 1.00 1.00 0.02 1.00
F5 1.00 1.00 1.00 1.00 F12 1.00 1.00 1.00 0.00
F6 0.96 0.48 1.00 0.04 F13 0.00 0.00 0.00 0.00
F7 1.00 1.00 1.00 0.50 F14 1.00 1.00 1.00 0.00

avr. 0.92 0.88 0.69 0.64
std. 0.27 0.29 0.46 0.44
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Fig. 3. Average success rate (and the associated standard deviation) for each
heuristic selection method over all benchmark function experiments when
used within the traditional hyper-heuristic framework FA

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

G-AND G-OR G-PVO G-VOT

acceptance mechanism

s.r.

Fig. 4. Average success rate (and the associated standard deviation) for each
group decision making acceptance mechanism over all benchmark function
experiments when used within the FC framework

The same trials with all the decision making hyper-
heuristics are repeated using FC in the second set of ex-
periments. The results show that almost in all cases, the
group decision making hyper-heuristics generates better per-
formance. Figure 4 illustrates the overall evaluation. Although
G-AND turns out to be the best, its performance variation
is insignificant as compared to G-PVO and G-VOT based on
the student’s t-test. The performance of G-OR worsens. As a
result, it is observed that majority towards an agreement of

acceptance is more valuable among the group members. The
heuristic selection methods starting from the one having the
best performance to the worst are GR, CF, TABU, RPD, SR,
RP and RD, respectively. The best performing hyper-heuristic
from the previous set of experiments, CF G-VOT, improved
its success rate from 0.92 to 0.99 by this framework modifica-
tion. Moreover, the hyper-heuristics GR G-PVO and GR G-
VOT generate full success (1.00) over all the benchmark
functions. The best performing memetic algorithm located
the global optima for all the benchmark functions reported
in [27]. Hence, the performances of GR G-PVO and GR G-
VOT are comparable to the memetic algorithm. Additionally,
a pairwise student’s t-test based on success rates over all
benchmark functions between CF G-VOT and each approach
in GR G-PVO, GR G-VOT, Memetic Algorithm confirms that
the performance of these approaches are similar.

VI. CONCLUSION AND FUTURE WORK

A class of hyper-heuristics contains methodologies that
combine two consecutive processes, namely heuristic selection
and move acceptance in a single point based search framework.
An initial solution is improved iteratively by applying a
set of perturbative low level heuristics until termination. It
has already been empirically observed that the choice of
move acceptance method for a hyper-heuristic is critical.
Different combinations of a heuristic selection method and
a move acceptance criterion in a hyper-heuristic might yield
different performance across different problem domains [3],
[26], [27]. This study investigates the effectiveness of group
decision making for move acceptance in hyper-heuristics.
The decisions of a group of independent move acceptance
criteria are combined to make a single decision whether to
accept or reject a new solution during the search process. The
experimental results show that the majority rule based group
decision making move acceptance methods can significantly
improve the performance of a selection hyper-heuristic. The
traditional AND-operator and probabilistic voting schemes
which dynamically compute the acceptance probability of a
move based on the votes from the group members are the
most successful mechanisms to be used within the selection
hyper-heuristics. If the mutational and hill climbing heuristics
can be distinguished and implemented separately for a given



problem, an additional improvement can be obtained by using
the memetic hyper-heuristic framework (FC) [27].

The move acceptance methods based on group decision
making models appears to produce a synergy among the
member move acceptance criteria yielding a better perfor-
mance. The proposed group decision making mechanisms can
be extended to combine different acceptance mechanisms as
group members in different ways, hence, new group decision
making hyper-heuristics can be constructed. The proposed
approach might be useful in relieving the difficulty of choosing
a move acceptance method to be used within a selection hyper-
heuristic for solving a problem. The performance variation
between group decision making strategies across different
problem domains indicates the viability of weighing decisions
made by each group member and even investigating the
adaptation of those weights as future work.
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